83b1d7fd6f
Replace Path::exists with stable metadata call.
5628 lines
214 KiB
Rust
5628 lines
214 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
pub use self::PathParsingMode::*;
|
|
|
|
use abi;
|
|
use ast::BareFnTy;
|
|
use ast::{RegionTyParamBound, TraitTyParamBound, TraitBoundModifier};
|
|
use ast::{Public, Unsafety};
|
|
use ast::{Mod, BiAdd, Arg, Arm, Attribute, BindByRef, BindByValue};
|
|
use ast::{BiBitAnd, BiBitOr, BiBitXor, BiRem, BiLt, BiGt, Block};
|
|
use ast::{BlockCheckMode, CaptureByRef, CaptureByValue, CaptureClause};
|
|
use ast::{Crate, CrateConfig, Decl, DeclItem};
|
|
use ast::{DeclLocal, DefaultBlock, DefaultReturn};
|
|
use ast::{UnDeref, BiDiv, EMPTY_CTXT, EnumDef, ExplicitSelf};
|
|
use ast::{Expr, Expr_, ExprAddrOf, ExprMatch, ExprAgain};
|
|
use ast::{ExprAssign, ExprAssignOp, ExprBinary, ExprBlock, ExprBox};
|
|
use ast::{ExprBreak, ExprCall, ExprCast};
|
|
use ast::{ExprField, ExprTupField, ExprClosure, ExprIf, ExprIfLet, ExprIndex};
|
|
use ast::{ExprLit, ExprLoop, ExprMac, ExprRange};
|
|
use ast::{ExprMethodCall, ExprParen, ExprPath};
|
|
use ast::{ExprRepeat, ExprRet, ExprStruct, ExprTup, ExprUnary};
|
|
use ast::{ExprVec, ExprWhile, ExprWhileLet, ExprForLoop, Field, FnDecl};
|
|
use ast::{ForeignItem, ForeignItemStatic, ForeignItemFn, ForeignMod, FunctionRetTy};
|
|
use ast::{Ident, Inherited, ImplItem, Item, Item_, ItemStatic};
|
|
use ast::{ItemEnum, ItemFn, ItemForeignMod, ItemImpl, ItemConst};
|
|
use ast::{ItemMac, ItemMod, ItemStruct, ItemTrait, ItemTy, ItemDefaultImpl};
|
|
use ast::{ItemExternCrate, ItemUse};
|
|
use ast::{LifetimeDef, Lit, Lit_};
|
|
use ast::{LitBool, LitChar, LitByte, LitBinary};
|
|
use ast::{LitStr, LitInt, Local, LocalLet};
|
|
use ast::{MacStmtWithBraces, MacStmtWithSemicolon, MacStmtWithoutBraces};
|
|
use ast::{MutImmutable, MutMutable, Mac_, MacInvocTT, MatchSource};
|
|
use ast::{MutTy, BiMul, Mutability};
|
|
use ast::{MethodImplItem, NamedField, UnNeg, NoReturn, UnNot};
|
|
use ast::{Pat, PatBox, PatEnum, PatIdent, PatLit, PatMac, PatRange, PatRegion};
|
|
use ast::{PatStruct, PatTup, PatVec, PatWild, PatWildMulti, PatWildSingle};
|
|
use ast::{PolyTraitRef, QSelf};
|
|
use ast::{Return, BiShl, BiShr, Stmt, StmtDecl};
|
|
use ast::{StmtExpr, StmtSemi, StmtMac, StructDef, StructField};
|
|
use ast::{StructVariantKind, BiSub, StrStyle};
|
|
use ast::{SelfExplicit, SelfRegion, SelfStatic, SelfValue};
|
|
use ast::{Delimited, SequenceRepetition, TokenTree, TraitItem, TraitRef};
|
|
use ast::{TtDelimited, TtSequence, TtToken};
|
|
use ast::{TupleVariantKind, Ty, Ty_, TypeBinding};
|
|
use ast::{TyFixedLengthVec, TyBareFn, TyTypeof, TyInfer};
|
|
use ast::{TyParam, TyParamBound, TyParen, TyPath, TyPolyTraitRef, TyPtr};
|
|
use ast::{TyRptr, TyTup, TyU32, TyVec, UnUniq};
|
|
use ast::{TypeImplItem, TypeTraitItem};
|
|
use ast::{UnnamedField, UnsafeBlock};
|
|
use ast::{ViewPath, ViewPathGlob, ViewPathList, ViewPathSimple};
|
|
use ast::{Visibility, WhereClause};
|
|
use ast;
|
|
use ast_util::{self, AS_PREC, ident_to_path, operator_prec};
|
|
use codemap::{self, Span, BytePos, Spanned, spanned, mk_sp};
|
|
use diagnostic;
|
|
use ext::tt::macro_parser;
|
|
use parse;
|
|
use parse::attr::ParserAttr;
|
|
use parse::classify;
|
|
use parse::common::{SeqSep, seq_sep_none, seq_sep_trailing_allowed};
|
|
use parse::lexer::{Reader, TokenAndSpan};
|
|
use parse::obsolete::{ParserObsoleteMethods, ObsoleteSyntax};
|
|
use parse::token::{self, MatchNt, SubstNt, SpecialVarNt, InternedString};
|
|
use parse::token::{keywords, special_idents, SpecialMacroVar};
|
|
use parse::{new_sub_parser_from_file, ParseSess};
|
|
use print::pprust;
|
|
use ptr::P;
|
|
use owned_slice::OwnedSlice;
|
|
use parse::PResult;
|
|
use diagnostic::FatalError;
|
|
|
|
use std::collections::HashSet;
|
|
use std::fs;
|
|
use std::io::prelude::*;
|
|
use std::mem;
|
|
use std::path::{Path, PathBuf};
|
|
use std::rc::Rc;
|
|
use std::slice;
|
|
|
|
bitflags! {
|
|
flags Restrictions: u8 {
|
|
const UNRESTRICTED = 0b0000,
|
|
const RESTRICTION_STMT_EXPR = 0b0001,
|
|
const RESTRICTION_NO_STRUCT_LITERAL = 0b0010,
|
|
}
|
|
}
|
|
|
|
type ItemInfo = (Ident, Item_, Option<Vec<Attribute> >);
|
|
|
|
/// How to parse a path. There are four different kinds of paths, all of which
|
|
/// are parsed somewhat differently.
|
|
#[derive(Copy, Clone, PartialEq)]
|
|
pub enum PathParsingMode {
|
|
/// A path with no type parameters; e.g. `foo::bar::Baz`
|
|
NoTypesAllowed,
|
|
/// A path with a lifetime and type parameters, with no double colons
|
|
/// before the type parameters; e.g. `foo::bar<'a>::Baz<T>`
|
|
LifetimeAndTypesWithoutColons,
|
|
/// A path with a lifetime and type parameters with double colons before
|
|
/// the type parameters; e.g. `foo::bar::<'a>::Baz::<T>`
|
|
LifetimeAndTypesWithColons,
|
|
}
|
|
|
|
/// How to parse a bound, whether to allow bound modifiers such as `?`.
|
|
#[derive(Copy, Clone, PartialEq)]
|
|
pub enum BoundParsingMode {
|
|
Bare,
|
|
Modified,
|
|
}
|
|
|
|
/// Possibly accept an `token::Interpolated` expression (a pre-parsed expression
|
|
/// dropped into the token stream, which happens while parsing the result of
|
|
/// macro expansion). Placement of these is not as complex as I feared it would
|
|
/// be. The important thing is to make sure that lookahead doesn't balk at
|
|
/// `token::Interpolated` tokens.
|
|
macro_rules! maybe_whole_expr {
|
|
($p:expr) => (
|
|
{
|
|
let found = match $p.token {
|
|
token::Interpolated(token::NtExpr(ref e)) => {
|
|
Some((*e).clone())
|
|
}
|
|
token::Interpolated(token::NtPath(_)) => {
|
|
// FIXME: The following avoids an issue with lexical borrowck scopes,
|
|
// but the clone is unfortunate.
|
|
let pt = match $p.token {
|
|
token::Interpolated(token::NtPath(ref pt)) => (**pt).clone(),
|
|
_ => unreachable!()
|
|
};
|
|
let span = $p.span;
|
|
Some($p.mk_expr(span.lo, span.hi, ExprPath(None, pt)))
|
|
}
|
|
token::Interpolated(token::NtBlock(_)) => {
|
|
// FIXME: The following avoids an issue with lexical borrowck scopes,
|
|
// but the clone is unfortunate.
|
|
let b = match $p.token {
|
|
token::Interpolated(token::NtBlock(ref b)) => (*b).clone(),
|
|
_ => unreachable!()
|
|
};
|
|
let span = $p.span;
|
|
Some($p.mk_expr(span.lo, span.hi, ExprBlock(b)))
|
|
}
|
|
_ => None
|
|
};
|
|
match found {
|
|
Some(e) => {
|
|
try!($p.bump());
|
|
return Ok(e);
|
|
}
|
|
None => ()
|
|
}
|
|
}
|
|
)
|
|
}
|
|
|
|
/// As maybe_whole_expr, but for things other than expressions
|
|
macro_rules! maybe_whole {
|
|
($p:expr, $constructor:ident) => (
|
|
{
|
|
let found = match ($p).token {
|
|
token::Interpolated(token::$constructor(_)) => {
|
|
Some(try!(($p).bump_and_get()))
|
|
}
|
|
_ => None
|
|
};
|
|
if let Some(token::Interpolated(token::$constructor(x))) = found {
|
|
return Ok(x.clone());
|
|
}
|
|
}
|
|
);
|
|
(no_clone $p:expr, $constructor:ident) => (
|
|
{
|
|
let found = match ($p).token {
|
|
token::Interpolated(token::$constructor(_)) => {
|
|
Some(try!(($p).bump_and_get()))
|
|
}
|
|
_ => None
|
|
};
|
|
if let Some(token::Interpolated(token::$constructor(x))) = found {
|
|
return Ok(x);
|
|
}
|
|
}
|
|
);
|
|
(deref $p:expr, $constructor:ident) => (
|
|
{
|
|
let found = match ($p).token {
|
|
token::Interpolated(token::$constructor(_)) => {
|
|
Some(try!(($p).bump_and_get()))
|
|
}
|
|
_ => None
|
|
};
|
|
if let Some(token::Interpolated(token::$constructor(x))) = found {
|
|
return Ok((*x).clone());
|
|
}
|
|
}
|
|
);
|
|
(Some deref $p:expr, $constructor:ident) => (
|
|
{
|
|
let found = match ($p).token {
|
|
token::Interpolated(token::$constructor(_)) => {
|
|
Some(try!(($p).bump_and_get()))
|
|
}
|
|
_ => None
|
|
};
|
|
if let Some(token::Interpolated(token::$constructor(x))) = found {
|
|
return Ok(Some((*x).clone()));
|
|
}
|
|
}
|
|
);
|
|
(pair_empty $p:expr, $constructor:ident) => (
|
|
{
|
|
let found = match ($p).token {
|
|
token::Interpolated(token::$constructor(_)) => {
|
|
Some(try!(($p).bump_and_get()))
|
|
}
|
|
_ => None
|
|
};
|
|
if let Some(token::Interpolated(token::$constructor(x))) = found {
|
|
return Ok((Vec::new(), x));
|
|
}
|
|
}
|
|
)
|
|
}
|
|
|
|
|
|
fn maybe_append(mut lhs: Vec<Attribute>, rhs: Option<Vec<Attribute>>)
|
|
-> Vec<Attribute> {
|
|
if let Some(ref attrs) = rhs {
|
|
lhs.extend(attrs.iter().cloned())
|
|
}
|
|
lhs
|
|
}
|
|
|
|
/* ident is handled by common.rs */
|
|
|
|
pub struct Parser<'a> {
|
|
pub sess: &'a ParseSess,
|
|
/// the current token:
|
|
pub token: token::Token,
|
|
/// the span of the current token:
|
|
pub span: Span,
|
|
/// the span of the prior token:
|
|
pub last_span: Span,
|
|
pub cfg: CrateConfig,
|
|
/// the previous token or None (only stashed sometimes).
|
|
pub last_token: Option<Box<token::Token>>,
|
|
pub buffer: [TokenAndSpan; 4],
|
|
pub buffer_start: isize,
|
|
pub buffer_end: isize,
|
|
pub tokens_consumed: usize,
|
|
pub restrictions: Restrictions,
|
|
pub quote_depth: usize, // not (yet) related to the quasiquoter
|
|
pub reader: Box<Reader+'a>,
|
|
pub interner: Rc<token::IdentInterner>,
|
|
/// The set of seen errors about obsolete syntax. Used to suppress
|
|
/// extra detail when the same error is seen twice
|
|
pub obsolete_set: HashSet<ObsoleteSyntax>,
|
|
/// Used to determine the path to externally loaded source files
|
|
pub mod_path_stack: Vec<InternedString>,
|
|
/// Stack of spans of open delimiters. Used for error message.
|
|
pub open_braces: Vec<Span>,
|
|
/// Flag if this parser "owns" the directory that it is currently parsing
|
|
/// in. This will affect how nested files are looked up.
|
|
pub owns_directory: bool,
|
|
/// Name of the root module this parser originated from. If `None`, then the
|
|
/// name is not known. This does not change while the parser is descending
|
|
/// into modules, and sub-parsers have new values for this name.
|
|
pub root_module_name: Option<String>,
|
|
pub expected_tokens: Vec<TokenType>,
|
|
}
|
|
|
|
#[derive(PartialEq, Eq, Clone)]
|
|
pub enum TokenType {
|
|
Token(token::Token),
|
|
Keyword(keywords::Keyword),
|
|
Operator,
|
|
}
|
|
|
|
impl TokenType {
|
|
fn to_string(&self) -> String {
|
|
match *self {
|
|
TokenType::Token(ref t) => format!("`{}`", Parser::token_to_string(t)),
|
|
TokenType::Operator => "an operator".to_string(),
|
|
TokenType::Keyword(kw) => format!("`{}`", token::get_name(kw.to_name())),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn is_plain_ident_or_underscore(t: &token::Token) -> bool {
|
|
t.is_plain_ident() || *t == token::Underscore
|
|
}
|
|
|
|
impl<'a> Parser<'a> {
|
|
pub fn new(sess: &'a ParseSess,
|
|
cfg: ast::CrateConfig,
|
|
mut rdr: Box<Reader+'a>)
|
|
-> Parser<'a>
|
|
{
|
|
let tok0 = rdr.real_token();
|
|
let span = tok0.sp;
|
|
let placeholder = TokenAndSpan {
|
|
tok: token::Underscore,
|
|
sp: span,
|
|
};
|
|
|
|
Parser {
|
|
reader: rdr,
|
|
interner: token::get_ident_interner(),
|
|
sess: sess,
|
|
cfg: cfg,
|
|
token: tok0.tok,
|
|
span: span,
|
|
last_span: span,
|
|
last_token: None,
|
|
buffer: [
|
|
placeholder.clone(),
|
|
placeholder.clone(),
|
|
placeholder.clone(),
|
|
placeholder.clone(),
|
|
],
|
|
buffer_start: 0,
|
|
buffer_end: 0,
|
|
tokens_consumed: 0,
|
|
restrictions: UNRESTRICTED,
|
|
quote_depth: 0,
|
|
obsolete_set: HashSet::new(),
|
|
mod_path_stack: Vec::new(),
|
|
open_braces: Vec::new(),
|
|
owns_directory: true,
|
|
root_module_name: None,
|
|
expected_tokens: Vec::new(),
|
|
}
|
|
}
|
|
|
|
// Panicing fns (for now!)
|
|
// This is so that the quote_*!() syntax extensions
|
|
pub fn parse_expr(&mut self) -> P<Expr> {
|
|
panictry!(self.parse_expr_nopanic())
|
|
}
|
|
|
|
pub fn parse_item(&mut self) -> Option<P<Item>> {
|
|
panictry!(self.parse_item_nopanic())
|
|
}
|
|
|
|
pub fn parse_pat(&mut self) -> P<Pat> {
|
|
panictry!(self.parse_pat_nopanic())
|
|
}
|
|
|
|
pub fn parse_arm(&mut self) -> Arm {
|
|
panictry!(self.parse_arm_nopanic())
|
|
}
|
|
|
|
pub fn parse_ty(&mut self) -> P<Ty> {
|
|
panictry!(self.parse_ty_nopanic())
|
|
}
|
|
|
|
pub fn parse_stmt(&mut self) -> Option<P<Stmt>> {
|
|
panictry!(self.parse_stmt_nopanic())
|
|
}
|
|
|
|
/// Convert a token to a string using self's reader
|
|
pub fn token_to_string(token: &token::Token) -> String {
|
|
pprust::token_to_string(token)
|
|
}
|
|
|
|
/// Convert the current token to a string using self's reader
|
|
pub fn this_token_to_string(&self) -> String {
|
|
Parser::token_to_string(&self.token)
|
|
}
|
|
|
|
pub fn unexpected_last(&self, t: &token::Token) -> FatalError {
|
|
let token_str = Parser::token_to_string(t);
|
|
let last_span = self.last_span;
|
|
self.span_fatal(last_span, &format!("unexpected token: `{}`",
|
|
token_str))
|
|
}
|
|
|
|
pub fn unexpected(&mut self) -> FatalError {
|
|
match self.expect_one_of(&[], &[]) {
|
|
Err(e) => e,
|
|
Ok(_) => unreachable!()
|
|
}
|
|
}
|
|
|
|
/// Expect and consume the token t. Signal an error if
|
|
/// the next token is not t.
|
|
pub fn expect(&mut self, t: &token::Token) -> PResult<()> {
|
|
if self.expected_tokens.is_empty() {
|
|
if self.token == *t {
|
|
self.bump()
|
|
} else {
|
|
let token_str = Parser::token_to_string(t);
|
|
let this_token_str = self.this_token_to_string();
|
|
Err(self.fatal(&format!("expected `{}`, found `{}`",
|
|
token_str,
|
|
this_token_str)))
|
|
}
|
|
} else {
|
|
self.expect_one_of(slice::ref_slice(t), &[])
|
|
}
|
|
}
|
|
|
|
/// Expect next token to be edible or inedible token. If edible,
|
|
/// then consume it; if inedible, then return without consuming
|
|
/// anything. Signal a fatal error if next token is unexpected.
|
|
pub fn expect_one_of(&mut self,
|
|
edible: &[token::Token],
|
|
inedible: &[token::Token]) -> PResult<()>{
|
|
fn tokens_to_string(tokens: &[TokenType]) -> String {
|
|
let mut i = tokens.iter();
|
|
// This might be a sign we need a connect method on Iterator.
