2015-07-10 18:27:06 -07:00

931 lines
39 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::abi;
use llvm;
use llvm::{ConstFCmp, ConstICmp, SetLinkage, SetUnnamedAddr};
use llvm::{InternalLinkage, ValueRef, Bool, True};
use middle::{check_const, def};
use middle::const_eval::{self, ConstVal};
use middle::const_eval::{const_int_checked_neg, const_uint_checked_neg};
use middle::const_eval::{const_int_checked_add, const_uint_checked_add};
use middle::const_eval::{const_int_checked_sub, const_uint_checked_sub};
use middle::const_eval::{const_int_checked_mul, const_uint_checked_mul};
use middle::const_eval::{const_int_checked_div, const_uint_checked_div};
use middle::const_eval::{const_int_checked_rem, const_uint_checked_rem};
use middle::const_eval::{const_int_checked_shl, const_uint_checked_shl};
use middle::const_eval::{const_int_checked_shr, const_uint_checked_shr};
use trans::{adt, closure, debuginfo, expr, inline, machine};
use trans::base::{self, push_ctxt};
use trans::common::*;
use trans::declare;
use trans::monomorphize;
use trans::type_::Type;
use trans::type_of;
use middle::cast::{CastTy,IntTy};
use middle::subst::Substs;
use middle::ty::{self, Ty};
use util::nodemap::NodeMap;
use std::iter::repeat;
use libc::c_uint;
use syntax::{ast, ast_util};
use syntax::parse::token;
use syntax::ptr::P;
pub type FnArgMap<'a> = Option<&'a NodeMap<ValueRef>>;
pub fn const_lit(cx: &CrateContext, e: &ast::Expr, lit: &ast::Lit)
-> ValueRef {
let _icx = push_ctxt("trans_lit");
debug!("const_lit: {:?}", lit);
match lit.node {
ast::LitByte(b) => C_integral(Type::uint_from_ty(cx, ast::TyU8), b as u64, false),
ast::LitChar(i) => C_integral(Type::char(cx), i as u64, false),
ast::LitInt(i, ast::SignedIntLit(t, _)) => {
C_integral(Type::int_from_ty(cx, t), i, true)
}
ast::LitInt(u, ast::UnsignedIntLit(t)) => {
C_integral(Type::uint_from_ty(cx, t), u, false)
}
ast::LitInt(i, ast::UnsuffixedIntLit(_)) => {
let lit_int_ty = cx.tcx().node_id_to_type(e.id);
match lit_int_ty.sty {
ty::TyInt(t) => {
C_integral(Type::int_from_ty(cx, t), i as u64, true)
}
ty::TyUint(t) => {
C_integral(Type::uint_from_ty(cx, t), i as u64, false)
}
_ => cx.sess().span_bug(lit.span,
&format!("integer literal has type {:?} (expected int \
or usize)",
lit_int_ty))
}
}
ast::LitFloat(ref fs, t) => {
C_floating(&fs, Type::float_from_ty(cx, t))
}
ast::LitFloatUnsuffixed(ref fs) => {
let lit_float_ty = cx.tcx().node_id_to_type(e.id);
match lit_float_ty.sty {
ty::TyFloat(t) => {
C_floating(&fs, Type::float_from_ty(cx, t))
}
_ => {
cx.sess().span_bug(lit.span,
"floating point literal doesn't have the right type");
}
}
}
ast::LitBool(b) => C_bool(cx, b),
ast::LitStr(ref s, _) => C_str_slice(cx, (*s).clone()),
ast::LitBinary(ref data) => {
addr_of(cx, C_bytes(cx, &data[..]), "binary")
}
}
}
pub fn ptrcast(val: ValueRef, ty: Type) -> ValueRef {
unsafe {
llvm::LLVMConstPointerCast(val, ty.to_ref())
}
}
fn addr_of_mut(ccx: &CrateContext,
cv: ValueRef,
kind: &str)
-> ValueRef {
unsafe {
// FIXME: this totally needs a better name generation scheme, perhaps a simple global
// counter? Also most other uses of gensym in trans.
let gsym = token::gensym("_");
let name = format!("{}{}", kind, gsym.usize());
let gv = declare::define_global(ccx, &name[..], val_ty(cv)).unwrap_or_else(||{
ccx.sess().bug(&format!("symbol `{}` is already defined", name));
});
llvm::LLVMSetInitializer(gv, cv);
SetLinkage(gv, InternalLinkage);
SetUnnamedAddr(gv, true);
gv
}
}
pub fn addr_of(ccx: &CrateContext,
cv: ValueRef,
kind: &str)
-> ValueRef {
match ccx.const_globals().borrow().get(&cv) {
Some(&gv) => return gv,
None => {}
}
let gv = addr_of_mut(ccx, cv, kind);
unsafe {
llvm::LLVMSetGlobalConstant(gv, True);
}
ccx.const_globals().borrow_mut().insert(cv, gv);
gv
}
fn const_deref_ptr(cx: &CrateContext, v: ValueRef) -> ValueRef {
let v = match cx.const_unsized().borrow().get(&v) {
Some(&v) => v,
None => v
};
unsafe {
llvm::LLVMGetInitializer(v)
}
}
fn const_deref<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
v: ValueRef,
ty: Ty<'tcx>)
-> (ValueRef, Ty<'tcx>) {
match ty.builtin_deref(true) {
Some(mt) => {
if type_is_sized(cx.tcx(), mt.ty) {
(const_deref_ptr(cx, v), mt.ty)
} else {
// Derefing a fat pointer does not change the representation,
// just the type to the unsized contents.
(v, mt.ty)
}
}
None => {
cx.sess().bug(&format!("unexpected dereferenceable type {:?}",
ty))
}
}
}
fn const_fn_call<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
node: ExprOrMethodCall,
def_id: ast::DefId,
arg_vals: &[ValueRef],
param_substs: &'tcx Substs<'tcx>) -> ValueRef {
let fn_like = const_eval::lookup_const_fn_by_id(ccx.tcx(), def_id);
let fn_like = fn_like.expect("lookup_const_fn_by_id failed in const_fn_call");
let args = &fn_like.decl().inputs;
assert_eq!(args.len(), arg_vals.len());
let arg_ids = args.iter().map(|arg| arg.pat.id);
let fn_args = arg_ids.zip(arg_vals.iter().cloned()).collect();
let substs = ccx.tcx().mk_substs(node_id_substs(ccx, node, param_substs));
match fn_like.body().expr {
Some(ref expr) => {
const_expr(ccx, &**expr, substs, Some(&fn_args)).0
}
None => C_nil(ccx)
}
}
pub fn get_const_expr<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
def_id: ast::DefId,
ref_expr: &ast::Expr)
-> &'tcx ast::Expr {
let def_id = inline::maybe_instantiate_inline(ccx, def_id);
if def_id.krate != ast::LOCAL_CRATE {
ccx.sess().span_bug(ref_expr.span,
"cross crate constant could not be inlined");
}
match const_eval::lookup_const_by_id(ccx.tcx(), def_id, Some(ref_expr.id)) {
Some(ref expr) => expr,
None => {
ccx.sess().span_bug(ref_expr.span, "constant item not found")
}
}
}
fn get_const_val(ccx: &CrateContext,
def_id: ast::DefId,
ref_expr: &ast::Expr) -> ValueRef {
let expr = get_const_expr(ccx, def_id, ref_expr);
let empty_substs = ccx.tcx().mk_substs(Substs::trans_empty());
get_const_expr_as_global(ccx, expr, check_const::ConstQualif::empty(), empty_substs)
}
pub fn get_const_expr_as_global<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
expr: &ast::Expr,
qualif: check_const::ConstQualif,
param_substs: &'tcx Substs<'tcx>)
-> ValueRef {
debug!("get_const_expr_as_global: {:?}", expr.id);
// Special-case constants to cache a common global for all uses.
match expr.node {
ast::ExprPath(..) => {
let def = ccx.tcx().def_map.borrow().get(&expr.id).unwrap().full_def();
match def {
def::DefConst(def_id) | def::DefAssociatedConst(def_id, _) => {
if !ccx.tcx().tables.borrow().adjustments.contains_key(&expr.id) {
debug!("get_const_expr_as_global ({:?}): found const {:?}",
expr.id, def_id);
return get_const_val(ccx, def_id, expr);
}
}
_ => {}
}
}
_ => {}
}
let key = (expr.id, param_substs);
match ccx.const_values().borrow().get(&key) {
Some(&val) => return val,
None => {}
}
let val = if qualif.intersects(check_const::ConstQualif::NON_STATIC_BORROWS) {
// Avoid autorefs as they would create global instead of stack
// references, even when only the latter are correct.