|
|
let b = i.next()
|
|
.map_or("".to_string(), |t| t.to_string());
|
|
i.enumerate().fold(b, |mut b, (i, ref a)| {
|
|
if tokens.len() > 2 && i == tokens.len() - 2 {
|
|
b.push_str(", or ");
|
|
} else if tokens.len() == 2 && i == tokens.len() - 2 {
|
|
b.push_str(" or ");
|
|
} else {
|
|
b.push_str(", ");
|
|
}
|
|
b.push_str(&*a.to_string());
|
|
b
|
|
})
|
|
}
|
|
if edible.contains(&self.token) {
|
|
self.bump()
|
|
} else if inedible.contains(&self.token) {
|
|
// leave it in the input
|
|
Ok(())
|
|
} else {
|
|
let mut expected = edible.iter()
|
|
.map(|x| TokenType::Token(x.clone()))
|
|
.chain(inedible.iter().map(|x| TokenType::Token(x.clone())))
|
|
.chain(self.expected_tokens.iter().cloned())
|
|
.collect::<Vec<_>>();
|
|
expected.sort_by(|a, b| a.to_string().cmp(&b.to_string()));
|
|
expected.dedup();
|
|
let expect = tokens_to_string(&expected[..]);
|
|
let actual = self.this_token_to_string();
|
|
Err(self.fatal(
|
|
&(if expected.len() > 1 {
|
|
(format!("expected one of {}, found `{}`",
|
|
expect,
|
|
actual))
|
|
} else if expected.is_empty() {
|
|
(format!("unexpected token: `{}`",
|
|
actual))
|
|
} else {
|
|
(format!("expected {}, found `{}`",
|
|
expect,
|
|
actual))
|
|
})[..]
|
|
))
|
|
}
|
|
}
|
|
|
|
/// Check for erroneous `ident { }`; if matches, signal error and
|
|
/// recover (without consuming any expected input token). Returns
|
|
/// true if and only if input was consumed for recovery.
|
|
pub fn check_for_erroneous_unit_struct_expecting(&mut self,
|
|
expected: &[token::Token])
|
|
-> PResult<bool> {
|
|
if self.token == token::OpenDelim(token::Brace)
|
|
&& expected.iter().all(|t| *t != token::OpenDelim(token::Brace))
|
|
&& self.look_ahead(1, |t| *t == token::CloseDelim(token::Brace)) {
|
|
// matched; signal non-fatal error and recover.
|
|
let span = self.span;
|
|
self.span_err(span,
|
|
"unit-like struct construction is written with no trailing `{ }`");
|
|
try!(self.eat(&token::OpenDelim(token::Brace)));
|
|
try!(self.eat(&token::CloseDelim(token::Brace)));
|
|
Ok(true)
|
|
} else {
|
|
Ok(false)
|
|
}
|
|
}
|
|
|
|
/// Commit to parsing a complete expression `e` expected to be
|
|
/// followed by some token from the set edible + inedible. Recover
|
|
/// from anticipated input errors, discarding erroneous characters.
|
|
pub fn commit_expr(&mut self, e: &Expr, edible: &[token::Token],
|
|
inedible: &[token::Token]) -> PResult<()> {
|
|
debug!("commit_expr {:?}", e);
|
|
if let ExprPath(..) = e.node {
|
|
// might be unit-struct construction; check for recoverableinput error.
|
|
let expected = edible.iter()
|
|
.cloned()
|
|
.chain(inedible.iter().cloned())
|
|
.collect::<Vec<_>>();
|
|
try!(self.check_for_erroneous_unit_struct_expecting(&expected[..]));
|
|
}
|
|
self.expect_one_of(edible, inedible)
|
|
}
|
|
|
|
pub fn commit_expr_expecting(&mut self, e: &Expr, edible: token::Token) -> PResult<()> {
|
|
self.commit_expr(e, &[edible], &[])
|
|
}
|
|
|
|
/// Commit to parsing a complete statement `s`, which expects to be
|
|
/// followed by some token from the set edible + inedible. Check
|
|
/// for recoverable input errors, discarding erroneous characters.
|
|
pub fn commit_stmt(&mut self, edible: &[token::Token],
|
|
inedible: &[token::Token]) -> PResult<()> {
|
|
if self.last_token
|
|
.as_ref()
|
|
.map_or(false, |t| t.is_ident() || t.is_path()) {
|
|
let expected = edible.iter()
|
|
.cloned()
|
|
.chain(inedible.iter().cloned())
|
|
.collect::<Vec<_>>();
|
|
try!(self.check_for_erroneous_unit_struct_expecting(&expected));
|
|
}
|
|
self.expect_one_of(edible, inedible)
|
|
}
|
|
|
|
pub fn commit_stmt_expecting(&mut self, edible: token::Token) -> PResult<()> {
|
|
self.commit_stmt(&[edible], &[])
|
|
}
|
|
|
|
pub fn parse_ident(&mut self) -> PResult<ast::Ident> {
|
|
self.check_strict_keywords();
|
|
try!(self.check_reserved_keywords());
|
|
match self.token {
|
|
token::Ident(i, _) => {
|
|
try!(self.bump());
|
|
Ok(i)
|
|
}
|
|
token::Interpolated(token::NtIdent(..)) => {
|
|
self.bug("ident interpolation not converted to real token");
|
|
}
|
|
_ => {
|
|
let token_str = self.this_token_to_string();
|
|
Err(self.fatal(&format!("expected ident, found `{}`",
|
|
token_str)))
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn parse_ident_or_self_type(&mut self) -> PResult<ast::Ident> {
|
|
if self.is_self_type_ident() {
|
|
self.expect_self_type_ident()
|
|
} else {
|
|
self.parse_ident()
|
|
}
|
|
}
|
|
|
|
pub fn parse_path_list_item(&mut self) -> PResult<ast::PathListItem> {
|
|
let lo = self.span.lo;
|
|
let node = if try!(self.eat_keyword(keywords::SelfValue)) {
|
|
ast::PathListMod { id: ast::DUMMY_NODE_ID }
|
|
} else {
|
|
let ident = try!(self.parse_ident());
|
|
ast::PathListIdent { name: ident, id: ast::DUMMY_NODE_ID }
|
|
};
|
|
let hi = self.last_span.hi;
|
|
Ok(spanned(lo, hi, node))
|
|
}
|
|
|
|
/// Check if the next token is `tok`, and return `true` if so.
|
|
///
|
|
/// This method is will automatically add `tok` to `expected_tokens` if `tok` is not
|
|
/// encountered.
|
|
pub fn check(&mut self, tok: &token::Token) -> bool {
|
|
let is_present = self.token == *tok;
|
|
if !is_present { self.expected_tokens.push(TokenType::Token(tok.clone())); }
|
|
is_present
|
|
}
|
|
|
|
/// Consume token 'tok' if it exists. Returns true if the given
|
|
/// token was present, false otherwise.
|
|
pub fn eat(&mut self, tok: &token::Token) -> PResult<bool> {
|
|
let is_present = self.check(tok);
|
|
if is_present { try!(self.bump())}
|
|
Ok(is_present)
|
|
}
|
|
|
|
pub fn check_keyword(&mut self, kw: keywords::Keyword) -> bool {
|
|
self.expected_tokens.push(TokenType::Keyword(kw));
|
|
self.token.is_keyword(kw)
|
|
}
|
|
|
|
/// If the next token is the given keyword, eat it and return
|
|
/// true. Otherwise, return false.
|
|
pub fn eat_keyword(&mut self, kw: keywords::Keyword) -> PResult<bool> {
|
|
if self.check_keyword(kw) {
|
|
try!(self.bump());
|
|
Ok(true)
|
|
} else {
|
|
Ok(false)
|
|
}
|
|
}
|
|
|
|
pub fn eat_keyword_noexpect(&mut self, kw: keywords::Keyword) -> PResult<bool> {
|
|
if self.token.is_keyword(kw) {
|
|
try!(self.bump());
|
|
Ok(true)
|
|
} else {
|
|
Ok(false)
|
|
}
|
|
}
|
|
|
|
/// If the given word is not a keyword, signal an error.
|
|
/// If the next token is not the given word, signal an error.
|
|
/// Otherwise, eat it.
|
|
pub fn expect_keyword(&mut self, kw: keywords::Keyword) -> PResult<()> {
|
|
if !try!(self.eat_keyword(kw) ){
|
|
self.expect_one_of(&[], &[])
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Signal an error if the given string is a strict keyword
|
|
pub fn check_strict_keywords(&mut self) {
|
|
if self.token.is_strict_keyword() {
|
|
let token_str = self.this_token_to_string();
|
|
let span = self.span;
|
|
self.span_err(span,
|
|
&format!("expected identifier, found keyword `{}`",
|
|
token_str));
|
|
}
|
|
}
|
|
|
|
/// Signal an error if the current token is a reserved keyword
|
|
pub fn check_reserved_keywords(&mut self) -> PResult<()>{
|
|
if self.token.is_reserved_keyword() {
|
|
let token_str = self.this_token_to_string();
|
|
Err(self.fatal(&format!("`{}` is a reserved keyword",
|
|
token_str)))
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Expect and consume an `&`. If `&&` is seen, replace it with a single
|
|
/// `&` and continue. If an `&` is not seen, signal an error.
|
|
fn expect_and(&mut self) -> PResult<()> {
|
|
self.expected_tokens.push(TokenType::Token(token::BinOp(token::And)));
|
|
match self.token {
|
|
token::BinOp(token::And) => self.bump(),
|
|
token::AndAnd => {
|
|
let span = self.span;
|
|
let lo = span.lo + BytePos(1);
|
|
Ok(self.replace_token(token::BinOp(token::And), lo, span.hi))
|
|
}
|
|
_ => self.expect_one_of(&[], &[])
|
|
}
|
|
}
|
|
|
|
pub fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<ast::Name>) {
|
|
match suffix {
|
|
None => {/* everything ok */}
|
|
Some(suf) => {
|
|
let text = suf.as_str();
|
|
if text.is_empty() {
|
|
self.span_bug(sp, "found empty literal suffix in Some")
|
|
}
|
|
self.span_err(sp, &*format!("{} with a suffix is illegal", kind));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// Attempt to consume a `<`. If `<<` is seen, replace it with a single
|
|
/// `<` and continue. If a `<` is not seen, return false.
|
|
///
|
|
/// This is meant to be used when parsing generics on a path to get the
|
|
/// starting token.
|
|
fn eat_lt(&mut self) -> PResult<bool> {
|
|
self.expected_tokens.push(TokenType::Token(token::Lt));
|
|
match self.token {
|
|
token::Lt => { try!(self.bump()); Ok(true)}
|
|
token::BinOp(token::Shl) => {
|
|
let span = self.span;
|
|
let lo = span.lo + BytePos(1);
|
|
self.replace_token(token::Lt, lo, span.hi);
|
|
Ok(true)
|
|
}
|
|
_ => Ok(false),
|
|
}
|
|
}
|
|
|
|
fn expect_lt(&mut self) -> PResult<()> {
|
|
if !try!(self.eat_lt()) {
|
|
self.expect_one_of(&[], &[])
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Expect and consume a GT. if a >> is seen, replace it
|
|
/// with a single > and continue. If a GT is not seen,
|
|
/// signal an error.
|
|
pub fn expect_gt(&mut self) -> PResult<()> {
|
|
self.expected_tokens.push(TokenType::Token(token::Gt));
|
|
match self.token {
|
|
token::Gt => self.bump(),
|
|
token::BinOp(token::Shr) => {
|
|
let span = self.span;
|
|
let lo = span.lo + BytePos(1);
|
|
Ok(self.replace_token(token::Gt, lo, span.hi))
|
|
}
|
|
token::BinOpEq(token::Shr) => {
|
|
let span = self.span;
|
|
let lo = span.lo + BytePos(1);
|
|
Ok(self.replace_token(token::Ge, lo, span.hi))
|
|
}
|
|
token::Ge => {
|
|
let span = self.span;
|
|
let lo = span.lo + BytePos(1);
|
|
Ok(self.replace_token(token::Eq, lo, span.hi))
|
|
}
|
|
_ => {
|
|
let gt_str = Parser::token_to_string(&token::Gt);
|
|
let this_token_str = self.this_token_to_string();
|
|
Err(self.fatal(&format!("expected `{}`, found `{}`",
|
|
gt_str,
|
|
this_token_str)))
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn parse_seq_to_before_gt_or_return<T, F>(&mut self,
|
|
sep: Option<token::Token>,
|
|
mut f: F)
|
|
-> PResult<(OwnedSlice<T>, bool)> where
|
|
F: FnMut(&mut Parser) -> PResult<Option<T>>,
|
|
{
|
|
let mut v = Vec::new();
|
|
// This loop works by alternating back and forth between parsing types
|
|
// and commas. For example, given a string `A, B,>`, the parser would
|
|
// first parse `A`, then a comma, then `B`, then a comma. After that it
|
|
// would encounter a `>` and stop. This lets the parser handle trailing
|
|
// commas in generic parameters, because it can stop either after
|
|
// parsing a type or after parsing a comma.
|
|
for i in 0.. {
|
|
if self.check(&token::Gt)
|
|
|| self.token == token::BinOp(token::Shr)
|
|
|| self.token == token::Ge
|
|
|| self.token == token::BinOpEq(token::Shr) {
|
|
break;
|
|
}
|
|
|
|
if i % 2 == 0 {
|
|
match try!(f(self)) {
|
|
Some(result) => v.push(result),
|
|
None => return Ok((OwnedSlice::from_vec(v), true))
|
|
}
|
|
} else {
|
|
if let Some(t) = sep.as_ref() {
|
|
try!(self.expect(t));
|
|
}
|
|
|
|
}
|
|
}
|
|
return Ok((OwnedSlice::from_vec(v), false));
|
|
}
|
|
|
|
/// Parse a sequence bracketed by '<' and '>', stopping
|
|
/// before the '>'.
|
|
pub fn parse_seq_to_before_gt<T, F>(&mut self,
|
|
sep: Option<token::Token>,
|
|
mut f: F)
|
|
-> PResult<OwnedSlice<T>> where
|
|
F: FnMut(&mut Parser) -> PResult<T>,
|
|
{
|
|
let (result, returned) = try!(self.parse_seq_to_before_gt_or_return(sep,
|
|
|p| Ok(Some(try!(f(p))))));
|
|
assert!(!returned);
|
|
return Ok(result);
|
|
}
|
|
|
|
pub fn parse_seq_to_gt<T, F>(&mut self,
|
|
sep: Option<token::Token>,
|
|
f: F)
|
|
-> PResult<OwnedSlice<T>> where
|
|
F: FnMut(&mut Parser) -> PResult<T>,
|
|
{
|
|
let v = try!(self.parse_seq_to_before_gt(sep, f));
|
|
try!(self.expect_gt());
|
|
return Ok(v);
|
|
}
|
|
|
|
pub fn parse_seq_to_gt_or_return<T, F>(&mut self,
|
|
sep: Option<token::Token>,
|
|
f: F)
|
|
-> PResult<(OwnedSlice<T>, bool)> where
|
|
F: FnMut(&mut Parser) -> PResult<Option<T>>,
|
|
{
|
|
let (v, returned) = try!(self.parse_seq_to_before_gt_or_return(sep, f));
|
|
if !returned {
|
|
try!(self.expect_gt());
|
|
}
|
|
return Ok((v, returned));
|
|
}
|
|
|
|
/// Parse a sequence, including the closing delimiter. The function
|
|
/// f must consume tokens until reaching the next separator or
|
|
/// closing bracket.
|
|
pub fn parse_seq_to_end<T, F>(&mut self,
|
|
ket: &token::Token,
|
|
sep: SeqSep,
|
|
f: F)
|
|
-> PResult<Vec<T>> where
|
|
F: FnMut(&mut Parser) -> PResult<T>,
|
|
{
|
|
let val = try!(self.parse_seq_to_before_end(ket, sep, f));
|
|
try!(self.bump());
|
|
Ok(val)
|
|
}
|
|
|
|
/// Parse a sequence, not including the closing delimiter. The function
|
|
/// f must consume tokens until reaching the next separator or
|
|
/// closing bracket.
|
|
pub fn parse_seq_to_before_end<T, F>(&mut self,
|
|
ket: &token::Token,
|
|
sep: SeqSep,
|
|
mut f: F)
|
|
-> PResult<Vec<T>> where
|
|
F: FnMut(&mut Parser) -> PResult<T>,
|
|
{
|
|
let mut first: bool = true;
|
|
let mut v = vec!();
|
|
while self.token != *ket {
|
|
match sep.sep {
|
|
Some(ref t) => {
|
|
if first { first = false; }
|
|
else { try!(self.expect(t)); }
|
|
}
|
|
_ => ()
|
|
}
|
|
if sep.trailing_sep_allowed && self.check(ket) { break; }
|
|
v.push(try!(f(self)));
|
|
}
|
|
return Ok(v);
|
|
}
|
|
|
|
/// Parse a sequence, including the closing delimiter. The function
|
|
/// f must consume tokens until reaching the next separator or
|
|
/// closing bracket.
|
|
pub fn parse_unspanned_seq<T, F>(&mut self,
|
|
bra: &token::Token,
|
|
ket: &token::Token,
|
|
sep: SeqSep,
|
|
f: F)
|
|
-> PResult<Vec<T>> where
|
|
F: FnMut(&mut Parser) -> PResult<T>,
|
|
{
|
|
try!(self.expect(bra));
|
|
let result = try!(self.parse_seq_to_before_end(ket, sep, f));
|
|
try!(self.bump());
|
|
Ok(result)
|
|
}
|
|
|
|
/// Parse a sequence parameter of enum variant. For consistency purposes,
|
|
/// these should not be empty.
|
|
pub fn parse_enum_variant_seq<T, F>(&mut self,
|
|
bra: &token::Token,
|
|
ket: &token::Token,
|
|
sep: SeqSep,
|
|
f: F)
|
|
-> PResult<Vec<T>> where
|
|
F: FnMut(&mut Parser) -> PResult<T>,
|
|
{
|
|
let result = try!(self.parse_unspanned_seq(bra, ket, sep, f));
|
|
if result.is_empty() {
|
|
let last_span = self.last_span;
|
|
self.span_err(last_span,
|
|
"nullary enum variants are written with no trailing `( )`");
|
|
}
|
|
Ok(result)
|
|
}
|
|
|
|
// NB: Do not use this function unless you actually plan to place the
|
|
// spanned list in the AST.
|
|
pub fn parse_seq<T, F>(&mut self,
|
|
bra: &token::Token,
|
|
ket: &token::Token,
|
|
sep: SeqSep,
|
|
f: F)
|
|
-> PResult<Spanned<Vec<T>>> where
|
|
F: FnMut(&mut Parser) -> PResult<T>,
|
|
{
|
|
let lo = self.span.lo;
|
|
try!(self.expect(bra));
|
|
let result = try!(self.parse_seq_to_before_end(ket, sep, f));
|
|
let hi = self.span.hi;
|
|
try!(self.bump());
|
|
Ok(spanned(lo, hi, result))
|
|
}
|
|
|
|
/// Advance the parser by one token
|
|
pub fn bump(&mut self) -> PResult<()> {
|
|
self.last_span = self.span;
|
|
// Stash token for error recovery (sometimes; clone is not necessarily cheap).