let ty = monomorphize::apply_param_substs(ccx.tcx(), param_substs,
&ccx.tcx().expr_ty(expr));
const_expr_unadjusted(ccx, expr, ty, param_substs, None)
} else {
const_expr(ccx, expr, param_substs, None).0
};
// boolean SSA values are i1, but they have to be stored in i8 slots,
// otherwise some LLVM optimization passes don't work as expected
let val = unsafe {
if llvm::LLVMTypeOf(val) == Type::i1(ccx).to_ref() {
llvm::LLVMConstZExt(val, Type::i8(ccx).to_ref())
} else {
val
}
};
let lvalue = addr_of(ccx, val, "const");
ccx.const_values().borrow_mut().insert(key, lvalue);
lvalue
}
pub fn const_expr<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
e: &ast::Expr,
param_substs: &'tcx Substs<'tcx>,
fn_args: FnArgMap)
-> (ValueRef, Ty<'tcx>) {
let ety = monomorphize::apply_param_substs(cx.tcx(), param_substs,
&cx.tcx().expr_ty(e));
let llconst = const_expr_unadjusted(cx, e, ety, param_substs, fn_args);
let mut llconst = llconst;
let mut ety_adjusted = monomorphize::apply_param_substs(cx.tcx(), param_substs,
&cx.tcx().expr_ty_adjusted(e));
let opt_adj = cx.tcx().tables.borrow().adjustments.get(&e.id).cloned();
match opt_adj {
Some(ty::AdjustReifyFnPointer) => {
// FIXME(#19925) once fn item types are
// zero-sized, we'll need to do something here
}
Some(ty::AdjustUnsafeFnPointer) => {
// purely a type-level thing
}
Some(ty::AdjustDerefRef(adj)) => {
let mut ty = ety;
// Save the last autoderef in case we can avoid it.
if adj.autoderefs > 0 {
for _ in 0..adj.autoderefs-1 {
let (dv, dt) = const_deref(cx, llconst, ty);
llconst = dv;
ty = dt;
}
}
if adj.autoref.is_some() {
if adj.autoderefs == 0 {
// Don't copy data to do a deref+ref
// (i.e., skip the last auto-deref).
llconst = addr_of(cx, llconst, "autoref");
ty = cx.tcx().mk_imm_ref(cx.tcx().mk_region(ty::ReStatic), ty);
}
} else {
let (dv, dt) = const_deref(cx, llconst, ty);
llconst = dv;
// If we derefed a fat pointer then we will have an
// open type here. So we need to update the type with
// the one returned from const_deref.
ety_adjusted = dt;
}
if let Some(target) = adj.unsize {
let target = monomorphize::apply_param_substs(cx.tcx(),
param_substs,
&target);
let pointee_ty = ty.builtin_deref(true)
.expect("consts: unsizing got non-pointer type").ty;
let (base, old_info) = if !type_is_sized(cx.tcx(), pointee_ty) {
// Normally, the source is a thin pointer and we are
// adding extra info to make a fat pointer. The exception
// is when we are upcasting an existing object fat pointer
// to use a different vtable. In that case, we want to
// load out the original data pointer so we can repackage
// it.
(const_get_elt(cx, llconst, &[abi::FAT_PTR_ADDR as u32]),
Some(const_get_elt(cx, llconst, &[abi::FAT_PTR_EXTRA as u32])))
} else {
(llconst, None)
};
let unsized_ty = target.builtin_deref(true)
.expect("consts: unsizing got non-pointer target type").ty;
let ptr_ty = type_of::in_memory_type_of(cx, unsized_ty).ptr_to();
let base = ptrcast(base, ptr_ty);
let info = expr::unsized_info(cx, pointee_ty, unsized_ty,
old_info, param_substs);
if old_info.is_none() {
let prev_const = cx.const_unsized().borrow_mut()
.insert(base, llconst);
assert!(prev_const.is_none() || prev_const == Some(llconst));
}
assert_eq!(abi::FAT_PTR_ADDR, 0);
assert_eq!(abi::FAT_PTR_EXTRA, 1);
llconst = C_struct(cx, &[base, info], false);
}
}
None => {}
};
let llty = type_of::sizing_type_of(cx, ety_adjusted);
let csize = machine::llsize_of_alloc(cx, val_ty(llconst));
let tsize = machine::llsize_of_alloc(cx, llty);
if csize != tsize {
cx.sess().abort_if_errors();
unsafe {
// FIXME these values could use some context
llvm::LLVMDumpValue(llconst);
llvm::LLVMDumpValue(C_undef(llty));
}
cx.sess().bug(&format!("const {:?} of type {:?} has size {} instead of {}",
e, ety_adjusted,
csize, tsize));
}
(llconst, ety_adjusted)
}
fn check_unary_expr_validity(cx: &CrateContext, e: &ast::Expr, t: Ty,
te: ValueRef) {
// The only kind of unary expression that we check for validity
// here is `-expr`, to check if it "overflows" (e.g. `-i32::MIN`).
if let ast::ExprUnary(ast::UnNeg, ref inner_e) = e.node {
// An unfortunate special case: we parse e.g. -128 as a
// negation of the literal 128, which means if we're expecting
// a i8 (or if it was already suffixed, e.g. `-128_i8`), then
// 128 will have already overflowed to -128, and so then the
// constant evaluator thinks we're trying to negate -128.