|
|
self.last_token = if self.token.is_ident() || self.token.is_path() {
|
|
Some(Box::new(self.token.clone()))
|
|
} else {
|
|
None
|
|
};
|
|
let next = if self.buffer_start == self.buffer_end {
|
|
self.reader.real_token()
|
|
} else {
|
|
// Avoid token copies with `replace`.
|
|
let buffer_start = self.buffer_start as usize;
|
|
let next_index = (buffer_start + 1) & 3;
|
|
self.buffer_start = next_index as isize;
|
|
|
|
let placeholder = TokenAndSpan {
|
|
tok: token::Underscore,
|
|
sp: self.span,
|
|
};
|
|
mem::replace(&mut self.buffer[buffer_start], placeholder)
|
|
};
|
|
self.span = next.sp;
|
|
self.token = next.tok;
|
|
self.tokens_consumed += 1;
|
|
self.expected_tokens.clear();
|
|
// check after each token
|
|
self.check_unknown_macro_variable()
|
|
}
|
|
|
|
/// Advance the parser by one token and return the bumped token.
|
|
pub fn bump_and_get(&mut self) -> PResult<token::Token> {
|
|
let old_token = mem::replace(&mut self.token, token::Underscore);
|
|
try!(self.bump());
|
|
Ok(old_token)
|
|
}
|
|
|
|
/// EFFECT: replace the current token and span with the given one
|
|
pub fn replace_token(&mut self,
|
|
next: token::Token,
|
|
lo: BytePos,
|
|
hi: BytePos) {
|
|
self.last_span = mk_sp(self.span.lo, lo);
|
|
self.token = next;
|
|
self.span = mk_sp(lo, hi);
|
|
}
|
|
pub fn buffer_length(&mut self) -> isize {
|
|
if self.buffer_start <= self.buffer_end {
|
|
return self.buffer_end - self.buffer_start;
|
|
}
|
|
return (4 - self.buffer_start) + self.buffer_end;
|
|
}
|
|
pub fn look_ahead<R, F>(&mut self, distance: usize, f: F) -> R where
|
|
F: FnOnce(&token::Token) -> R,
|
|
{
|
|
let dist = distance as isize;
|
|
while self.buffer_length() < dist {
|
|
self.buffer[self.buffer_end as usize] = self.reader.real_token();
|
|
self.buffer_end = (self.buffer_end + 1) & 3;
|
|
}
|
|
f(&self.buffer[((self.buffer_start + dist - 1) & 3) as usize].tok)
|
|
}
|
|
pub fn fatal(&self, m: &str) -> diagnostic::FatalError {
|
|
self.sess.span_diagnostic.span_fatal(self.span, m)
|
|
}
|
|
pub fn span_fatal(&self, sp: Span, m: &str) -> diagnostic::FatalError {
|
|
self.sess.span_diagnostic.span_fatal(sp, m)
|
|
}
|
|
pub fn span_fatal_help(&self, sp: Span, m: &str, help: &str) -> diagnostic::FatalError {
|
|
self.span_err(sp, m);
|
|
self.fileline_help(sp, help);
|
|
diagnostic::FatalError
|
|
}
|
|
pub fn span_note(&self, sp: Span, m: &str) {
|
|
self.sess.span_diagnostic.span_note(sp, m)
|
|
}
|
|
pub fn span_help(&self, sp: Span, m: &str) {
|
|
self.sess.span_diagnostic.span_help(sp, m)
|
|
}
|
|
pub fn fileline_help(&self, sp: Span, m: &str) {
|
|
self.sess.span_diagnostic.fileline_help(sp, m)
|
|
}
|
|
pub fn bug(&self, m: &str) -> ! {
|
|
self.sess.span_diagnostic.span_bug(self.span, m)
|
|
}
|
|
pub fn warn(&self, m: &str) {
|
|
self.sess.span_diagnostic.span_warn(self.span, m)
|
|
}
|
|
pub fn span_warn(&self, sp: Span, m: &str) {
|
|
self.sess.span_diagnostic.span_warn(sp, m)
|
|
}
|
|
pub fn span_err(&self, sp: Span, m: &str) {
|
|
self.sess.span_diagnostic.span_err(sp, m)
|
|
}
|
|
pub fn span_bug(&self, sp: Span, m: &str) -> ! {
|
|
self.sess.span_diagnostic.span_bug(sp, m)
|
|
}
|
|
pub fn abort_if_errors(&self) {
|
|
self.sess.span_diagnostic.handler().abort_if_errors();
|
|
}
|
|
|
|
pub fn id_to_interned_str(&mut self, id: Ident) -> InternedString {
|
|
token::get_ident(id)
|
|
}
|
|
|
|
/// Is the current token one of the keywords that signals a bare function
|
|
/// type?
|
|
pub fn token_is_bare_fn_keyword(&mut self) -> bool {
|
|
self.check_keyword(keywords::Fn) ||
|
|
self.check_keyword(keywords::Unsafe) ||
|
|
self.check_keyword(keywords::Extern)
|
|
}
|
|
|
|
pub fn get_lifetime(&mut self) -> ast::Ident {
|
|
match self.token {
|
|
token::Lifetime(ref ident) => *ident,
|
|
_ => self.bug("not a lifetime"),
|
|
}
|
|
}
|
|
|
|
pub fn parse_for_in_type(&mut self) -> PResult<Ty_> {
|
|
/*
|
|
Parses whatever can come after a `for` keyword in a type.
|
|
The `for` has already been consumed.
|
|
|
|
Deprecated:
|
|
|
|
- for <'lt> |S| -> T
|
|
|
|
Eventually:
|
|
|
|
- for <'lt> [unsafe] [extern "ABI"] fn (S) -> T
|
|
- for <'lt> path::foo(a, b)
|
|
|
|
*/
|
|
|
|
// parse <'lt>
|
|
let lo = self.span.lo;
|
|
|
|
let lifetime_defs = try!(self.parse_late_bound_lifetime_defs());
|
|
|
|
// examine next token to decide to do
|
|
if self.token_is_bare_fn_keyword() {
|
|
self.parse_ty_bare_fn(lifetime_defs)
|
|
} else {
|
|
let hi = self.span.hi;
|
|
let trait_ref = try!(self.parse_trait_ref());
|
|
let poly_trait_ref = ast::PolyTraitRef { bound_lifetimes: lifetime_defs,
|
|
trait_ref: trait_ref,
|
|
span: mk_sp(lo, hi)};
|
|
let other_bounds = if try!(self.eat(&token::BinOp(token::Plus)) ){
|
|
try!(self.parse_ty_param_bounds(BoundParsingMode::Bare))
|
|
} else {
|
|
OwnedSlice::empty()
|
|
};
|
|
let all_bounds =
|
|
Some(TraitTyParamBound(poly_trait_ref, TraitBoundModifier::None)).into_iter()
|
|
.chain(other_bounds.into_vec().into_iter())
|
|
.collect();
|
|
Ok(ast::TyPolyTraitRef(all_bounds))
|
|
}
|
|
}
|
|
|
|
pub fn parse_ty_path(&mut self) -> PResult<Ty_> {
|
|
Ok(TyPath(None, try!(self.parse_path(LifetimeAndTypesWithoutColons))))
|
|
}
|
|
|
|
/// parse a TyBareFn type:
|
|
pub fn parse_ty_bare_fn(&mut self, lifetime_defs: Vec<ast::LifetimeDef>) -> PResult<Ty_> {
|
|
/*
|
|
|
|
[unsafe] [extern "ABI"] fn <'lt> (S) -> T
|
|
^~~~^ ^~~~^ ^~~~^ ^~^ ^
|
|
| | | | |
|
|
| | | | Return type
|
|
| | | Argument types
|
|
| | Lifetimes
|
|
| ABI
|
|
Function Style
|
|
*/
|
|
|
|
let unsafety = try!(self.parse_unsafety());
|
|
let abi = if try!(self.eat_keyword(keywords::Extern) ){
|
|
try!(self.parse_opt_abi()).unwrap_or(abi::C)
|
|
} else {
|
|
abi::Rust
|
|
};
|
|
|
|
try!(self.expect_keyword(keywords::Fn));
|
|
let (inputs, variadic) = try!(self.parse_fn_args(false, true));
|
|
let ret_ty = try!(self.parse_ret_ty());
|
|
let decl = P(FnDecl {
|
|
inputs: inputs,
|
|
output: ret_ty,
|
|
variadic: variadic
|
|
});
|
|
Ok(TyBareFn(P(BareFnTy {
|
|
abi: abi,
|
|
unsafety: unsafety,
|
|
lifetimes: lifetime_defs,
|
|
decl: decl
|
|
})))
|
|
}
|
|
|
|
/// Parses an obsolete closure kind (`&:`, `&mut:`, or `:`).
|
|
pub fn parse_obsolete_closure_kind(&mut self) -> PResult<()> {
|
|
let lo = self.span.lo;
|
|
if
|
|
self.check(&token::BinOp(token::And)) &&
|
|
self.look_ahead(1, |t| t.is_keyword(keywords::Mut)) &&
|
|
self.look_ahead(2, |t| *t == token::Colon)
|
|
{
|
|
try!(self.bump());
|
|
try!(self.bump());
|
|
try!(self.bump());
|
|
} else if
|
|
self.token == token::BinOp(token::And) &&
|
|
self.look_ahead(1, |t| *t == token::Colon)
|
|
{
|
|
try!(self.bump());
|
|
try!(self.bump());
|
|
} else if
|
|
try!(self.eat(&token::Colon))
|
|
{
|
|
/* nothing */
|
|
} else {
|
|
return Ok(());
|
|
}
|
|
|
|
let span = mk_sp(lo, self.span.hi);
|
|
self.obsolete(span, ObsoleteSyntax::ClosureKind);
|
|
Ok(())
|
|
}
|
|
|
|
pub fn parse_unsafety(&mut self) -> PResult<Unsafety> {
|
|
if try!(self.eat_keyword(keywords::Unsafe)) {
|
|
return Ok(Unsafety::Unsafe);
|
|
} else {
|
|
return Ok(Unsafety::Normal);
|
|
}
|
|
}
|
|
|
|
/// Parse the items in a trait declaration
|
|
pub fn parse_trait_items(&mut self) -> PResult<Vec<P<TraitItem>>> {
|
|
self.parse_unspanned_seq(
|
|
&token::OpenDelim(token::Brace),
|
|
&token::CloseDelim(token::Brace),
|
|
seq_sep_none(),
|
|
|p| {
|
|
let lo = p.span.lo;
|
|
let mut attrs = p.parse_outer_attributes();
|
|
|
|
let (name, node) = if try!(p.eat_keyword(keywords::Type)) {
|
|
let TyParam {ident, bounds, default, ..} = try!(p.parse_ty_param());
|
|
try!(p.expect(&token::Semi));
|
|
(ident, TypeTraitItem(bounds, default))
|
|
} else {
|
|
let style = try!(p.parse_unsafety());
|
|
let abi = if try!(p.eat_keyword(keywords::Extern)) {
|
|
try!(p.parse_opt_abi()).unwrap_or(abi::C)
|
|
} else {
|
|
abi::Rust
|
|
};
|
|
try!(p.expect_keyword(keywords::Fn));
|
|
|
|
let ident = try!(p.parse_ident());
|
|
let mut generics = try!(p.parse_generics());
|
|
|
|
let (explicit_self, d) = try!(p.parse_fn_decl_with_self(|p|{
|
|
// This is somewhat dubious; We don't want to allow
|
|
// argument names to be left off if there is a
|
|
// definition...
|
|
p.parse_arg_general(false)
|
|
}));
|
|
|
|
generics.where_clause = try!(p.parse_where_clause());
|
|
let sig = ast::MethodSig {
|
|
unsafety: style,
|
|
decl: d,
|
|
generics: generics,
|
|
abi: abi,
|
|
explicit_self: explicit_self,
|
|
};
|
|
|
|
let body = match p.token {
|
|
token::Semi => {
|
|
try!(p.bump());
|
|
debug!("parse_trait_methods(): parsing required method");
|
|
None
|
|
}
|
|
token::OpenDelim(token::Brace) => {
|
|
debug!("parse_trait_methods(): parsing provided method");
|
|
let (inner_attrs, body) =
|
|
try!(p.parse_inner_attrs_and_block());
|
|
attrs.extend(inner_attrs.iter().cloned());
|
|
Some(body)
|
|
}
|
|
|
|
_ => {
|
|
let token_str = p.this_token_to_string();
|
|
return Err(p.fatal(&format!("expected `;` or `{{`, found `{}`",
|
|
token_str)[..]))
|
|
}
|
|
};
|
|
(ident, ast::MethodTraitItem(sig, body))
|
|
};
|
|
|
|
Ok(P(TraitItem {
|
|
id: ast::DUMMY_NODE_ID,
|
|
ident: name,
|
|
attrs: attrs,
|
|
node: node,
|
|
span: mk_sp(lo, p.last_span.hi),
|
|
}))
|
|
})
|
|
}
|
|
|
|
/// Parse a possibly mutable type
|
|
pub fn parse_mt(&mut self) -> PResult<MutTy> {
|
|
let mutbl = try!(self.parse_mutability());
|
|
let t = try!(self.parse_ty_nopanic());
|
|
Ok(MutTy { ty: t, mutbl: mutbl })
|
|
}
|
|
|
|
/// Parse optional return type [ -> TY ] in function decl
|
|
pub fn parse_ret_ty(&mut self) -> PResult<FunctionRetTy> {
|
|
if try!(self.eat(&token::RArrow) ){
|
|
if try!(self.eat(&token::Not) ){
|
|
Ok(NoReturn(self.span))
|
|
} else {
|
|
Ok(Return(try!(self.parse_ty_nopanic())))
|
|
}
|
|
} else {
|
|
let pos = self.span.lo;
|
|
Ok(DefaultReturn(mk_sp(pos, pos)))
|
|
}
|
|
}
|
|
|
|
/// Parse a type in a context where `T1+T2` is allowed.
|
|
pub fn parse_ty_sum(&mut self) -> PResult<P<Ty>> {
|
|
let lo = self.span.lo;
|
|
let lhs = try!(self.parse_ty_nopanic());
|
|
|
|
if !try!(self.eat(&token::BinOp(token::Plus)) ){
|
|
return Ok(lhs);
|
|
}
|
|
|
|
let bounds = try!(self.parse_ty_param_bounds(BoundParsingMode::Bare));
|
|
|
|
// In type grammar, `+` is treated like a binary operator,
|
|
// and hence both L and R side are required.
|
|
if bounds.is_empty() {
|
|
let last_span = self.last_span;
|
|
self.span_err(last_span,
|
|
"at least one type parameter bound \
|
|
must be specified");
|
|
}
|
|
|
|
let sp = mk_sp(lo, self.last_span.hi);
|
|
let sum = ast::TyObjectSum(lhs, bounds);
|
|
Ok(P(Ty {id: ast::DUMMY_NODE_ID, node: sum, span: sp}))
|
|
}
|
|
|
|
/// Parse a type.
|
|
pub fn parse_ty_nopanic(&mut self) -> PResult<P<Ty>> {
|
|
maybe_whole!(no_clone self, NtTy);
|
|
|
|
let lo = self.span.lo;
|
|
|
|
let t = if self.check(&token::OpenDelim(token::Paren)) {
|
|
try!(self.bump());
|
|
|
|
// (t) is a parenthesized ty
|
|
// (t,) is the type of a tuple with only one field,
|
|
// of type t
|
|
let mut ts = vec![];
|
|
let mut last_comma = false;
|
|
while self.token != token::CloseDelim(token::Paren) {
|
|
ts.push(try!(self.parse_ty_sum()));
|
|
if self.check(&token::Comma) {
|
|
last_comma = true;
|
|
try!(self.bump());
|
|
} else {
|
|
last_comma = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
try!(self.expect(&token::CloseDelim(token::Paren)));
|
|
if ts.len() == 1 && !last_comma {
|
|
TyParen(ts.into_iter().nth(0).unwrap())
|
|
} else {
|
|
TyTup(ts)
|
|
}
|
|
} else if self.check(&token::BinOp(token::Star)) {
|
|
// STAR POINTER (bare pointer?)
|
|
try!(self.bump());
|
|
TyPtr(try!(self.parse_ptr()))
|
|
} else if self.check(&token::OpenDelim(token::Bracket)) {
|
|
// VECTOR
|
|
try!(self.expect(&token::OpenDelim(token::Bracket)));
|
|
let t = try!(self.parse_ty_sum());
|
|
|
|
// Parse the `; e` in `[ i32; e ]`
|
|
// where `e` is a const expression
|
|
let t = match try!(self.maybe_parse_fixed_length_of_vec()) {
|
|
None => TyVec(t),
|
|
Some(suffix) => TyFixedLengthVec(t, suffix)
|
|
};
|
|
try!(self.expect(&token::CloseDelim(token::Bracket)));
|
|
t
|
|
} else if self.check(&token::BinOp(token::And)) ||
|
|
self.token == token::AndAnd {
|
|
// BORROWED POINTER
|
|
try!(self.expect_and());
|
|
try!(self.parse_borrowed_pointee())
|
|
} else if self.check_keyword(keywords::For) {
|
|
try!(self.parse_for_in_type())
|
|
} else if self.token_is_bare_fn_keyword() {
|
|
// BARE FUNCTION
|
|
try!(self.parse_ty_bare_fn(Vec::new()))
|
|
} else if try!(self.eat_keyword_noexpect(keywords::Typeof)) {
|
|
// TYPEOF
|
|
// In order to not be ambiguous, the type must be surrounded by parens.