//
// Catch this up front by looking for ExprLit directly,
// and just accepting it.
if let ast::ExprLit(_) = inner_e.node { return; }
let result = match t.sty {
ty::TyInt(int_type) => {
let input = match const_to_opt_int(te) {
Some(v) => v,
None => return,
};
const_int_checked_neg(
input, e, Some(const_eval::IntTy::from(cx.tcx(), int_type)))
}
ty::TyUint(uint_type) => {
let input = match const_to_opt_uint(te) {
Some(v) => v,
None => return,
};
const_uint_checked_neg(
input, e, Some(const_eval::UintTy::from(cx.tcx(), uint_type)))
}
_ => return,
};
// We do not actually care about a successful result.
if let Err(err) = result {
cx.tcx().sess.span_err(e.span, &err.description());
}
}
}
fn check_binary_expr_validity(cx: &CrateContext, e: &ast::Expr, t: Ty,
te1: ValueRef, te2: ValueRef) {
let b = if let ast::ExprBinary(b, _, _) = e.node { b } else { return };
let result = match t.sty {
ty::TyInt(int_type) => {
let (lhs, rhs) = match (const_to_opt_int(te1),
const_to_opt_int(te2)) {
(Some(v1), Some(v2)) => (v1, v2),
_ => return,
};
let opt_ety = Some(const_eval::IntTy::from(cx.tcx(), int_type));
match b.node {
ast::BiAdd => const_int_checked_add(lhs, rhs, e, opt_ety),
ast::BiSub => const_int_checked_sub(lhs, rhs, e, opt_ety),
ast::BiMul => const_int_checked_mul(lhs, rhs, e, opt_ety),
ast::BiDiv => const_int_checked_div(lhs, rhs, e, opt_ety),
ast::BiRem => const_int_checked_rem(lhs, rhs, e, opt_ety),
ast::BiShl => const_int_checked_shl(lhs, rhs, e, opt_ety),
ast::BiShr => const_int_checked_shr(lhs, rhs, e, opt_ety),
_ => return,
}
}
ty::TyUint(uint_type) => {
let (lhs, rhs) = match (const_to_opt_uint(te1),
const_to_opt_uint(te2)) {
(Some(v1), Some(v2)) => (v1, v2),
_ => return,
};
let opt_ety = Some(const_eval::UintTy::from(cx.tcx(), uint_type));
match b.node {
ast::BiAdd => const_uint_checked_add(lhs, rhs, e, opt_ety),
ast::BiSub => const_uint_checked_sub(lhs, rhs, e, opt_ety),
ast::BiMul => const_uint_checked_mul(lhs, rhs, e, opt_ety),
ast::BiDiv => const_uint_checked_div(lhs, rhs, e, opt_ety),
ast::BiRem => const_uint_checked_rem(lhs, rhs, e, opt_ety),
ast::BiShl => const_uint_checked_shl(lhs, rhs, e, opt_ety),
ast::BiShr => const_uint_checked_shr(lhs, rhs, e, opt_ety),
_ => return,
}
}
_ => return,
};
// We do not actually care about a successful result.
if let Err(err) = result {
cx.tcx().sess.span_err(e.span, &err.description());
}
}
fn const_expr_unadjusted<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
e: &ast::Expr,
ety: Ty<'tcx>,
param_substs: &'tcx Substs<'tcx>,
fn_args: FnArgMap)
-> ValueRef
{
debug!("const_expr_unadjusted(e={:?}, ety={:?}, param_substs={:?})",
e,
ety,
param_substs);
let map_list = |exprs: &[P<ast::Expr>]| -> Vec<ValueRef> {
exprs.iter()
.map(|e| const_expr(cx, &**e, param_substs, fn_args).0)
.collect()
};
let _icx = push_ctxt("const_expr");
match e.node {
ast::ExprLit(ref lit) => {
const_lit(cx, e, &**lit)
},
ast::ExprBinary(b, ref e1, ref e2) => {
/* Neither type is bottom, and we expect them to be unified
* already, so the following is safe. */
let (te1, ty) = const_expr(cx, &**e1, param_substs, fn_args);
debug!("const_expr_unadjusted: te1={}, ty={:?}",
cx.tn().val_to_string(te1),
ty);
let is_simd = ty.is_simd(cx.tcx());
let intype = if is_simd {
ty.simd_type(cx.tcx())
} else {
ty
};
let is_float = intype.is_fp();
let signed = intype.is_signed();
let (te2, _) = const_expr(cx, &**e2, param_substs, fn_args);
check_binary_expr_validity(cx, e, ty, te1, te2);
unsafe { match b.node {
ast::BiAdd if is_float => llvm::LLVMConstFAdd(te1, te2),
ast::BiAdd => llvm::LLVMConstAdd(te1, te2),
ast::BiSub if is_float => llvm::LLVMConstFSub(te1, te2),
ast::BiSub => llvm::LLVMConstSub(te1, te2),
ast::BiMul if is_float => llvm::LLVMConstFMul(te1, te2),
ast::BiMul => llvm::LLVMConstMul(te1, te2),
ast::BiDiv if is_float => llvm::LLVMConstFDiv(te1, te2),
ast::BiDiv if signed => llvm::LLVMConstSDiv(te1, te2),
ast::BiDiv => llvm::LLVMConstUDiv(te1, te2),
ast::BiRem if is_float => llvm::LLVMConstFRem(te1, te2),
ast::BiRem if signed => llvm::LLVMConstSRem(te1, te2),
ast::BiRem => llvm::LLVMConstURem(te1, te2),
ast::BiAnd => llvm::LLVMConstAnd(te1, te2),
ast::BiOr => llvm::LLVMConstOr(te1, te2),
ast::BiBitXor => llvm::LLVMConstXor(te1, te2),
ast::BiBitAnd => llvm::LLVMConstAnd(te1, te2),
ast::BiBitOr => llvm::LLVMConstOr(te1, te2),
ast::BiShl => {
let te2 = base::cast_shift_const_rhs(b.node, te1, te2);
llvm::LLVMConstShl(te1, te2)
},
ast::BiShr => {
let te2 = base::cast_shift_const_rhs(b.node, te1, te2);
if signed { llvm::LLVMConstAShr(te1, te2) }
else { llvm::LLVMConstLShr(te1, te2) }
},
ast::BiEq | ast::BiNe | ast::BiLt | ast::BiLe | ast::BiGt | ast::BiGe => {
if is_float {
let cmp = base::bin_op_to_fcmp_predicate(cx, b.node);
ConstFCmp(cmp, te1, te2)
} else {
let cmp = base::bin_op_to_icmp_predicate(cx, b.node, signed);
let bool_val = ConstICmp(cmp, te1, te2);
if is_simd {
// LLVM outputs an `< size x i1 >`, so we need to perform
// a sign extension to get the correctly sized type.
llvm::LLVMConstIntCast(bool_val, val_ty(te1).to_ref(), True)
} else {
bool_val
}
}
},
} } // unsafe { match b.node {
},
ast::ExprUnary(u, ref inner_e) => {
let (te, ty) = const_expr(cx, &**inner_e, param_substs, fn_args);
check_unary_expr_validity(cx, e, ty, te);
let is_float = ty.is_fp();
unsafe { match u {
ast::UnUniq | ast::UnDeref => const_deref(cx, te, ty).0,
ast::UnNot => llvm::LLVMConstNot(te),
ast::UnNeg if is_float => llvm::LLVMConstFNeg(te),
ast::UnNeg => llvm::LLVMConstNeg(te),
} }
},
ast::ExprField(ref base, field) => {
let (bv, bt) = const_expr(cx, &**base, param_substs, fn_args);
let brepr = adt::represent_type(cx, bt);
expr::with_field_tys(cx.tcx(), bt, None, |discr, field_tys| {
let ix = cx.tcx().field_idx_strict(field.node.name, field_tys);
adt::const_get_field(cx, &*brepr, bv, discr, ix)
})
},