|
|
try!(self.expect(&token::OpenDelim(token::Paren)));
|
|
let e = try!(self.parse_expr_nopanic());
|
|
try!(self.expect(&token::CloseDelim(token::Paren)));
|
|
TyTypeof(e)
|
|
} else if try!(self.eat_lt()) {
|
|
// QUALIFIED PATH `<TYPE as TRAIT_REF>::item`
|
|
let self_type = try!(self.parse_ty_sum());
|
|
|
|
let mut path = if try!(self.eat_keyword(keywords::As) ){
|
|
try!(self.parse_path(LifetimeAndTypesWithoutColons))
|
|
} else {
|
|
ast::Path {
|
|
span: self.span,
|
|
global: false,
|
|
segments: vec![]
|
|
}
|
|
};
|
|
|
|
let qself = QSelf {
|
|
ty: self_type,
|
|
position: path.segments.len()
|
|
};
|
|
|
|
try!(self.expect(&token::Gt));
|
|
try!(self.expect(&token::ModSep));
|
|
|
|
path.segments.push(ast::PathSegment {
|
|
identifier: try!(self.parse_ident()),
|
|
parameters: ast::PathParameters::none()
|
|
});
|
|
|
|
if path.segments.len() == 1 {
|
|
path.span.lo = self.last_span.lo;
|
|
}
|
|
path.span.hi = self.last_span.hi;
|
|
|
|
TyPath(Some(qself), path)
|
|
} else if self.check(&token::ModSep) ||
|
|
self.token.is_ident() ||
|
|
self.token.is_path() {
|
|
// NAMED TYPE
|
|
try!(self.parse_ty_path())
|
|
} else if try!(self.eat(&token::Underscore) ){
|
|
// TYPE TO BE INFERRED
|
|
TyInfer
|
|
} else {
|
|
let this_token_str = self.this_token_to_string();
|
|
let msg = format!("expected type, found `{}`", this_token_str);
|
|
return Err(self.fatal(&msg[..]));
|
|
};
|
|
|
|
let sp = mk_sp(lo, self.last_span.hi);
|
|
Ok(P(Ty {id: ast::DUMMY_NODE_ID, node: t, span: sp}))
|
|
}
|
|
|
|
pub fn parse_borrowed_pointee(&mut self) -> PResult<Ty_> {
|
|
// look for `&'lt` or `&'foo ` and interpret `foo` as the region name:
|
|
let opt_lifetime = try!(self.parse_opt_lifetime());
|
|
|
|
let mt = try!(self.parse_mt());
|
|
return Ok(TyRptr(opt_lifetime, mt));
|
|
}
|
|
|
|
pub fn parse_ptr(&mut self) -> PResult<MutTy> {
|
|
let mutbl = if try!(self.eat_keyword(keywords::Mut) ){
|
|
MutMutable
|
|
} else if try!(self.eat_keyword(keywords::Const) ){
|
|
MutImmutable
|
|
} else {
|
|
let span = self.last_span;
|
|
self.span_err(span,
|
|
"bare raw pointers are no longer allowed, you should \
|
|
likely use `*mut T`, but otherwise `*T` is now \
|
|
known as `*const T`");
|
|
MutImmutable
|
|
};
|
|
let t = try!(self.parse_ty_nopanic());
|
|
Ok(MutTy { ty: t, mutbl: mutbl })
|
|
}
|
|
|
|
pub fn is_named_argument(&mut self) -> bool {
|
|
let offset = match self.token {
|
|
token::BinOp(token::And) => 1,
|
|
token::AndAnd => 1,
|
|
_ if self.token.is_keyword(keywords::Mut) => 1,
|
|
_ => 0
|
|
};
|
|
|
|
debug!("parser is_named_argument offset:{}", offset);
|
|
|
|
if offset == 0 {
|
|
is_plain_ident_or_underscore(&self.token)
|
|
&& self.look_ahead(1, |t| *t == token::Colon)
|
|
} else {
|
|
self.look_ahead(offset, |t| is_plain_ident_or_underscore(t))
|
|
&& self.look_ahead(offset + 1, |t| *t == token::Colon)
|
|
}
|
|
}
|
|
|
|
/// This version of parse arg doesn't necessarily require
|
|
/// identifier names.
|
|
pub fn parse_arg_general(&mut self, require_name: bool) -> PResult<Arg> {
|
|
let pat = if require_name || self.is_named_argument() {
|
|
debug!("parse_arg_general parse_pat (require_name:{})",
|
|
require_name);
|
|
let pat = try!(self.parse_pat_nopanic());
|
|
|
|
try!(self.expect(&token::Colon));
|
|
pat
|
|
} else {
|
|
debug!("parse_arg_general ident_to_pat");
|
|
ast_util::ident_to_pat(ast::DUMMY_NODE_ID,
|
|
self.last_span,
|
|
special_idents::invalid)
|
|
};
|
|
|
|
let t = try!(self.parse_ty_sum());
|
|
|
|
Ok(Arg {
|
|
ty: t,
|
|
pat: pat,
|
|
id: ast::DUMMY_NODE_ID,
|
|
})
|
|
}
|
|
|
|
/// Parse a single function argument
|
|
pub fn parse_arg(&mut self) -> PResult<Arg> {
|
|
self.parse_arg_general(true)
|
|
}
|
|
|
|
/// Parse an argument in a lambda header e.g. |arg, arg|
|
|
pub fn parse_fn_block_arg(&mut self) -> PResult<Arg> {
|
|
let pat = try!(self.parse_pat_nopanic());
|
|
let t = if try!(self.eat(&token::Colon) ){
|
|
try!(self.parse_ty_sum())
|
|
} else {
|
|
P(Ty {
|
|
id: ast::DUMMY_NODE_ID,
|
|
node: TyInfer,
|
|
span: mk_sp(self.span.lo, self.span.hi),
|
|
})
|
|
};
|
|
Ok(Arg {
|
|
ty: t,
|
|
pat: pat,
|
|
id: ast::DUMMY_NODE_ID
|
|
})
|
|
}
|
|
|
|
pub fn maybe_parse_fixed_length_of_vec(&mut self) -> PResult<Option<P<ast::Expr>>> {
|
|
if self.check(&token::Semi) {
|
|
try!(self.bump());
|
|
Ok(Some(try!(self.parse_expr_nopanic())))
|
|
} else {
|
|
Ok(None)
|
|
}
|
|
}
|
|
|
|
/// Matches token_lit = LIT_INTEGER | ...
|
|
pub fn lit_from_token(&self, tok: &token::Token) -> PResult<Lit_> {
|
|
match *tok {
|
|
token::Interpolated(token::NtExpr(ref v)) => {
|
|
match v.node {
|
|
ExprLit(ref lit) => { Ok(lit.node.clone()) }
|
|
_ => { return Err(self.unexpected_last(tok)); }
|
|
}
|
|
}
|
|
token::Literal(lit, suf) => {
|
|
let (suffix_illegal, out) = match lit {
|
|
token::Byte(i) => (true, LitByte(parse::byte_lit(i.as_str()).0)),
|
|
token::Char(i) => (true, LitChar(parse::char_lit(i.as_str()).0)),
|
|
|
|
// there are some valid suffixes for integer and
|
|
// float literals, so all the handling is done
|
|
// internally.
|
|
token::Integer(s) => {
|
|
(false, parse::integer_lit(s.as_str(),
|
|
suf.as_ref().map(|s| s.as_str()),
|
|
&self.sess.span_diagnostic,
|
|
self.last_span))
|
|
}
|
|
token::Float(s) => {
|
|
(false, parse::float_lit(s.as_str(),
|
|
suf.as_ref().map(|s| s.as_str()),
|
|
&self.sess.span_diagnostic,
|
|
self.last_span))
|
|
}
|
|
|
|
token::Str_(s) => {
|
|
(true,
|
|
LitStr(token::intern_and_get_ident(&parse::str_lit(s.as_str())),
|
|
ast::CookedStr))
|
|
}
|
|
token::StrRaw(s, n) => {
|
|
(true,
|
|
LitStr(
|
|
token::intern_and_get_ident(&parse::raw_str_lit(s.as_str())),
|
|
ast::RawStr(n)))
|
|
}
|
|
token::Binary(i) =>
|
|
(true, LitBinary(parse::binary_lit(i.as_str()))),
|
|
token::BinaryRaw(i, _) =>
|
|
(true,
|
|
LitBinary(Rc::new(i.as_str().as_bytes().iter().cloned().collect()))),
|
|
};
|
|
|
|
if suffix_illegal {
|
|
let sp = self.last_span;
|
|
self.expect_no_suffix(sp, &*format!("{} literal", lit.short_name()), suf)
|
|
}
|
|
|
|
Ok(out)
|
|
}
|
|
_ => { return Err(self.unexpected_last(tok)); }
|
|
}
|
|
}
|
|
|
|
/// Matches lit = true | false | token_lit
|
|
pub fn parse_lit(&mut self) -> PResult<Lit> {
|
|
let lo = self.span.lo;
|
|
let lit = if try!(self.eat_keyword(keywords::True) ){
|
|
LitBool(true)
|
|
} else if try!(self.eat_keyword(keywords::False) ){
|
|
LitBool(false)
|
|
} else {
|
|
let token = try!(self.bump_and_get());
|
|
let lit = try!(self.lit_from_token(&token));
|
|
lit
|
|
};
|
|
Ok(codemap::Spanned { node: lit, span: mk_sp(lo, self.last_span.hi) })
|
|
}
|
|
|
|
/// matches '-' lit | lit
|
|
pub fn parse_literal_maybe_minus(&mut self) -> PResult<P<Expr>> {
|
|
let minus_lo = self.span.lo;
|
|
let minus_present = try!(self.eat(&token::BinOp(token::Minus)));
|
|
|
|
let lo = self.span.lo;
|
|
let literal = P(try!(self.parse_lit()));
|
|
let hi = self.span.hi;
|
|
let expr = self.mk_expr(lo, hi, ExprLit(literal));
|
|
|
|
if minus_present {
|
|
let minus_hi = self.span.hi;
|
|
let unary = self.mk_unary(UnNeg, expr);
|
|
Ok(self.mk_expr(minus_lo, minus_hi, unary))
|
|
} else {
|
|
Ok(expr)
|
|
}
|
|
}
|
|
|
|
/// Parses a path and optional type parameter bounds, depending on the
|
|
/// mode. The `mode` parameter determines whether lifetimes, types, and/or
|
|
/// bounds are permitted and whether `::` must precede type parameter
|
|
/// groups.
|
|
pub fn parse_path(&mut self, mode: PathParsingMode) -> PResult<ast::Path> {
|
|
// Check for a whole path...
|
|
let found = match self.token {
|
|
token::Interpolated(token::NtPath(_)) => Some(try!(self.bump_and_get())),
|
|
_ => None,
|
|
};
|
|
if let Some(token::Interpolated(token::NtPath(path))) = found {
|
|
return Ok(*path);
|
|
}
|
|
|
|
let lo = self.span.lo;
|
|
let is_global = try!(self.eat(&token::ModSep));
|
|
|
|
// Parse any number of segments and bound sets. A segment is an
|
|
// identifier followed by an optional lifetime and a set of types.
|
|
// A bound set is a set of type parameter bounds.
|
|
let segments = match mode {
|
|
LifetimeAndTypesWithoutColons => {
|
|
try!(self.parse_path_segments_without_colons())
|
|
}
|
|
LifetimeAndTypesWithColons => {
|
|
try!(self.parse_path_segments_with_colons())
|
|
}
|
|
NoTypesAllowed => {
|
|
try!(self.parse_path_segments_without_types())
|
|
}
|
|
};
|
|
|
|
// Assemble the span.
|
|
let span = mk_sp(lo, self.last_span.hi);
|
|
|
|
// Assemble the result.
|
|
Ok(ast::Path {
|
|
span: span,
|
|
global: is_global,
|
|
segments: segments,
|
|
})
|
|
}
|
|
|
|
/// Examples:
|
|
/// - `a::b<T,U>::c<V,W>`
|
|
/// - `a::b<T,U>::c(V) -> W`
|
|
/// - `a::b<T,U>::c(V)`
|
|
pub fn parse_path_segments_without_colons(&mut self) -> PResult<Vec<ast::PathSegment>> {
|
|
let mut segments = Vec::new();
|
|
loop {
|
|
// First, parse an identifier.
|
|
let identifier = try!(self.parse_ident_or_self_type());
|
|
|
|
// Parse types, optionally.
|
|
let parameters = if try!(self.eat_lt() ){
|
|
let (lifetimes, types, bindings) = try!(self.parse_generic_values_after_lt());
|
|
|
|
ast::AngleBracketedParameters(ast::AngleBracketedParameterData {
|
|
lifetimes: lifetimes,
|
|
types: OwnedSlice::from_vec(types),
|
|
bindings: OwnedSlice::from_vec(bindings),
|
|
})
|
|
} else if try!(self.eat(&token::OpenDelim(token::Paren)) ){
|
|
let lo = self.last_span.lo;
|
|
|
|
let inputs = try!(self.parse_seq_to_end(
|
|
&token::CloseDelim(token::Paren),
|
|
seq_sep_trailing_allowed(token::Comma),
|
|
|p| p.parse_ty_sum()));
|
|
|
|
let output_ty = if try!(self.eat(&token::RArrow) ){
|
|
Some(try!(self.parse_ty_nopanic()))
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let hi = self.last_span.hi;
|
|
|
|
ast::ParenthesizedParameters(ast::ParenthesizedParameterData {
|
|
span: mk_sp(lo, hi),
|
|
inputs: inputs,
|
|
output: output_ty,
|
|
})
|
|
} else {
|
|
ast::PathParameters::none()
|
|
};
|
|
|
|
// Assemble and push the result.
|
|
segments.push(ast::PathSegment { identifier: identifier,
|
|
parameters: parameters });
|
|
|
|
// Continue only if we see a `::`
|
|
if !try!(self.eat(&token::ModSep) ){
|
|
return Ok(segments);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Examples:
|
|
/// - `a::b::<T,U>::c`
|
|
pub fn parse_path_segments_with_colons(&mut self) -> PResult<Vec<ast::PathSegment>> {
|
|
let mut segments = Vec::new();
|
|
loop {
|
|
// First, parse an identifier.
|
|
let identifier = try!(self.parse_ident_or_self_type());
|
|
|
|
// If we do not see a `::`, stop.
|
|
if !try!(self.eat(&token::ModSep) ){
|
|
segments.push(ast::PathSegment {
|
|
identifier: identifier,
|
|
parameters: ast::PathParameters::none()
|
|
});
|
|
return Ok(segments);
|
|
}
|
|
|
|
// Check for a type segment.
|
|
if try!(self.eat_lt() ){
|
|
// Consumed `a::b::<`, go look for types
|
|
let (lifetimes, types, bindings) = try!(self.parse_generic_values_after_lt());
|
|
segments.push(ast::PathSegment {
|
|
identifier: identifier,
|
|
parameters: ast::AngleBracketedParameters(ast::AngleBracketedParameterData {
|
|
lifetimes: lifetimes,
|
|
types: OwnedSlice::from_vec(types),
|
|
bindings: OwnedSlice::from_vec(bindings),
|
|
}),
|
|
});
|
|
|
|
// Consumed `a::b::<T,U>`, check for `::` before proceeding
|
|
if !try!(self.eat(&token::ModSep) ){
|
|
return Ok(segments);
|
|
}
|
|
} else {
|
|
// Consumed `a::`, go look for `b`
|
|
segments.push(ast::PathSegment {
|
|
identifier: identifier,
|
|
parameters: ast::PathParameters::none(),
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// Examples:
|
|
/// - `a::b::c`
|
|
pub fn parse_path_segments_without_types(&mut self) -> PResult<Vec<ast::PathSegment>> {
|
|
let mut segments = Vec::new();
|
|
loop {
|
|
// First, parse an identifier.
|
|
let identifier = try!(self.parse_ident_or_self_type());
|
|
|
|
// Assemble and push the result.
|
|
segments.push(ast::PathSegment {
|
|
identifier: identifier,
|
|
parameters: ast::PathParameters::none()
|
|
});
|
|
|
|
// If we do not see a `::`, stop.
|
|
if !try!(self.eat(&token::ModSep) ){
|
|
return Ok(segments);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// parses 0 or 1 lifetime
|
|
pub fn parse_opt_lifetime(&mut self) -> PResult<Option<ast::Lifetime>> {
|
|
match self.token {
|
|
token::Lifetime(..) => {
|
|
Ok(Some(try!(self.parse_lifetime())))
|
|
}
|
|
_ => {
|
|
Ok(None)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Parses a single lifetime
|
|
/// Matches lifetime = LIFETIME
|
|
pub fn parse_lifetime(&mut self) -> PResult<ast::Lifetime> {
|
|
match self.token {
|
|
token::Lifetime(i) => {
|
|
let span = self.span;
|
|
try!(self.bump());
|
|
return Ok(ast::Lifetime {
|
|
id: ast::DUMMY_NODE_ID,
|
|
span: span,
|
|
name: i.name
|
|
});
|
|
}
|
|
_ => {
|
|
return Err(self.fatal(&format!("expected a lifetime name")));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Parses `lifetime_defs = [ lifetime_defs { ',' lifetime_defs } ]` where `lifetime_def =
|
|
/// lifetime [':' lifetimes]`
|
|
pub fn parse_lifetime_defs(&mut self) -> PResult<Vec<ast::LifetimeDef>> {
|
|
|
|
let mut res = Vec::new();
|
|
loop {
|
|
match self.token {
|
|
token::Lifetime(_) => {
|
|
let lifetime = try!(self.parse_lifetime());
|
|
let bounds =
|
|
if try!(self.eat(&token::Colon) ){
|
|
try!(self.parse_lifetimes(token::BinOp(token::Plus)))
|
|
} else {
|
|
Vec::new()
|
|
};
|
|
res.push(ast::LifetimeDef { lifetime: lifetime,
|
|
bounds: bounds });
|
|
}
|
|
|
|
_ => {
|
|
return Ok(res);
|
|
}
|
|
}
|
|
|
|
match self.token {
|
|
token::Comma => { try!(self.bump());}
|
|
token::Gt => { return Ok(res); }
|
|
token::BinOp(token::Shr) => { return Ok(res); }
|
|
_ => {
|
|
let this_token_str = self.this_token_to_string();
|
|
let msg = format!("expected `,` or `>` after lifetime \
|
|
name, found `{}`",
|
|
this_token_str);
|
|
return Err(self.fatal(&msg[..]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// matches lifetimes = ( lifetime ) | ( lifetime , lifetimes ) actually, it matches the empty
|
|
/// one too, but putting that in there messes up the grammar....
|
|
///
|
|
/// Parses zero or more comma separated lifetimes. Expects each lifetime to be followed by
|
|
/// either a comma or `>`. Used when parsing type parameter lists, where we expect something
|
|
/// like `<'a, 'b, T>`.