ast::ExprTupField(ref base, idx) => {
let (bv, bt) = const_expr(cx, &**base, param_substs, fn_args);
let brepr = adt::represent_type(cx, bt);
expr::with_field_tys(cx.tcx(), bt, None, |discr, _| {
adt::const_get_field(cx, &*brepr, bv, discr, idx.node)
})
},
ast::ExprIndex(ref base, ref index) => {
let (bv, bt) = const_expr(cx, &**base, param_substs, fn_args);
let iv = match const_eval::eval_const_expr_partial(cx.tcx(), &**index, None) {
Ok(ConstVal::Int(i)) => i as u64,
Ok(ConstVal::Uint(u)) => u,
_ => cx.sess().span_bug(index.span,
"index is not an integer-constant expression")
};
let (arr, len) = match bt.sty {
ty::TyArray(_, u) => (bv, C_uint(cx, u)),
ty::TySlice(_) | ty::TyStr => {
let e1 = const_get_elt(cx, bv, &[0]);
(const_deref_ptr(cx, e1), const_get_elt(cx, bv, &[1]))
},
ty::TyRef(_, mt) => match mt.ty.sty {
ty::TyArray(_, u) => {
(const_deref_ptr(cx, bv), C_uint(cx, u))
},
_ => cx.sess().span_bug(base.span,
&format!("index-expr base must be a vector \
or string type, found {:?}",
bt)),
},
_ => cx.sess().span_bug(base.span,
&format!("index-expr base must be a vector \
or string type, found {:?}",
bt)),
};
let len = unsafe { llvm::LLVMConstIntGetZExtValue(len) as u64 };
let len = match bt.sty {
ty::TyBox(ty) | ty::TyRef(_, ty::TypeAndMut{ty, ..}) => match ty.sty {
ty::TyStr => {
assert!(len > 0);
len - 1
},
_ => len,
},
_ => len,
};
if iv >= len {
// FIXME #3170: report this earlier on in the const-eval
// pass. Reporting here is a bit late.
cx.sess().span_err(e.span,
"const index-expr is out of bounds");
C_undef(type_of::type_of(cx, bt).element_type())
} else {
const_get_elt(cx, arr, &[iv as c_uint])
}
},
ast::ExprCast(ref base, _) => {
let t_cast = ety;
let llty = type_of::type_of(cx, t_cast);
let (v, t_expr) = const_expr(cx, &**base, param_substs, fn_args);
debug!("trans_const_cast({:?} as {:?})", t_expr, t_cast);
if expr::cast_is_noop(cx.tcx(), base, t_expr, t_cast) {
return v;
}
if type_is_fat_ptr(cx.tcx(), t_expr) {
// Fat pointer casts.
let t_cast_inner = t_cast.builtin_deref(true).expect("cast to non-pointer").ty;
let ptr_ty = type_of::in_memory_type_of(cx, t_cast_inner).ptr_to();
let addr = ptrcast(const_get_elt(cx, v, &[abi::FAT_PTR_ADDR as u32]),
ptr_ty);
if type_is_fat_ptr(cx.tcx(), t_cast) {
let info = const_get_elt(cx, v, &[abi::FAT_PTR_EXTRA as u32]);
return C_struct(cx, &[addr, info], false)
} else {
return addr;
}
}
unsafe { match (
CastTy::from_ty(cx.tcx(), t_expr).expect("bad input type for cast"),
CastTy::from_ty(cx.tcx(), t_cast).expect("bad output type for cast"),
) {
(CastTy::Int(IntTy::CEnum), CastTy::Int(_)) => {
let repr = adt::represent_type(cx, t_expr);
let discr = adt::const_get_discrim(cx, &*repr, v);
let iv = C_integral(cx.int_type(), discr, false);
let s = adt::is_discr_signed(&*repr) as Bool;
llvm::LLVMConstIntCast(iv, llty.to_ref(), s)
},
(CastTy::Int(_), CastTy::Int(_)) => {
let s = t_expr.is_signed() as Bool;
llvm::LLVMConstIntCast(v, llty.to_ref(), s)
},
(CastTy::Int(_), CastTy::Float) => {
if t_expr.is_signed() {
llvm::LLVMConstSIToFP(v, llty.to_ref())
} else {
llvm::LLVMConstUIToFP(v, llty.to_ref())
}
},
(CastTy::Float, CastTy::Float) => llvm::LLVMConstFPCast(v, llty.to_ref()),
(CastTy::Float, CastTy::Int(IntTy::I)) => llvm::LLVMConstFPToSI(v, llty.to_ref()),
(CastTy::Float, CastTy::Int(_)) => llvm::LLVMConstFPToUI(v, llty.to_ref()),
(CastTy::Ptr(_), CastTy::Ptr(_)) | (CastTy::FnPtr, CastTy::Ptr(_))
| (CastTy::RPtr(_), CastTy::Ptr(_)) => {
ptrcast(v, llty)
},
(CastTy::FnPtr, CastTy::FnPtr) => ptrcast(v, llty), // isn't this a coercion?