|
|
pub fn parse_lifetimes(&mut self, sep: token::Token) -> PResult<Vec<ast::Lifetime>> {
|
|
|
|
let mut res = Vec::new();
|
|
loop {
|
|
match self.token {
|
|
token::Lifetime(_) => {
|
|
res.push(try!(self.parse_lifetime()));
|
|
}
|
|
_ => {
|
|
return Ok(res);
|
|
}
|
|
}
|
|
|
|
if self.token != sep {
|
|
return Ok(res);
|
|
}
|
|
|
|
try!(self.bump());
|
|
}
|
|
}
|
|
|
|
/// Parse mutability declaration (mut/const/imm)
|
|
pub fn parse_mutability(&mut self) -> PResult<Mutability> {
|
|
if try!(self.eat_keyword(keywords::Mut) ){
|
|
Ok(MutMutable)
|
|
} else {
|
|
Ok(MutImmutable)
|
|
}
|
|
}
|
|
|
|
/// Parse ident COLON expr
|
|
pub fn parse_field(&mut self) -> PResult<Field> {
|
|
let lo = self.span.lo;
|
|
let i = try!(self.parse_ident());
|
|
let hi = self.last_span.hi;
|
|
try!(self.expect(&token::Colon));
|
|
let e = try!(self.parse_expr_nopanic());
|
|
Ok(ast::Field {
|
|
ident: spanned(lo, hi, i),
|
|
span: mk_sp(lo, e.span.hi),
|
|
expr: e,
|
|
})
|
|
}
|
|
|
|
pub fn mk_expr(&mut self, lo: BytePos, hi: BytePos, node: Expr_) -> P<Expr> {
|
|
P(Expr {
|
|
id: ast::DUMMY_NODE_ID,
|
|
node: node,
|
|
span: mk_sp(lo, hi),
|
|
})
|
|
}
|
|
|
|
pub fn mk_unary(&mut self, unop: ast::UnOp, expr: P<Expr>) -> ast::Expr_ {
|
|
ExprUnary(unop, expr)
|
|
}
|
|
|
|
pub fn mk_binary(&mut self, binop: ast::BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ast::Expr_ {
|
|
ExprBinary(binop, lhs, rhs)
|
|
}
|
|
|
|
pub fn mk_call(&mut self, f: P<Expr>, args: Vec<P<Expr>>) -> ast::Expr_ {
|
|
ExprCall(f, args)
|
|
}
|
|
|
|
fn mk_method_call(&mut self,
|
|
ident: ast::SpannedIdent,
|
|
tps: Vec<P<Ty>>,
|
|
args: Vec<P<Expr>>)
|
|
-> ast::Expr_ {
|
|
ExprMethodCall(ident, tps, args)
|
|
}
|
|
|
|
pub fn mk_index(&mut self, expr: P<Expr>, idx: P<Expr>) -> ast::Expr_ {
|
|
ExprIndex(expr, idx)
|
|
}
|
|
|
|
pub fn mk_range(&mut self,
|
|
start: Option<P<Expr>>,
|
|
end: Option<P<Expr>>)
|
|
-> ast::Expr_ {
|
|
ExprRange(start, end)
|
|
}
|
|
|
|
pub fn mk_field(&mut self, expr: P<Expr>, ident: ast::SpannedIdent) -> ast::Expr_ {
|
|
ExprField(expr, ident)
|
|
}
|
|
|
|
pub fn mk_tup_field(&mut self, expr: P<Expr>, idx: codemap::Spanned<usize>) -> ast::Expr_ {
|
|
ExprTupField(expr, idx)
|
|
}
|
|
|
|
pub fn mk_assign_op(&mut self, binop: ast::BinOp,
|
|
lhs: P<Expr>, rhs: P<Expr>) -> ast::Expr_ {
|
|
ExprAssignOp(binop, lhs, rhs)
|
|
}
|
|
|
|
pub fn mk_mac_expr(&mut self, lo: BytePos, hi: BytePos, m: Mac_) -> P<Expr> {
|
|
P(Expr {
|
|
id: ast::DUMMY_NODE_ID,
|
|
node: ExprMac(codemap::Spanned {node: m, span: mk_sp(lo, hi)}),
|
|
span: mk_sp(lo, hi),
|
|
})
|
|
}
|
|
|
|
pub fn mk_lit_u32(&mut self, i: u32) -> P<Expr> {
|
|
let span = &self.span;
|
|
let lv_lit = P(codemap::Spanned {
|
|
node: LitInt(i as u64, ast::UnsignedIntLit(TyU32)),
|
|
span: *span
|
|
});
|
|
|
|
P(Expr {
|
|
id: ast::DUMMY_NODE_ID,
|
|
node: ExprLit(lv_lit),
|
|
span: *span,
|
|
})
|
|
}
|
|
|
|
fn expect_open_delim(&mut self) -> PResult<token::DelimToken> {
|
|
self.expected_tokens.push(TokenType::Token(token::Gt));
|
|
match self.token {
|
|
token::OpenDelim(delim) => {
|
|
try!(self.bump());
|
|
Ok(delim)
|
|
},
|
|
_ => Err(self.fatal("expected open delimiter")),
|
|
}
|
|
}
|
|
|
|
/// At the bottom (top?) of the precedence hierarchy,
|
|
/// parse things like parenthesized exprs,
|
|
/// macros, return, etc.
|
|
pub fn parse_bottom_expr(&mut self) -> PResult<P<Expr>> {
|
|
maybe_whole_expr!(self);
|
|
|
|
let lo = self.span.lo;
|
|
let mut hi = self.span.hi;
|
|
|
|
let ex: Expr_;
|
|
|
|
// Note: when adding new syntax here, don't forget to adjust Token::can_begin_expr().
|
|
match self.token {
|
|
token::OpenDelim(token::Paren) => {
|
|
try!(self.bump());
|
|
|
|
// (e) is parenthesized e
|
|
// (e,) is a tuple with only one field, e
|
|
let mut es = vec![];
|
|
let mut trailing_comma = false;
|
|
while self.token != token::CloseDelim(token::Paren) {
|
|
es.push(try!(self.parse_expr_nopanic()));
|
|
try!(self.commit_expr(&**es.last().unwrap(), &[],
|
|
&[token::Comma, token::CloseDelim(token::Paren)]));
|
|
if self.check(&token::Comma) {
|
|
trailing_comma = true;
|
|
|
|
try!(self.bump());
|
|
} else {
|
|
trailing_comma = false;
|
|
break;
|
|
}
|
|
}
|
|
try!(self.bump());
|
|
|
|
hi = self.last_span.hi;
|
|
return if es.len() == 1 && !trailing_comma {
|
|
Ok(self.mk_expr(lo, hi, ExprParen(es.into_iter().nth(0).unwrap())))
|
|
} else {
|
|
Ok(self.mk_expr(lo, hi, ExprTup(es)))
|
|
}
|
|
},
|
|
token::OpenDelim(token::Brace) => {
|
|
return self.parse_block_expr(lo, DefaultBlock);
|
|
},
|
|
token::BinOp(token::Or) | token::OrOr => {
|
|
return self.parse_lambda_expr(CaptureByRef);
|
|
},
|
|
token::Ident(id @ ast::Ident {
|
|
name: token::SELF_KEYWORD_NAME,
|
|
ctxt: _
|
|
}, token::Plain) => {
|
|
try!(self.bump());
|
|
let path = ast_util::ident_to_path(mk_sp(lo, hi), id);
|
|
ex = ExprPath(None, path);
|
|
hi = self.last_span.hi;
|
|
}
|
|
token::OpenDelim(token::Bracket) => {
|
|
try!(self.bump());
|
|
|
|
if self.check(&token::CloseDelim(token::Bracket)) {
|
|
// Empty vector.
|
|
try!(self.bump());
|
|
ex = ExprVec(Vec::new());
|
|
} else {
|
|
// Nonempty vector.
|
|
let first_expr = try!(self.parse_expr_nopanic());
|
|
if self.check(&token::Semi) {
|
|
// Repeating vector syntax: [ 0; 512 ]
|
|
try!(self.bump());
|
|
let count = try!(self.parse_expr_nopanic());
|
|
try!(self.expect(&token::CloseDelim(token::Bracket)));
|
|
ex = ExprRepeat(first_expr, count);
|
|
} else if self.check(&token::Comma) {
|
|
// Vector with two or more elements.
|
|
try!(self.bump());
|
|
let remaining_exprs = try!(self.parse_seq_to_end(
|
|
&token::CloseDelim(token::Bracket),
|
|
seq_sep_trailing_allowed(token::Comma),
|
|
|p| Ok(try!(p.parse_expr_nopanic()))
|
|
));
|
|
let mut exprs = vec!(first_expr);
|
|
exprs.extend(remaining_exprs.into_iter());
|
|
ex = ExprVec(exprs);
|
|
} else {
|
|
// Vector with one element.
|
|
try!(self.expect(&token::CloseDelim(token::Bracket)));
|
|
ex = ExprVec(vec!(first_expr));
|
|
}
|
|
}
|
|
hi = self.last_span.hi;
|
|
}
|
|
_ => {
|
|
if try!(self.eat_lt()){
|
|
// QUALIFIED PATH `<TYPE as TRAIT_REF>::item::<'a, T>`
|
|
let self_type = try!(self.parse_ty_sum());
|
|
let mut path = if try!(self.eat_keyword(keywords::As) ){
|
|
try!(self.parse_path(LifetimeAndTypesWithoutColons))
|
|
} else {
|
|
ast::Path {
|
|
span: self.span,
|
|
global: false,
|
|
segments: vec![]
|
|
}
|
|
};
|
|
let qself = QSelf {
|
|
ty: self_type,
|
|
position: path.segments.len()
|
|
};
|
|
try!(self.expect(&token::Gt));
|
|
try!(self.expect(&token::ModSep));
|
|
|
|
let item_name = try!(self.parse_ident());
|
|
let parameters = if try!(self.eat(&token::ModSep) ){
|
|
try!(self.expect_lt());
|
|
// Consumed `item::<`, go look for types
|
|
let (lifetimes, types, bindings) =
|
|
try!(self.parse_generic_values_after_lt());
|
|
ast::AngleBracketedParameters(ast::AngleBracketedParameterData {
|
|
lifetimes: lifetimes,
|
|
types: OwnedSlice::from_vec(types),
|
|
bindings: OwnedSlice::from_vec(bindings),
|
|
})
|
|
} else {
|
|
ast::PathParameters::none()
|
|
};
|
|
path.segments.push(ast::PathSegment {
|
|
identifier: item_name,
|
|
parameters: parameters
|
|
});
|
|
|
|
if path.segments.len() == 1 {
|
|
path.span.lo = self.last_span.lo;
|
|
}
|
|
path.span.hi = self.last_span.hi;
|
|
|
|
let hi = self.span.hi;
|
|
return Ok(self.mk_expr(lo, hi, ExprPath(Some(qself), path)));
|
|
}
|
|
if try!(self.eat_keyword(keywords::Move) ){
|
|
return self.parse_lambda_expr(CaptureByValue);
|
|
}
|
|
if try!(self.eat_keyword(keywords::If)) {
|
|
return self.parse_if_expr();
|
|
}
|
|
if try!(self.eat_keyword(keywords::For) ){
|
|
return self.parse_for_expr(None);
|
|
}
|
|
if try!(self.eat_keyword(keywords::While) ){
|
|
return self.parse_while_expr(None);
|
|
}
|
|
if self.token.is_lifetime() {
|
|
let lifetime = self.get_lifetime();
|
|
try!(self.bump());
|
|
try!(self.expect(&token::Colon));
|
|
if try!(self.eat_keyword(keywords::While) ){
|
|
return self.parse_while_expr(Some(lifetime))
|
|
}
|
|
if try!(self.eat_keyword(keywords::For) ){
|
|
return self.parse_for_expr(Some(lifetime))
|
|
}
|
|
if try!(self.eat_keyword(keywords::Loop) ){
|
|
return self.parse_loop_expr(Some(lifetime))
|
|
}
|
|
return Err(self.fatal("expected `while`, `for`, or `loop` after a label"))
|
|
}
|
|
if try!(self.eat_keyword(keywords::Loop) ){
|
|
return self.parse_loop_expr(None);
|
|
}
|
|
if try!(self.eat_keyword(keywords::Continue) ){
|
|
let lo = self.span.lo;
|
|
let ex = if self.token.is_lifetime() {
|
|
let lifetime = self.get_lifetime();
|
|
try!(self.bump());
|
|
ExprAgain(Some(lifetime))
|
|
} else {
|
|
ExprAgain(None)
|
|
};
|
|
let hi = self.span.hi;
|
|
return Ok(self.mk_expr(lo, hi, ex));
|
|
}
|
|
if try!(self.eat_keyword(keywords::Match) ){
|
|
return self.parse_match_expr();
|
|
}
|
|
if try!(self.eat_keyword(keywords::Unsafe) ){
|
|
return self.parse_block_expr(
|
|
lo,
|
|
UnsafeBlock(ast::UserProvided));
|
|
}
|
|
if try!(self.eat_keyword(keywords::Return) ){
|
|
// RETURN expression
|
|
if self.token.can_begin_expr() {
|
|
let e = try!(self.parse_expr_nopanic());
|
|
hi = e.span.hi;
|
|
ex = ExprRet(Some(e));
|
|
} else {
|
|
ex = ExprRet(None);
|
|
}
|
|
} else if try!(self.eat_keyword(keywords::Break) ){
|
|
// BREAK expression
|
|
if self.token.is_lifetime() {
|
|
let lifetime = self.get_lifetime();
|
|
try!(self.bump());
|
|
ex = ExprBreak(Some(lifetime));
|
|
} else {
|
|
ex = ExprBreak(None);
|
|
}
|
|
hi = self.span.hi;
|
|
} else if self.check(&token::ModSep) ||
|
|
self.token.is_ident() &&
|
|
!self.check_keyword(keywords::True) &&
|
|
!self.check_keyword(keywords::False) {
|
|
let pth =
|
|
try!(self.parse_path(LifetimeAndTypesWithColons));
|
|
|
|
// `!`, as an operator, is prefix, so we know this isn't that
|
|
if self.check(&token::Not) {
|
|
// MACRO INVOCATION expression
|
|
try!(self.bump());
|
|
|
|
let delim = try!(self.expect_open_delim());
|
|
let tts = try!(self.parse_seq_to_end(
|
|
&token::CloseDelim(delim),
|
|
seq_sep_none(),
|
|
|p| p.parse_token_tree()));
|
|
let hi = self.last_span.hi;
|
|
|
|
return Ok(self.mk_mac_expr(lo,
|
|
hi,
|
|
MacInvocTT(pth,
|
|
tts,
|
|
EMPTY_CTXT)));
|
|
}
|
|
if self.check(&token::OpenDelim(token::Brace)) {
|
|
// This is a struct literal, unless we're prohibited
|
|
// from parsing struct literals here.
|
|
if !self.restrictions.contains(RESTRICTION_NO_STRUCT_LITERAL) {
|
|
// It's a struct literal.
|
|
try!(self.bump());
|
|
let mut fields = Vec::new();
|
|
let mut base = None;
|
|
|
|
while self.token != token::CloseDelim(token::Brace) {
|
|
if try!(self.eat(&token::DotDot) ){
|
|
base = Some(try!(self.parse_expr_nopanic()));
|
|
break;
|
|
}
|
|
|
|
fields.push(try!(self.parse_field()));
|
|
try!(self.commit_expr(&*fields.last().unwrap().expr,
|
|
&[token::Comma],
|
|
&[token::CloseDelim(token::Brace)]));
|
|
}
|
|
|
|
if fields.is_empty() && base.is_none() {
|
|
let last_span = self.last_span;
|
|
self.span_err(last_span,
|
|
"structure literal must either \
|
|
have at least one field or use \
|
|
functional structure update \
|
|
syntax");
|
|
}
|
|
|
|
hi = self.span.hi;
|
|
try!(self.expect(&token::CloseDelim(token::Brace)));
|
|
ex = ExprStruct(pth, fields, base);
|
|
return Ok(self.mk_expr(lo, hi, ex));
|
|
}
|
|
}
|
|
|
|
hi = pth.span.hi;
|
|
ex = ExprPath(None, pth);
|
|
} else {
|
|
// other literal expression
|
|
let lit = try!(self.parse_lit());
|
|
hi = lit.span.hi;
|
|
ex = ExprLit(P(lit));
|
|
}
|
|
}
|
|
}
|
|
|
|
return Ok(self.mk_expr(lo, hi, ex));
|
|
}
|
|
|
|
/// Parse a block or unsafe block
|
|
pub fn parse_block_expr(&mut self, lo: BytePos, blk_mode: BlockCheckMode)
|
|
-> PResult<P<Expr>> {
|
|
try!(self.expect(&token::OpenDelim(token::Brace)));
|
|
let blk = try!(self.parse_block_tail(lo, blk_mode));
|
|
return Ok(self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk)));
|
|
}
|
|
|
|
/// parse a.b or a(13) or a[4] or just a
|
|
pub fn parse_dot_or_call_expr(&mut self) -> PResult<P<Expr>> {
|
|
let b = try!(self.parse_bottom_expr());
|
|
self.parse_dot_or_call_expr_with(b)
|
|
}
|
|
|
|
pub fn parse_dot_or_call_expr_with(&mut self, e0: P<Expr>) -> PResult<P<Expr>> {
|
|
let mut e = e0;
|
|
let lo = e.span.lo;
|
|
let mut hi;
|
|
loop {
|
|
// expr.f
|
|
if try!(self.eat(&token::Dot) ){
|
|
match self.token {
|
|
token::Ident(i, _) => {
|
|
let dot = self.last_span.hi;
|
|
hi = self.span.hi;
|
|
try!(self.bump());
|
|
let (_, tys, bindings) = if try!(self.eat(&token::ModSep) ){
|
|
try!(self.expect_lt());
|
|
try!(self.parse_generic_values_after_lt())
|
|
} else {
|
|
(Vec::new(), Vec::new(), Vec::new())
|
|
};
|
|
|
|
if !bindings.is_empty() {
|
|
let last_span = self.last_span;
|
|
self.span_err(last_span, "type bindings are only permitted on trait paths");
|
|
}
|
|
|
|
// expr.f() method call
|
|
match self.token {
|
|
token::OpenDelim(token::Paren) => {
|
|
let mut es = try!(self.parse_unspanned_seq(
|
|
&token::OpenDelim(token::Paren),
|
|
&token::CloseDelim(token::Paren),
|
|
seq_sep_trailing_allowed(token::Comma),
|
|
|p| Ok(try!(p.parse_expr_nopanic()))
|
|
));
|
|
hi = self.last_span.hi;
|
|
|
|
es.insert(0, e);
|
|
let id = spanned(dot, hi, i);
|
|
let nd = self.mk_method_call(id, tys, es);
|
|
e = self.mk_expr(lo, hi, nd);
|
|
}
|
|
_ => {
|
|
if !tys.is_empty() {
|
|
let last_span = self.last_span;
|
|
self.span_err(last_span,
|
|
"field expressions may not \
|
|
have type parameters");
|
|
}
|
|
|
|
let id = spanned(dot, hi, i);
|
|
let field = self.mk_field(e, id);
|
|
e = self.mk_expr(lo, hi, field);
|
|
}
|
|
}
|
|
}
|
|
token::Literal(token::Integer(n), suf) => {
|
|
let sp = self.span;
|
|
|
|
// A tuple index may not have a suffix
|
|
self.expect_no_suffix(sp, "tuple index", suf);
|
|
|
|
let dot = self.last_span.hi;
|
|
hi = self.span.hi;
|
|
try!(self.bump());
|
|
|
|
let index = n.as_str().parse::<usize>().ok();
|
|
match index {
|
|
Some(n) => {
|
|
let id = spanned(dot, hi, n);
|
|
let field = self.mk_tup_field(e, id);
|
|
e = self.mk_expr(lo, hi, field);
|
|
}
|
|
None => {
|
|
let last_span = self.last_span;
|
|
self.span_err(last_span, "invalid tuple or tuple struct index");
|
|
}
|
|
}
|
|
}
|
|
token::Literal(token::Float(n), _suf) => {
|
|
try!(self.bump());
|
|
let last_span = self.last_span;
|
|
let fstr = n.as_str();
|
|
self.span_err(last_span,
|
|
&format!("unexpected token: `{}`", n.as_str()));
|
|
if fstr.chars().all(|x| "0123456789.".contains(x)) {
|
|
let float = match fstr.parse::<f64>().ok() {
|
|
Some(f) => f,
|
|
None => continue,
|
|
};
|
|
self.fileline_help(last_span,
|
|
&format!("try parenthesizing the first index; e.g., `(foo.{}){}`",
|
|
float.trunc() as usize,
|
|
&float.fract().to_string()[1..]));
|
|
}
|
|
self.abort_if_errors();
|
|
|
|
}
|
|
_ => return Err(self.unexpected())
|
|
}
|
|
continue;
|
|
}
|
|
if self.expr_is_complete(&*e) { break; }
|
|
match self.token {
|
|
// expr(...)