(CastTy::Int(_), CastTy::Ptr(_)) => llvm::LLVMConstIntToPtr(v, llty.to_ref()),
(CastTy::Ptr(_), CastTy::Int(_)) | (CastTy::FnPtr, CastTy::Int(_)) => {
llvm::LLVMConstPtrToInt(v, llty.to_ref())
},
_ => {
cx.sess().impossible_case(e.span,
"bad combination of types for cast")
},
} } // unsafe { match ( ... ) {
},
ast::ExprAddrOf(ast::MutImmutable, ref sub) => {
// If this is the address of some static, then we need to return
// the actual address of the static itself (short circuit the rest
// of const eval).
let mut cur = sub;
loop {
match cur.node {
ast::ExprParen(ref sub) => cur = sub,
ast::ExprBlock(ref blk) => {
if let Some(ref sub) = blk.expr {
cur = sub;
} else {
break;
}
},
_ => break,
}
}
let opt_def = cx.tcx().def_map.borrow().get(&cur.id).map(|d| d.full_def());
if let Some(def::DefStatic(def_id, _)) = opt_def {
get_static_val(cx, def_id, ety)
} else {
// If this isn't the address of a static, then keep going through
// normal constant evaluation.
let (v, _) = const_expr(cx, &**sub, param_substs, fn_args);
addr_of(cx, v, "ref")
}
},
ast::ExprAddrOf(ast::MutMutable, ref sub) => {
let (v, _) = const_expr(cx, &**sub, param_substs, fn_args);
addr_of_mut(cx, v, "ref_mut_slice")
},
ast::ExprTup(ref es) => {
let repr = adt::represent_type(cx, ety);
let vals = map_list(&es[..]);
adt::trans_const(cx, &*repr, 0, &vals[..])
},
ast::ExprStruct(_, ref fs, ref base_opt) => {
let repr = adt::represent_type(cx, ety);
let base_val = match *base_opt {
Some(ref base) => Some(const_expr(cx, &**base, param_substs, fn_args)),
None => None
};
expr::with_field_tys(cx.tcx(), ety, Some(e.id), |discr, field_tys| {
let cs = field_tys.iter().enumerate()
.map(|(ix, &field_ty)| {
match (fs.iter().find(|f| field_ty.name == f.ident.node.name), base_val) {
(Some(ref f), _) => const_expr(cx, &*f.expr, param_substs, fn_args).0,
(_, Some((bv, _))) => adt::const_get_field(cx, &*repr, bv, discr, ix),
(_, None) => cx.sess().span_bug(e.span, "missing struct field"),
}
}).collect::<Vec<_>>();
if ety.is_simd(cx.tcx()) {
C_vector(&cs[..])
} else {
adt::trans_const(cx, &*repr, discr, &cs[..])
}
})
},
ast::ExprVec(ref es) => {
let unit_ty = ety.sequence_element_type(cx.tcx());
let llunitty = type_of::type_of(cx, unit_ty);
let vs = es.iter()
.map(|e| const_expr(cx, &**e, param_substs, fn_args).0)
.collect::<Vec<_>>();
// If the vector contains enums, an LLVM array won't work.
if vs.iter().any(|vi| val_ty(*vi) != llunitty) {
C_struct(cx, &vs[..], false)
} else {
C_array(llunitty, &vs[..])
}
},
ast::ExprRepeat(ref elem, ref count) => {
let unit_ty = ety.sequence_element_type(cx.tcx());
let llunitty = type_of::type_of(cx, unit_ty);
let n = cx.tcx().eval_repeat_count(count);
let unit_val = const_expr(cx, &**elem, param_substs, fn_args).0;
let vs: Vec<_> = repeat(unit_val).take(n).collect();
if val_ty(unit_val) != llunitty {
C_struct(cx, &vs[..], false)
} else {
C_array(llunitty, &vs[..])