|
|
token::OpenDelim(token::Paren) => {
|
|
let es = try!(self.parse_unspanned_seq(
|
|
&token::OpenDelim(token::Paren),
|
|
&token::CloseDelim(token::Paren),
|
|
seq_sep_trailing_allowed(token::Comma),
|
|
|p| Ok(try!(p.parse_expr_nopanic()))
|
|
));
|
|
hi = self.last_span.hi;
|
|
|
|
let nd = self.mk_call(e, es);
|
|
e = self.mk_expr(lo, hi, nd);
|
|
}
|
|
|
|
// expr[...]
|
|
// Could be either an index expression or a slicing expression.
|
|
token::OpenDelim(token::Bracket) => {
|
|
try!(self.bump());
|
|
let ix = try!(self.parse_expr_nopanic());
|
|
hi = self.span.hi;
|
|
try!(self.commit_expr_expecting(&*ix, token::CloseDelim(token::Bracket)));
|
|
let index = self.mk_index(e, ix);
|
|
e = self.mk_expr(lo, hi, index)
|
|
}
|
|
_ => return Ok(e)
|
|
}
|
|
}
|
|
return Ok(e);
|
|
}
|
|
|
|
// Parse unquoted tokens after a `$` in a token tree
|
|
fn parse_unquoted(&mut self) -> PResult<TokenTree> {
|
|
let mut sp = self.span;
|
|
let (name, namep) = match self.token {
|
|
token::Dollar => {
|
|
try!(self.bump());
|
|
|
|
if self.token == token::OpenDelim(token::Paren) {
|
|
let Spanned { node: seq, span: seq_span } = try!(self.parse_seq(
|
|
&token::OpenDelim(token::Paren),
|
|
&token::CloseDelim(token::Paren),
|
|
seq_sep_none(),
|
|
|p| p.parse_token_tree()
|
|
));
|
|
let (sep, repeat) = try!(self.parse_sep_and_kleene_op());
|
|
let name_num = macro_parser::count_names(&seq);
|
|
return Ok(TtSequence(mk_sp(sp.lo, seq_span.hi),
|
|
Rc::new(SequenceRepetition {
|
|
tts: seq,
|
|
separator: sep,
|
|
op: repeat,
|
|
num_captures: name_num
|
|
})));
|
|
} else if self.token.is_keyword_allow_following_colon(keywords::Crate) {
|
|
try!(self.bump());
|
|
return Ok(TtToken(sp, SpecialVarNt(SpecialMacroVar::CrateMacroVar)));
|
|
} else {
|
|
sp = mk_sp(sp.lo, self.span.hi);
|
|
let namep = match self.token { token::Ident(_, p) => p, _ => token::Plain };
|
|
let name = try!(self.parse_ident());
|
|
(name, namep)
|
|
}
|
|
}
|
|
token::SubstNt(name, namep) => {
|
|
try!(self.bump());
|
|
(name, namep)
|
|
}
|
|
_ => unreachable!()
|
|
};
|
|
// continue by trying to parse the `:ident` after `$name`
|
|
if self.token == token::Colon && self.look_ahead(1, |t| t.is_ident() &&
|
|
!t.is_strict_keyword() &&
|
|
!t.is_reserved_keyword()) {
|
|
try!(self.bump());
|
|
sp = mk_sp(sp.lo, self.span.hi);
|
|
let kindp = match self.token { token::Ident(_, p) => p, _ => token::Plain };
|
|
let nt_kind = try!(self.parse_ident());
|
|
Ok(TtToken(sp, MatchNt(name, nt_kind, namep, kindp)))
|
|
} else {
|
|
Ok(TtToken(sp, SubstNt(name, namep)))
|
|
}
|
|
}
|
|
|
|
pub fn check_unknown_macro_variable(&mut self) -> PResult<()> {
|
|
if self.quote_depth == 0 {
|
|
match self.token {
|
|
token::SubstNt(name, _) =>
|
|
return Err(self.fatal(&format!("unknown macro variable `{}`",
|
|
token::get_ident(name)))),
|
|
_ => {}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Parse an optional separator followed by a Kleene-style
|
|
/// repetition token (+ or *).
|
|
pub fn parse_sep_and_kleene_op(&mut self) -> PResult<(Option<token::Token>, ast::KleeneOp)> {
|
|
fn parse_kleene_op(parser: &mut Parser) -> PResult<Option<ast::KleeneOp>> {
|
|
match parser.token {
|
|
token::BinOp(token::Star) => {
|
|
try!(parser.bump());
|
|
Ok(Some(ast::ZeroOrMore))
|
|
},
|
|
token::BinOp(token::Plus) => {
|
|
try!(parser.bump());
|
|
Ok(Some(ast::OneOrMore))
|
|
},
|
|
_ => Ok(None)
|
|
}
|
|
};
|
|
|
|
match try!(parse_kleene_op(self)) {
|
|
Some(kleene_op) => return Ok((None, kleene_op)),
|
|
None => {}
|
|
}
|
|
|
|
let separator = try!(self.bump_and_get());
|
|
match try!(parse_kleene_op(self)) {
|
|
Some(zerok) => Ok((Some(separator), zerok)),
|
|
None => return Err(self.fatal("expected `*` or `+`"))
|
|
}
|
|
}
|
|
|
|
/// parse a single token tree from the input.
|
|
pub fn parse_token_tree(&mut self) -> PResult<TokenTree> {
|
|
// FIXME #6994: currently, this is too eager. It
|
|
// parses token trees but also identifies TtSequence's
|
|
// and token::SubstNt's; it's too early to know yet
|
|
// whether something will be a nonterminal or a seq
|
|
// yet.
|
|
maybe_whole!(deref self, NtTT);
|
|
|
|
// this is the fall-through for the 'match' below.
|
|
// invariants: the current token is not a left-delimiter,
|
|
// not an EOF, and not the desired right-delimiter (if
|
|
// it were, parse_seq_to_before_end would have prevented
|
|
// reaching this point.
|
|
fn parse_non_delim_tt_tok(p: &mut Parser) -> PResult<TokenTree> {
|
|
maybe_whole!(deref p, NtTT);
|
|
match p.token {
|
|
token::CloseDelim(_) => {
|
|
// This is a conservative error: only report the last unclosed delimiter. The
|
|
// previous unclosed delimiters could actually be closed! The parser just hasn't
|
|
// gotten to them yet.
|
|
match p.open_braces.last() {
|
|
None => {}
|
|
Some(&sp) => p.span_note(sp, "unclosed delimiter"),
|
|
};
|
|
let token_str = p.this_token_to_string();
|
|
Err(p.fatal(&format!("incorrect close delimiter: `{}`",
|
|
token_str)))
|
|
},
|
|
/* we ought to allow different depths of unquotation */
|
|
token::Dollar | token::SubstNt(..) if p.quote_depth > 0 => {
|
|
p.parse_unquoted()
|
|
}
|
|
_ => {
|
|
Ok(TtToken(p.span, try!(p.bump_and_get())))
|
|
}
|
|
}
|
|
}
|
|
|
|
match self.token {
|
|
token::Eof => {
|
|
let open_braces = self.open_braces.clone();
|
|
for sp in &open_braces {
|
|
self.span_help(*sp, "did you mean to close this delimiter?");
|
|
}
|
|
// There shouldn't really be a span, but it's easier for the test runner
|
|
// if we give it one
|
|
return Err(self.fatal("this file contains an un-closed delimiter "));
|
|
},
|
|
token::OpenDelim(delim) => {
|
|
// The span for beginning of the delimited section
|
|
let pre_span = self.span;
|
|
|
|
// Parse the open delimiter.
|
|
self.open_braces.push(self.span);
|
|
let open_span = self.span;
|
|
try!(self.bump());
|
|
|
|
// Parse the token trees within the delimiters
|
|
let tts = try!(self.parse_seq_to_before_end(
|
|
&token::CloseDelim(delim),
|
|
seq_sep_none(),
|
|
|p| p.parse_token_tree()
|
|
));
|
|
|
|
// Parse the close delimiter.
|
|
let close_span = self.span;
|
|
try!(self.bump());
|
|
self.open_braces.pop().unwrap();
|
|
|
|
// Expand to cover the entire delimited token tree
|
|
let span = Span { hi: close_span.hi, ..pre_span };
|
|
|
|
Ok(TtDelimited(span, Rc::new(Delimited {
|
|
delim: delim,
|
|
open_span: open_span,
|
|
tts: tts,
|
|
close_span: close_span,
|
|
})))
|
|
},
|
|
_ => parse_non_delim_tt_tok(self),
|
|
}
|
|
}
|
|
|
|
// parse a stream of tokens into a list of TokenTree's,
|
|
// up to EOF.
|
|
pub fn parse_all_token_trees(&mut self) -> PResult<Vec<TokenTree>> {
|
|
let mut tts = Vec::new();
|
|
while self.token != token::Eof {
|
|
tts.push(try!(self.parse_token_tree()));
|
|
}
|
|
Ok(tts)
|
|
}
|
|
|
|
/// Parse a prefix-operator expr
|
|
pub fn parse_prefix_expr(&mut self) -> PResult<P<Expr>> {
|
|
let lo = self.span.lo;
|
|
let hi;
|
|
|
|
// Note: when adding new unary operators, don't forget to adjust Token::can_begin_expr()
|
|
let ex;
|
|
match self.token {
|
|
token::Not => {
|
|
try!(self.bump());
|
|
let e = try!(self.parse_prefix_expr());
|
|
hi = e.span.hi;
|
|
ex = self.mk_unary(UnNot, e);
|
|
}
|
|
token::BinOp(token::Minus) => {
|
|
try!(self.bump());
|
|
let e = try!(self.parse_prefix_expr());
|
|
hi = e.span.hi;
|
|
ex = self.mk_unary(UnNeg, e);
|
|
}
|
|
token::BinOp(token::Star) => {
|
|
try!(self.bump());
|
|
let e = try!(self.parse_prefix_expr());
|
|
hi = e.span.hi;
|
|
ex = self.mk_unary(UnDeref, e);
|
|
}
|
|
token::BinOp(token::And) | token::AndAnd => {
|
|
try!(self.expect_and());
|
|
let m = try!(self.parse_mutability());
|
|
let e = try!(self.parse_prefix_expr());
|
|
hi = e.span.hi;
|
|
ex = ExprAddrOf(m, e);
|
|
}
|
|
token::Ident(_, _) => {
|
|
if !self.check_keyword(keywords::Box) {
|
|
return self.parse_dot_or_call_expr();
|
|
}
|
|
|
|
let lo = self.span.lo;
|
|
|
|
try!(self.bump());
|
|
|
|
// Check for a place: `box(PLACE) EXPR`.
|
|
if try!(self.eat(&token::OpenDelim(token::Paren)) ){
|
|
// Support `box() EXPR` as the default.
|
|
if !try!(self.eat(&token::CloseDelim(token::Paren)) ){
|
|
let place = try!(self.parse_expr_nopanic());
|
|
try!(self.expect(&token::CloseDelim(token::Paren)));
|
|
// Give a suggestion to use `box()` when a parenthesised expression is used
|
|
if !self.token.can_begin_expr() {
|
|
let span = self.span;
|
|
let this_token_to_string = self.this_token_to_string();
|
|
self.span_err(span,
|
|
&format!("expected expression, found `{}`",
|
|
this_token_to_string));
|
|
let box_span = mk_sp(lo, self.last_span.hi);
|
|
self.span_help(box_span,
|
|
"perhaps you meant `box() (foo)` instead?");
|
|
self.abort_if_errors();
|
|
}
|
|
let subexpression = try!(self.parse_prefix_expr());
|
|
hi = subexpression.span.hi;
|
|
ex = ExprBox(Some(place), subexpression);
|
|
return Ok(self.mk_expr(lo, hi, ex));
|
|
}
|
|
}
|
|
|
|
// Otherwise, we use the unique pointer default.
|
|
let subexpression = try!(self.parse_prefix_expr());
|
|
hi = subexpression.span.hi;
|
|
// FIXME (pnkfelix): After working out kinks with box
|
|
// desugaring, should be `ExprBox(None, subexpression)`
|
|
// instead.
|
|
ex = self.mk_unary(UnUniq, subexpression);
|
|
}
|
|
_ => return self.parse_dot_or_call_expr()
|
|
}
|
|
return Ok(self.mk_expr(lo, hi, ex));
|
|
}
|
|
|
|
/// Parse an expression of binops
|
|
pub fn parse_binops(&mut self) -> PResult<P<Expr>> {
|
|
let prefix_expr = try!(self.parse_prefix_expr());
|
|
self.parse_more_binops(prefix_expr, 0)
|
|
}
|
|
|
|
/// Parse an expression of binops of at least min_prec precedence
|
|
pub fn parse_more_binops(&mut self, lhs: P<Expr>, min_prec: usize) -> PResult<P<Expr>> {
|
|
if self.expr_is_complete(&*lhs) { return Ok(lhs); }
|
|
|
|
self.expected_tokens.push(TokenType::Operator);
|
|
|
|
let cur_op_span = self.span;
|
|
let cur_opt = self.token.to_binop();
|
|
match cur_opt {
|
|
Some(cur_op) => {
|
|
if ast_util::is_comparison_binop(cur_op) {
|
|
self.check_no_chained_comparison(&*lhs, cur_op)
|
|
}
|
|
let cur_prec = operator_prec(cur_op);
|
|
if cur_prec >= min_prec {
|
|
try!(self.bump());
|
|
let expr = try!(self.parse_prefix_expr());
|
|
let rhs = try!(self.parse_more_binops(expr, cur_prec + 1));
|
|
let lhs_span = lhs.span;
|
|
let rhs_span = rhs.span;
|
|
let binary = self.mk_binary(codemap::respan(cur_op_span, cur_op), lhs, rhs);
|
|
let bin = self.mk_expr(lhs_span.lo, rhs_span.hi, binary);
|
|
self.parse_more_binops(bin, min_prec)
|
|
} else {
|
|
Ok(lhs)
|
|
}
|
|
}
|
|
None => {
|
|
if AS_PREC >= min_prec && try!(self.eat_keyword_noexpect(keywords::As) ){
|
|
let rhs = try!(self.parse_ty_nopanic());
|
|
let _as = self.mk_expr(lhs.span.lo,
|
|
rhs.span.hi,
|
|
ExprCast(lhs, rhs));
|
|
self.parse_more_binops(_as, min_prec)
|
|
} else {
|
|
Ok(lhs)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Produce an error if comparison operators are chained (RFC #558).
|
|
/// We only need to check lhs, not rhs, because all comparison ops
|
|
/// have same precedence and are left-associative
|
|
fn check_no_chained_comparison(&mut self, lhs: &Expr, outer_op: ast::BinOp_) {
|
|
debug_assert!(ast_util::is_comparison_binop(outer_op));
|
|
match lhs.node {
|
|
ExprBinary(op, _, _) if ast_util::is_comparison_binop(op.node) => {
|
|
// respan to include both operators
|
|
let op_span = mk_sp(op.span.lo, self.span.hi);
|
|
self.span_err(op_span,
|
|
"chained comparison operators require parentheses");
|
|
if op.node == BiLt && outer_op == BiGt {
|
|
self.fileline_help(op_span,
|
|
"use `::<...>` instead of `<...>` if you meant to specify type arguments");
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
/// Parse an assignment expression....
|
|
/// actually, this seems to be the main entry point for
|
|
/// parsing an arbitrary expression.
|
|
pub fn parse_assign_expr(&mut self) -> PResult<P<Expr>> {
|
|
match self.token {
|
|
token::DotDot => {
|
|
// prefix-form of range notation '..expr'
|
|
// This has the same precedence as assignment expressions
|
|
// (much lower than other prefix expressions) to be consistent
|
|
// with the postfix-form 'expr..'
|
|
let lo = self.span.lo;
|
|
try!(self.bump());
|
|
let opt_end = if self.is_at_start_of_range_notation_rhs() {
|
|
let end = try!(self.parse_binops());
|
|
Some(end)
|
|
} else {
|
|
None
|
|
};
|
|
let hi = self.span.hi;
|
|
let ex = self.mk_range(None, opt_end);
|
|
Ok(self.mk_expr(lo, hi, ex))
|
|
}
|
|
_ => {
|
|
let lhs = try!(self.parse_binops());
|
|
self.parse_assign_expr_with(lhs)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn parse_assign_expr_with(&mut self, lhs: P<Expr>) -> PResult<P<Expr>> {
|
|
let restrictions = self.restrictions & RESTRICTION_NO_STRUCT_LITERAL;
|
|
let op_span = self.span;
|
|
match self.token {
|
|
token::Eq => {
|
|
try!(self.bump());
|
|
let rhs = try!(self.parse_expr_res(restrictions));
|
|
Ok(self.mk_expr(lhs.span.lo, rhs.span.hi, ExprAssign(lhs, rhs)))
|
|
}
|
|
token::BinOpEq(op) => {
|
|
try!(self.bump());
|
|
let rhs = try!(self.parse_expr_res(restrictions));
|
|
let aop = match op {
|
|
token::Plus => BiAdd,
|
|
token::Minus => BiSub,
|
|
token::Star => BiMul,
|
|
token::Slash => BiDiv,
|
|
token::Percent => BiRem,
|
|
token::Caret => BiBitXor,
|
|
token::And => BiBitAnd,
|
|
token::Or => BiBitOr,
|
|
token::Shl => BiShl,
|
|
token::Shr => BiShr
|
|
};
|
|
let rhs_span = rhs.span;
|
|
let span = lhs.span;
|
|
let assign_op = self.mk_assign_op(codemap::respan(op_span, aop), lhs, rhs);
|
|
Ok(self.mk_expr(span.lo, rhs_span.hi, assign_op))
|
|
}
|
|
// A range expression, either `expr..expr` or `expr..`.