}
},
ast::ExprPath(..) => {
let def = cx.tcx().def_map.borrow().get(&e.id).unwrap().full_def();
match def {
def::DefLocal(id) => {
if let Some(val) = fn_args.and_then(|args| args.get(&id).cloned()) {
val
} else {
cx.sess().span_bug(e.span, "const fn argument not found")
}
}
def::DefFn(..) | def::DefMethod(..) => {
expr::trans_def_fn_unadjusted(cx, e, def, param_substs).val
}
def::DefConst(def_id) | def::DefAssociatedConst(def_id, _) => {
const_deref_ptr(cx, get_const_val(cx, def_id, e))
}
def::DefVariant(enum_did, variant_did, _) => {
let vinfo = cx.tcx().enum_variant_with_id(enum_did, variant_did);
if !vinfo.args.is_empty() {
// N-ary variant.
expr::trans_def_fn_unadjusted(cx, e, def, param_substs).val
} else {
// Nullary variant.
let repr = adt::represent_type(cx, ety);
adt::trans_const(cx, &*repr, vinfo.disr_val, &[])
}
}
def::DefStruct(_) => {
if let ty::TyBareFn(..) = ety.sty {
// Tuple struct.
expr::trans_def_fn_unadjusted(cx, e, def, param_substs).val
} else {
// Unit struct.
C_null(type_of::type_of(cx, ety))
}
}
_ => {
cx.sess().span_bug(e.span, "expected a const, fn, struct, \
or variant def")
}
}
},
ast::ExprCall(ref callee, ref args) => {
let mut callee = &**callee;
loop {
callee = match callee.node {
ast::ExprParen(ref inner) => &**inner,
ast::ExprBlock(ref block) => match block.expr {
Some(ref tail) => &**tail,
None => break,
},
_ => break,
};
}
let def = cx.tcx().def_map.borrow()[&callee.id].full_def();
let arg_vals = map_list(args);
match def {
def::DefFn(did, _) | def::DefMethod(did, _) => {
const_fn_call(cx, ExprId(callee.id), did, &arg_vals, param_substs)
},
def::DefStruct(_) => {
if ety.is_simd(cx.tcx()) {
C_vector(&arg_vals[..])
} else {
let repr = adt::represent_type(cx, ety);
adt::trans_const(cx, &*repr, 0, &arg_vals[..])
}
},
def::DefVariant(enum_did, variant_did, _) => {
let repr = adt::represent_type(cx, ety);
let vinfo = cx.tcx().enum_variant_with_id(enum_did, variant_did);
adt::trans_const(cx,
&*repr,
vinfo.disr_val,
&arg_vals[..])
},
_ => cx.sess().span_bug(e.span, "expected a struct, variant, or const fn def"),
}
},
ast::ExprMethodCall(_, _, ref args) => {
let arg_vals = map_list(args);
let method_call = ty::MethodCall::expr(e.id);
let method_did = cx.tcx().tables.borrow().method_map[&method_call].def_id;
const_fn_call(cx, MethodCallKey(method_call),
method_did, &arg_vals, param_substs)
},
ast::ExprParen(ref e) => const_expr(cx, &**e, param_substs, fn_args).0,
ast::ExprBlock(ref block) => {
match block.expr {
Some(ref expr) => const_expr(cx, &**expr, param_substs, fn_args).0,
None => C_nil(cx),
}
},
ast::ExprClosure(_, ref decl, ref body) => {
closure::trans_closure_expr(closure::Dest::Ignore(cx),
decl,
body,
e.id,
param_substs);
C_null(type_of::type_of(cx, ety))
},
_ => cx.sess().span_bug(e.span,
"bad constant expression type in consts::const_expr"),
}
}
pub fn trans_static(ccx: &CrateContext, m: ast::Mutability, id: ast::NodeId) -> ValueRef {
unsafe {
let _icx = push_ctxt("trans_static");
let g = base::get_item_val(ccx, id);
// At this point, get_item_val has already translated the
// constant's initializer to determine its LLVM type.
let v = ccx.static_values().borrow().get(&id).unwrap().clone();
// boolean SSA values are i1, but they have to be stored in i8 slots,
// otherwise some LLVM optimization passes don't work as expected
let v = if llvm::LLVMTypeOf(v) == Type::i1(ccx).to_ref() {
llvm::LLVMConstZExt(v, Type::i8(ccx).to_ref())
} else {
v
};
llvm::LLVMSetInitializer(g, v);
// As an optimization, all shared statics which do not have interior
// mutability are placed into read-only memory.
if m != ast::MutMutable {
let node_ty = ccx.tcx().node_id_to_type(id);
let tcontents = node_ty.type_contents(ccx.tcx());
if !tcontents.interior_unsafe() {
llvm::LLVMSetGlobalConstant(g, True);
}
}
debuginfo::create_global_var_metadata(ccx, id, g);
g
}
}
fn get_static_val<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, did: ast::DefId,
ty: Ty<'tcx>) -> ValueRef {
if ast_util::is_local(did) { return base::get_item_val(ccx, did.node) }
base::trans_external_path(ccx, did, ty)
}