|
|
token::DotDot => {
|
|
try!(self.bump());
|
|
|
|
let opt_end = if self.is_at_start_of_range_notation_rhs() {
|
|
let end = try!(self.parse_binops());
|
|
Some(end)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let lo = lhs.span.lo;
|
|
let hi = self.span.hi;
|
|
let range = self.mk_range(Some(lhs), opt_end);
|
|
return Ok(self.mk_expr(lo, hi, range));
|
|
}
|
|
|
|
_ => {
|
|
Ok(lhs)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn is_at_start_of_range_notation_rhs(&self) -> bool {
|
|
if self.token.can_begin_expr() {
|
|
// parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
|
|
if self.token == token::OpenDelim(token::Brace) {
|
|
return !self.restrictions.contains(RESTRICTION_NO_STRUCT_LITERAL);
|
|
}
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
/// Parse an 'if' or 'if let' expression ('if' token already eaten)
|
|
pub fn parse_if_expr(&mut self) -> PResult<P<Expr>> {
|
|
if self.check_keyword(keywords::Let) {
|
|
return self.parse_if_let_expr();
|
|
}
|
|
let lo = self.last_span.lo;
|
|
let cond = try!(self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL));
|
|
let thn = try!(self.parse_block());
|
|
let mut els: Option<P<Expr>> = None;
|
|
let mut hi = thn.span.hi;
|
|
if try!(self.eat_keyword(keywords::Else) ){
|
|
let elexpr = try!(self.parse_else_expr());
|
|
hi = elexpr.span.hi;
|
|
els = Some(elexpr);
|
|
}
|
|
Ok(self.mk_expr(lo, hi, ExprIf(cond, thn, els)))
|
|
}
|
|
|
|
/// Parse an 'if let' expression ('if' token already eaten)
|
|
pub fn parse_if_let_expr(&mut self) -> PResult<P<Expr>> {
|
|
let lo = self.last_span.lo;
|
|
try!(self.expect_keyword(keywords::Let));
|
|
let pat = try!(self.parse_pat_nopanic());
|
|
try!(self.expect(&token::Eq));
|
|
let expr = try!(self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL));
|
|
let thn = try!(self.parse_block());
|
|
let (hi, els) = if try!(self.eat_keyword(keywords::Else) ){
|
|
let expr = try!(self.parse_else_expr());
|
|
(expr.span.hi, Some(expr))
|
|
} else {
|
|
(thn.span.hi, None)
|
|
};
|
|
Ok(self.mk_expr(lo, hi, ExprIfLet(pat, expr, thn, els)))
|
|
}
|
|
|
|
// `|args| expr`
|
|
pub fn parse_lambda_expr(&mut self, capture_clause: CaptureClause)
|
|
-> PResult<P<Expr>>
|
|
{
|
|
let lo = self.span.lo;
|
|
let decl = try!(self.parse_fn_block_decl());
|
|
let body = match decl.output {
|
|
DefaultReturn(_) => {
|
|
// If no explicit return type is given, parse any
|
|
// expr and wrap it up in a dummy block:
|
|
let body_expr = try!(self.parse_expr_nopanic());
|
|
P(ast::Block {
|
|
id: ast::DUMMY_NODE_ID,
|
|
stmts: vec![],
|
|
span: body_expr.span,
|
|
expr: Some(body_expr),
|
|
rules: DefaultBlock,
|
|
})
|
|
}
|
|
_ => {
|
|
// If an explicit return type is given, require a
|
|
// block to appear (RFC 968).
|
|
try!(self.parse_block())
|
|
}
|
|
};
|
|
|
|
Ok(self.mk_expr(
|
|
lo,
|
|
body.span.hi,
|
|
ExprClosure(capture_clause, decl, body)))
|
|
}
|
|
|
|
pub fn parse_else_expr(&mut self) -> PResult<P<Expr>> {
|
|
if try!(self.eat_keyword(keywords::If) ){
|
|
return self.parse_if_expr();
|
|
} else {
|
|
let blk = try!(self.parse_block());
|
|
return Ok(self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk)));
|
|
}
|
|
}
|
|
|
|
/// Parse a 'for' .. 'in' expression ('for' token already eaten)
|
|
pub fn parse_for_expr(&mut self, opt_ident: Option<ast::Ident>) -> PResult<P<Expr>> {
|
|
// Parse: `for <src_pat> in <src_expr> <src_loop_block>`
|
|
|
|
let lo = self.last_span.lo;
|
|
let pat = try!(self.parse_pat_nopanic());
|
|
try!(self.expect_keyword(keywords::In));
|
|
let expr = try!(self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL));
|
|
let loop_block = try!(self.parse_block());
|
|
let hi = self.last_span.hi;
|
|
|
|
Ok(self.mk_expr(lo, hi, ExprForLoop(pat, expr, loop_block, opt_ident)))
|
|
}
|
|
|
|
/// Parse a 'while' or 'while let' expression ('while' token already eaten)
|
|
pub fn parse_while_expr(&mut self, opt_ident: Option<ast::Ident>) -> PResult<P<Expr>> {
|
|
if self.token.is_keyword(keywords::Let) {
|
|
return self.parse_while_let_expr(opt_ident);
|
|
}
|
|
let lo = self.last_span.lo;
|
|
let cond = try!(self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL));
|
|
let body = try!(self.parse_block());
|
|
let hi = body.span.hi;
|
|
return Ok(self.mk_expr(lo, hi, ExprWhile(cond, body, opt_ident)));
|
|
}
|
|
|
|
/// Parse a 'while let' expression ('while' token already eaten)
|
|
pub fn parse_while_let_expr(&mut self, opt_ident: Option<ast::Ident>) -> PResult<P<Expr>> {
|
|
let lo = self.last_span.lo;
|
|
try!(self.expect_keyword(keywords::Let));
|
|
let pat = try!(self.parse_pat_nopanic());
|
|
try!(self.expect(&token::Eq));
|
|
let expr = try!(self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL));
|
|
let body = try!(self.parse_block());
|
|
let hi = body.span.hi;
|
|
return Ok(self.mk_expr(lo, hi, ExprWhileLet(pat, expr, body, opt_ident)));
|
|
}
|
|
|
|
pub fn parse_loop_expr(&mut self, opt_ident: Option<ast::Ident>) -> PResult<P<Expr>> {
|
|
let lo = self.last_span.lo;
|
|
let body = try!(self.parse_block());
|
|
let hi = body.span.hi;
|
|
Ok(self.mk_expr(lo, hi, ExprLoop(body, opt_ident)))
|
|
}
|
|
|
|
fn parse_match_expr(&mut self) -> PResult<P<Expr>> {
|
|
let lo = self.last_span.lo;
|
|
let discriminant = try!(self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL));
|
|
try!(self.commit_expr_expecting(&*discriminant, token::OpenDelim(token::Brace)));
|
|
let mut arms: Vec<Arm> = Vec::new();
|
|
while self.token != token::CloseDelim(token::Brace) {
|
|
arms.push(try!(self.parse_arm_nopanic()));
|
|
}
|
|
let hi = self.span.hi;
|
|
try!(self.bump());
|
|
return Ok(self.mk_expr(lo, hi, ExprMatch(discriminant, arms, MatchSource::Normal)));
|
|
}
|
|
|
|
pub fn parse_arm_nopanic(&mut self) -> PResult<Arm> {
|
|
let attrs = self.parse_outer_attributes();
|
|
let pats = try!(self.parse_pats());
|
|
let mut guard = None;
|
|
if try!(self.eat_keyword(keywords::If) ){
|
|
guard = Some(try!(self.parse_expr_nopanic()));
|
|
}
|
|
try!(self.expect(&token::FatArrow));
|
|
let expr = try!(self.parse_expr_res(RESTRICTION_STMT_EXPR));
|
|
|
|
let require_comma =
|
|
!classify::expr_is_simple_block(&*expr)
|
|
&& self.token != token::CloseDelim(token::Brace);
|
|
|
|
if require_comma {
|
|
try!(self.commit_expr(&*expr, &[token::Comma], &[token::CloseDelim(token::Brace)]));
|
|
} else {
|
|
try!(self.eat(&token::Comma));
|
|
}
|
|
|
|
Ok(ast::Arm {
|
|
attrs: attrs,
|
|
pats: pats,
|
|
guard: guard,
|
|
body: expr,
|
|
})
|
|
}
|
|
|
|
/// Parse an expression
|
|
pub fn parse_expr_nopanic(&mut self) -> PResult<P<Expr>> {
|
|
return self.parse_expr_res(UNRESTRICTED);
|
|
}
|
|
|
|
/// Parse an expression, subject to the given restrictions
|
|
pub fn parse_expr_res(&mut self, r: Restrictions) -> PResult<P<Expr>> {
|
|
let old = self.restrictions;
|
|
self.restrictions = r;
|
|
let e = try!(self.parse_assign_expr());
|
|
self.restrictions = old;
|
|
return Ok(e);
|
|
}
|
|
|
|
/// Parse the RHS of a local variable declaration (e.g. '= 14;')
|
|
fn parse_initializer(&mut self) -> PResult<Option<P<Expr>>> {
|
|
if self.check(&token::Eq) {
|
|
try!(self.bump());
|
|
Ok(Some(try!(self.parse_expr_nopanic())))
|
|
} else {
|
|
Ok(None)
|
|
}
|
|
}
|
|
|
|
/// Parse patterns, separated by '|' s
|
|
fn parse_pats(&mut self) -> PResult<Vec<P<Pat>>> {
|
|
let mut pats = Vec::new();
|
|
loop {
|
|
pats.push(try!(self.parse_pat_nopanic()));
|
|
if self.check(&token::BinOp(token::Or)) { try!(self.bump());}
|
|
else { return Ok(pats); }
|
|
};
|
|
}
|
|
|
|
fn parse_pat_tuple_elements(&mut self) -> PResult<Vec<P<Pat>>> {
|
|
let mut fields = vec![];
|
|
if !self.check(&token::CloseDelim(token::Paren)) {
|
|
fields.push(try!(self.parse_pat_nopanic()));
|
|
if self.look_ahead(1, |t| *t != token::CloseDelim(token::Paren)) {
|
|
while try!(self.eat(&token::Comma)) &&
|
|
!self.check(&token::CloseDelim(token::Paren)) {
|
|
fields.push(try!(self.parse_pat_nopanic()));
|
|
}
|
|
}
|
|
if fields.len() == 1 {
|
|
try!(self.expect(&token::Comma));
|
|
}
|
|
}
|
|
Ok(fields)
|
|
}
|
|
|
|
fn parse_pat_vec_elements(
|
|
&mut self,
|
|
) -> PResult<(Vec<P<Pat>>, Option<P<Pat>>, Vec<P<Pat>>)> {
|
|
let mut before = Vec::new();
|
|
let mut slice = None;
|
|
let mut after = Vec::new();
|
|
let mut first = true;
|
|
let mut before_slice = true;
|
|
|
|
while self.token != token::CloseDelim(token::Bracket) {
|
|
if first {
|
|
first = false;
|
|
} else {
|
|
try!(self.expect(&token::Comma));
|
|
|
|
if self.token == token::CloseDelim(token::Bracket)
|
|
&& (before_slice || !after.is_empty()) {
|
|
break
|
|
}
|
|
}
|
|
|
|
if before_slice {
|
|
if self.check(&token::DotDot) {
|
|
try!(self.bump());
|
|
|
|
if self.check(&token::Comma) ||
|
|
self.check(&token::CloseDelim(token::Bracket)) {
|
|
slice = Some(P(ast::Pat {
|
|
id: ast::DUMMY_NODE_ID,
|
|
node: PatWild(PatWildMulti),
|
|
span: self.span,
|
|
}));
|
|
before_slice = false;
|
|
}
|
|
continue
|
|
}
|
|
}
|
|
|
|
let subpat = try!(self.parse_pat_nopanic());
|
|
if before_slice && self.check(&token::DotDot) {
|
|
try!(self.bump());
|
|
slice = Some(subpat);
|
|
before_slice = false;
|
|
} else if before_slice {
|
|
before.push(subpat);
|
|
} else {
|
|
after.push(subpat);
|
|
}
|
|
}
|
|
|
|
Ok((before, slice, after))
|
|
}
|
|
|
|
/// Parse the fields of a struct-like pattern
|
|
fn parse_pat_fields(&mut self) -> PResult<(Vec<codemap::Spanned<ast::FieldPat>> , bool)> {
|
|
let mut fields = Vec::new();
|
|
let mut etc = false;
|
|
let mut first = true;
|
|
while self.token != token::CloseDelim(token::Brace) {
|
|
if first {
|
|
first = false;
|
|
} else {
|
|
try!(self.expect(&token::Comma));
|
|
// accept trailing commas
|
|
if self.check(&token::CloseDelim(token::Brace)) { break }
|
|
}
|
|
|
|
let lo = self.span.lo;
|
|
let hi;
|
|
|
|
if self.check(&token::DotDot) {
|
|
try!(self.bump());
|
|
if self.token != token::CloseDelim(token::Brace) {
|
|
let token_str = self.this_token_to_string();
|
|
return Err(self.fatal(&format!("expected `{}`, found `{}`", "}",
|
|
token_str)))
|
|
}
|
|
etc = true;
|
|
break;
|
|
}
|
|
|
|
// Check if a colon exists one ahead. This means we're parsing a fieldname.
|
|
let (subpat, fieldname, is_shorthand) = if self.look_ahead(1, |t| t == &token::Colon) {
|
|
// Parsing a pattern of the form "fieldname: pat"
|
|
let fieldname = try!(self.parse_ident());
|
|
try!(self.bump());
|
|
let pat = try!(self.parse_pat_nopanic());
|
|
hi = pat.span.hi;
|
|
(pat, fieldname, false)
|
|
} else {
|
|
// Parsing a pattern of the form "(box) (ref) (mut) fieldname"
|
|
let is_box = try!(self.eat_keyword(keywords::Box));
|
|
let boxed_span_lo = self.span.lo;
|
|
let is_ref = try!(self.eat_keyword(keywords::Ref));
|
|
let is_mut = try!(self.eat_keyword(keywords::Mut));
|
|
let fieldname = try!(self.parse_ident());
|
|
hi = self.last_span.hi;
|
|
|
|
let bind_type = match (is_ref, is_mut) {
|
|
(true, true) => BindByRef(MutMutable),
|
|
(true, false) => BindByRef(MutImmutable),
|
|
(false, true) => BindByValue(MutMutable),
|
|
(false, false) => BindByValue(MutImmutable),
|
|
};
|
|
let fieldpath = codemap::Spanned{span:self.last_span, node:fieldname};
|
|
let fieldpat = P(ast::Pat{
|
|
id: ast::DUMMY_NODE_ID,
|
|
node: PatIdent(bind_type, fieldpath, None),
|
|
span: mk_sp(boxed_span_lo, hi),
|
|
});
|
|
|
|
let subpat = if is_box {
|
|
P(ast::Pat{
|
|
id: ast::DUMMY_NODE_ID,
|
|
node: PatBox(fieldpat),
|
|
span: mk_sp(lo, hi),
|
|
})
|
|
} else {
|
|
fieldpat
|
|
};
|
|
(subpat, fieldname, true)
|
|
};
|
|
|
|
fields.push(codemap::Spanned { span: mk_sp(lo, hi),
|
|
node: ast::FieldPat { ident: fieldname,
|
|
pat: subpat,
|
|
is_shorthand: is_shorthand }});
|
|
}
|
|
return Ok((fields, etc));
|
|
}
|
|
|
|
fn parse_pat_range_end(&mut self) -> PResult<P<Expr>> {
|
|
if self.is_path_start() {
|
|
let lo = self.span.lo;
|
|
let path = try!(self.parse_path(LifetimeAndTypesWithColons));
|
|
let hi = self.last_span.hi;
|
|
Ok(self.mk_expr(lo, hi, ExprPath(None, path)))
|
|
} else {
|
|
self.parse_literal_maybe_minus()
|
|
}
|
|
}
|
|
|
|
fn is_path_start(&self) -> bool {
|
|
(self.token == token::ModSep || self.token.is_ident() || self.token.is_path())
|
|
&& !self.token.is_keyword(keywords::True) && !self.token.is_keyword(keywords::False)
|
|
}
|
|
|
|
/// Parse a pattern.
|
|
pub fn parse_pat_nopanic(&mut self) -> PResult<P<Pat>> {
|
|
maybe_whole!(self, NtPat);
|
|
|
|
let lo = self.span.lo;
|
|
let pat;
|
|
match self.token {
|
|
token::Underscore => {
|
|
// Parse _
|
|
try!(self.bump());
|
|
pat = PatWild(PatWildSingle);
|
|
}
|
|
token::BinOp(token::And) | token::AndAnd => {
|
|
// Parse &pat / &mut pat
|
|
try!(self.expect_and());
|
|
let mutbl = try!(self.parse_mutability());
|
|
let subpat = try!(self.parse_pat_nopanic());
|
|
pat = PatRegion(subpat, mutbl);
|
|
}
|
|
token::OpenDelim(token::Paren) => {
|
|
// Parse (pat,pat,pat,...) as tuple pattern
|
|
try!(self.bump());
|
|
let fields = try!(self.parse_pat_tuple_elements());
|
|
try!(self.expect(&token::CloseDelim(token::Paren)));
|
|
pat = PatTup(fields);
|
|
}
|
|
token::OpenDelim(token::Bracket) => {
|
|
// Parse [pat,pat,...] as vector pattern
|
|
try!(self.bump());
|
|
let (before, slice, after) = try!(self.parse_pat_vec_elements());
|
|
try!(self.expect(&token::CloseDelim(token::Bracket)));
|
|
pat = PatVec(before, slice, after);
|
|
}
|
|
_ => {
|
|
// At this point, token != _, &, &&, (, [
|
|
if try!(self.eat_keyword(keywords::Mut)) {
|
|
// Parse mut ident @ pat
|
|
pat = try!(self.parse_pat_ident(BindByValue(MutMutable)));
|
|
} else if try!(self.eat_keyword(keywords::Ref)) {
|
|
// Parse ref ident @ pat / ref mut ident @ pat
|
|
let mutbl = try!(self.parse_mutability());
|
|
pat = try!(self.parse_pat_ident(BindByRef(mutbl)));
|
|
} else if try!(self.eat_keyword(keywords::Box)) {
|
|
// Parse box pat
|
|
let subpat = try!(self.parse_pat_nopanic());
|
|
pat = PatBox(subpat);
|
|
} else if self.is_path_start() {
|
|
// Parse pattern starting with a path
|
|
if self.token.is_plain_ident() && self.look_ahead(1, |t| *t != token::DotDotDot &&
|
|
*t != token::OpenDelim(token::Brace) &&
|
|
*t != token::OpenDelim(token::Paren) &&
|
|
// Contrary to its definition, a plain ident can be followed by :: in macros
|
|
*t != token::ModSep) {
|
|
// Plain idents have some extra abilities here compared to general paths
|
|
if self.look_ahead(1, |t| *t == token::Not) {
|
|
// Parse macro invocation
|
|
let ident = try!(self.parse_ident());
|
|
let ident_span = self.last_span;
|
|
let path = ident_to_path(ident_span, ident);
|
|
try!(self.bump());
|
|
let delim = try!(self.expect_open_delim());
|
|
let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
|
|
seq_sep_none(), |p| p.parse_token_tree()));
|
|
let mac = MacInvocTT(path, tts, EMPTY_CTXT);
|
|
pat = PatMac(codemap::Spanned {node: mac, span: self.span});
|
|
} else {
|
|
// Parse ident @ pat
|
|
// This can give false positives and parse nullary enums,
|
|
// they are dealt with later in resolve
|
|
pat = try!(self.parse_pat_ident(BindByValue(MutImmutable)));
|
|
}
|
|
} else {
|
|
// Parse as a general path
|
|
let path = try!(self.parse_path(LifetimeAndTypesWithColons));
|
|
match self.token {
|
|
token::DotDotDot => {
|
|
// Parse range
|
|
let hi = self.last_span.hi;
|
|
let begin = self.mk_expr(lo, hi, ExprPath(None, path));
|
|
try!(self.bump());
|
|
let end = try!(self.parse_pat_range_end());
|
|
pat = PatRange(begin, end);
|
|
}
|
|
token::OpenDelim(token::Brace) => {
|
|
// Parse struct pattern
|
|
try!(self.bump());
|
|
let (fields, etc) = try!(self.parse_pat_fields());
|
|
try!(self.bump());
|
|
pat = PatStruct(path, fields, etc);
|
|
}
|
|
token::OpenDelim(token::Paren) => {
|
|
// Parse tuple struct or enum pattern
|
|
if self.look_ahead(1, |t| *t == token::DotDot) {
|
|
// This is a "top constructor only" pat
|
|
try!(self.bump());
|
|
try!(self.bump());
|
|
try!(self.expect(&token::CloseDelim(token::Paren)));
|
|
pat = PatEnum(path, None);
|
|
} else {
|
|
let args = try!(self.parse_enum_variant_seq(
|
|
&token::OpenDelim(token::Paren),
|
|
&token::CloseDelim(token::Paren),
|
|
seq_sep_trailing_allowed(token::Comma),
|
|
|p| p.parse_pat_nopanic()));
|
|
pat = PatEnum(path, Some(args));
|
|
}
|
|
}
|
|
_ => {
|
|
// Parse nullary enum
|
|
pat = PatEnum(path, Some(vec![]));
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Try to parse everything else as literal with optional minus
|
|
let begin = try!(self.parse_literal_maybe_minus());
|
|
if try!(self.eat(&token::DotDotDot)) {
|
|
let end = try!(self.parse_pat_range_end());
|
|
pat = PatRange(begin, end);
|
|
} else {
|
|
pat = PatLit(begin);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let hi = self.last_span.hi;
|
|
Ok(P(ast::Pat {
|
|
id: ast::DUMMY_NODE_ID,
|
|
node: pat,
|
|
span: mk_sp(lo, hi),
|
|
}))
|
|
}
|
|
|
|
/// Parse ident or ident @ pat
|
|
/// used by the copy foo and ref foo patterns to give a good
|
|
/// error message when parsing mistakes like ref foo(a,b)
|
|
fn parse_pat_ident(&mut self,
|
|
binding_mode: ast::BindingMode)
|
|
-> PResult<ast::Pat_> {
|
|
if !self.token.is_plain_ident() {
|
|
let span = self.span;
|
|
let tok_str = self.this_token_to_string();
|
|
return Err(self.span_fatal(span,
|
|
&format!("expected identifier, found `{}`", tok_str)))
|
|
}
|
|
let ident = try!(self.parse_ident());
|
|
let last_span = self.last_span;
|
|
let name = codemap::Spanned{span: last_span, node: ident};
|
|
let sub = if try!(self.eat(&token::At) ){
|
|
Some(try!(self.parse_pat_nopanic()))
|
|
} else {
|
|
None
|
|
};
|
|
|
|
// just to be friendly, if they write something like
|
|
// ref Some(i)
|
|
// we end up here with ( as the current token. This shortly
|
|
// leads to a parse error. Note that if there is no explicit
|
|
// binding mode then we do not end up here, because the lookahead
|
|
// will direct us over to parse_enum_variant()
|
|
if self.token == token::OpenDelim(token::Paren) {
|
|
let last_span = self.last_span;
|
|
return Err(self.span_fatal(
|
|
last_span,
|
|
"expected identifier, found enum pattern"))
|
|
}
|
|
|
|
Ok(PatIdent(binding_mode, name, sub))
|
|
}
|
|
|
|
/// Parse a local variable declaration
|
|
fn parse_local(&mut self) -> PResult<P<Local>> {
|
|
let lo = self.span.lo;
|
|
let pat = try!(self.parse_pat_nopanic());
|
|
|
|
let mut ty = None;
|
|
if try!(self.eat(&token::Colon) ){
|
|
ty = Some(try!(self.parse_ty_sum()));
|
|
}
|
|
let init = try!(self.parse_initializer());
|
|
Ok(P(ast::Local {
|
|
ty: ty,
|
|
pat: pat,
|
|
init: init,
|
|
id: ast::DUMMY_NODE_ID,
|
|
span: mk_sp(lo, self.last_span.hi),
|
|
source: LocalLet,
|
|
}))
|
|
}
|
|
|
|
/// Parse a "let" stmt
|
|
fn parse_let(&mut self) -> PResult<P<Decl>> {
|
|
let lo = self.span.lo;
|
|
let local = try!(self.parse_local());
|
|
Ok(P(spanned(lo, self.last_span.hi, DeclLocal(local))))
|
|
}
|
|
|
|
/// Parse a structure field
|
|
fn parse_name_and_ty(&mut self, pr: Visibility,
|
|
attrs: Vec<Attribute> ) -> PResult<StructField> {
|
|
let lo = self.span.lo;
|
|
if !self.token.is_plain_ident() {
|
|
return Err(self.fatal("expected ident"));
|
|
}
|
|
let name = try!(self.parse_ident());
|
|
try!(self.expect(&token::Colon));
|
|
let ty = try!(self.parse_ty_sum());
|
|
Ok(spanned(lo, self.last_span.hi, ast::StructField_ {
|
|
kind: NamedField(name, pr),
|
|
id: ast::DUMMY_NODE_ID,
|
|
ty: ty,
|
|
attrs: attrs,
|
|
}))
|
|
}
|
|
|
|
/// Emit an expected item after attributes error.
|
|
fn expected_item_err(&self, attrs: &[Attribute]) {
|
|
let message = match attrs.last() {
|
|
Some(&Attribute { node: ast::Attribute_ { is_sugared_doc: true, .. }, .. }) => {
|
|
"expected item after doc comment"
|
|
}
|
|
_ => "expected item after attributes",
|
|
};
|
|
|
|
self.span_err(self.last_span, message);
|
|
}
|
|
|
|
/// Parse a statement. may include decl.
|
|
pub fn parse_stmt_nopanic(&mut self) -> PResult<Option<P<Stmt>>> {
|
|
Ok(try!(self.parse_stmt_()).map(P))
|
|
}
|
|
|
|
fn parse_stmt_(&mut self) -> PResult<Option<Stmt>> {
|
|
maybe_whole!(Some deref self, NtStmt);
|
|
|
|
fn check_expected_item(p: &mut Parser, attrs: &[Attribute]) {
|
|
// If we have attributes then we should have an item
|
|
if !attrs.is_empty() {
|
|
p.expected_item_err(attrs);
|
|
}
|
|
}
|
|
|
|
let lo = self.span.lo;
|
|
let attrs = self.parse_outer_attributes();
|
|
|
|
Ok(Some(if self.check_keyword(keywords::Let) {
|
|
check_expected_item(self, &attrs);
|
|
try!(self.expect_keyword(keywords::Let));
|
|
let decl = try!(self.parse_let());
|
|
spanned(lo, decl.span.hi, StmtDecl(decl, ast::DUMMY_NODE_ID))
|
|
} else if self.token.is_ident()
|
|
&& !self.token.is_any_keyword()
|
|
&& self.look_ahead(1, |t| *t == token::Not) {
|
|
// it's a macro invocation:
|
|
|
|
check_expected_item(self, &attrs);
|
|
|
|
// Potential trouble: if we allow macros with paths instead of
|
|
// idents, we'd need to look ahead past the whole path here...
|
|
let pth = try!(self.parse_path(NoTypesAllowed));
|
|
try!(self.bump());
|
|
|
|
let id = match self.token {
|
|
token::OpenDelim(_) => token::special_idents::invalid, // no special identifier
|
|
_ => try!(self.parse_ident()),
|
|
};
|
|
|
|
// check that we're pointing at delimiters (need to check
|
|
// again after the `if`, because of `parse_ident`
|
|
// consuming more tokens).
|
|
let delim = match self.token {
|
|
token::OpenDelim(delim) => delim,
|
|
_ => {
|
|
// we only expect an ident if we didn't parse one
|
|
// above.
|
|
let ident_str = if id.name == token::special_idents::invalid.name {
|
|
"identifier, "
|
|
} else {
|
|
""
|
|
};
|
|
let tok_str = self.this_token_to_string();
|
|
return Err(self.fatal(&format!("expected {}`(` or `{{`, found `{}`",
|
|
ident_str,
|
|
tok_str)))
|
|
},
|
|
};
|
|
|
|
let tts = try!(self.parse_unspanned_seq(
|
|
&token::OpenDelim(delim),
|
|
&token::CloseDelim(delim),
|
|
seq_sep_none(),
|
|
|p| p.parse_token_tree()
|
|
));
|
|
let hi = self.last_span.hi;
|
|
|
|
let style = if delim == token::Brace {
|
|
MacStmtWithBraces
|
|
} else {
|
|
MacStmtWithoutBraces
|
|
};
|
|
|
|
if id.name == token::special_idents::invalid.name {
|
|
spanned(lo, hi,
|
|
StmtMac(P(spanned(lo,
|
|
hi,
|
|
MacInvocTT(pth, tts, EMPTY_CTXT))),
|
|
style))
|
|
} else {
|
|
// if it has a special ident, it's definitely an item
|
|
//
|
|
// Require a semicolon or braces.
|
|
if style != MacStmtWithBraces {
|
|
if !try!(self.eat(&token::Semi) ){
|
|
let last_span = self.last_span;
|
|
self.span_err(last_span,
|
|
"macros that expand to items must \
|
|
either be surrounded with braces or \
|
|
followed by a semicolon");
|
|
}
|
|
}
|
|
spanned(lo, hi, StmtDecl(
|
|
P(spanned(lo, hi, DeclItem(
|
|
self.mk_item(
|
|
lo, hi, id /*id is good here*/,
|
|
ItemMac(spanned(lo, hi, MacInvocTT(pth, tts, EMPTY_CTXT))),
|
|
Inherited, Vec::new(/*no attrs*/))))),
|
|
ast::DUMMY_NODE_ID))
|
|
}
|
|
} else {
|
|
match try!(self.parse_item_(attrs, false)) {
|
|
Some(i) => {
|
|
let hi = i.span.hi;
|
|
let decl = P(spanned(lo, hi, DeclItem(i)));
|
|
spanned(lo, hi, StmtDecl(decl, ast::DUMMY_NODE_ID))
|
|
}
|
|
None => {
|
|
// Do not attempt to parse an expression if we're done here.
|
|
if self.token == token::Semi {
|
|
try!(self.bump());
|
|
return Ok(None);
|
|
}
|
|
|
|
if self.token == token::CloseDelim(token::Brace) {
|
|
return Ok(None);
|
|
}
|
|
|
|
// Remainder are line-expr stmts.
|
|
let e = try!(self.parse_expr_res(RESTRICTION_STMT_EXPR));
|
|
spanned(lo, e.span.hi, StmtExpr(e, ast::DUMMY_NODE_ID))
|
|
}
|
|
}
|
|
}))
|
|
}
|
|
|
|
/// Is this expression a successfully-parsed statement?
|
|
fn expr_is_complete(&mut self, e: &Expr) -> bool {
|
|
self.restrictions.contains(RESTRICTION_STMT_EXPR) &&
|
|
!classify::expr_requires_semi_to_be_stmt(e)
|
|
}
|
|
|
|
/// Parse a block. No inner attrs are allowed.
|
|
pub fn parse_block(&mut self) -> PResult<P<Block>> {
|
|
maybe_whole!(no_clone self, NtBlock);
|
|
|
|
let lo = self.span.lo;
|
|
|
|
if !try!(self.eat(&token::OpenDelim(token::Brace)) ){
|
|
let sp = self.span;
|
|
let tok = self.this_token_to_string();
|
|
return Err(self.span_fatal_help(sp,
|
|
&format!("expected `{{`, found `{}`", tok),
|
|
"place this code inside a block"));
|
|
}
|
|
|
|
self.parse_block_tail(lo, DefaultBlock)
|
|
}
|
|
|
|
/// Parse a block. Inner attrs are allowed.
|
|
fn parse_inner_attrs_and_block(&mut self) -> PResult<(Vec<Attribute>, P<Block>)> {
|
|
maybe_whole!(pair_empty self, NtBlock);
|
|
|
|
let lo = self.span.lo;
|
|
try!(self.expect(&token::OpenDelim(token::Brace)));
|
|
Ok((self.parse_inner_attributes(),
|
|
try!(self.parse_block_tail(lo, DefaultBlock))))
|
|
}
|
|
|
|
/// Parse the rest of a block expression or function body
|
|
/// Precondition: already parsed the '{'.
|
|
fn parse_block_tail(&mut self, lo: BytePos, s: BlockCheckMode) -> PResult<P<Block>> {
|
|
let mut stmts = vec![];
|
|
let mut expr = None;
|
|
|
|
while !try!(self.eat(&token::CloseDelim(token::Brace))) {
|
|
let Spanned {node, span} = if let Some(s) = try!(self.parse_stmt_()) {
|
|
s
|
|
} else {
|
|
// Found only `;` or `}`.
|
|
continue;
|
|
};
|
|
match node {
|
|
StmtExpr(e, _) => {
|
|
try!(self.handle_expression_like_statement(e, span, &mut stmts, &mut expr));
|
|
}
|
|
StmtMac(mac, MacStmtWithoutBraces) => {
|
|
// statement macro without braces; might be an
|
|
// expr depending on whether a semicolon follows
|
|
match self.token {
|
|
token::Semi => {
|
|
stmts.push(P(Spanned {
|
|
node: StmtMac(mac, MacStmtWithSemicolon),
|
|
span: mk_sp(span.lo, self.span.hi),
|
|
}));
|
|
try!(self.bump());
|
|
}
|
|
_ => {
|
|
let e = self.mk_mac_expr(span.lo, span.hi,
|
|
mac.and_then(|m| m.node));
|
|
let e = try!(self.parse_dot_or_call_expr_with(e));
|
|
let e = try!(self.parse_more_binops(e, 0));
|
|
let e = try!(self.parse_assign_expr_with(e));
|
|
try!(self.handle_expression_like_statement(
|
|
e,
|
|
span,
|
|
&mut stmts,
|
|
&mut expr));
|
|
}
|
|
}
|
|
}
|
|
StmtMac(m, style) => {
|
|
// statement macro; might be an expr
|
|
match self.token {
|
|
token::Semi => {
|
|
stmts.push(P(Spanned {
|
|
node: StmtMac(m, MacStmtWithSemicolon),
|
|
span: mk_sp(span.lo, self.span.hi),
|
|
}));
|
|
try!(self.bump());
|
|
}
|
|
token::CloseDelim(token::Brace) => {
|
|
// if a block ends in `m!(arg)` without
|
|
// a `;`, it must be an expr
|
|
expr = Some(self.mk_mac_expr(span.lo, span.hi,
|
|
m.and_then(|x| x.node)));
|
|
}
|
|
_ => {
|
|
stmts.push(P(Spanned {
|
|
node: StmtMac(m, style),
|
|
span: span
|
|
}));
|
|
}
|
|
}
|
|
}
|
|
_ => { // all other kinds of statements:
|
|
let mut hi = span.hi;
|
|
if classify::stmt_ends_with_semi(&node) {
|
|
try!(self.commit_stmt_expecting(token::Semi));
|
|
hi = self.last_span.hi;
|
|
}
|
|
|
|
stmts.push(P(Spanned {
|
|
node: node,
|
|
span: mk_sp(span.lo, hi)
|
|
}));
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(P(ast::Block {
|
|
stmts: stmts,
|
|
expr: expr,
|
|
id: ast::DUMMY_NODE_ID,
|
|
rules: s,
|
|
span: mk_sp(lo, self.last_span.hi),
|
|
}))
|
|
}
|
|
|
|
fn handle_expression_like_statement(
|
|
&mut self,
|
|
e: P<Expr>,
|
|
span: Span,
|
|
stmts: &mut Vec<P<Stmt>>,
|
|
last_block_expr: &mut Option<P<Expr>>) -> PResult<()> {
|
|
// expression without semicolon
|
|
if classify::expr_requires_semi_to_be_stmt(&*e) {
|
|
// Just check for errors and recover; do not eat semicolon yet.
|
|
try!(self.commit_stmt(&[],
|
|
&[token::Semi, token::CloseDelim(token::Brace)]));
|
|
}
|
|
|
|
match self.token {
|
|
token::Semi => {
|
|
try!(self.bump());
|
|
let span_with_semi = Span {
|
|
lo: span.lo,
|
|
hi: self.last_span.hi,
|
|
expn_id: span.expn_id,
|
|
};
|
|
stmts.push(P(Spanned {
|
|
node: StmtSemi(e, ast::DUMMY_NODE_ID),
|
|
span: span_with_semi,
|
|
}));
|
|
}
|
|
token::CloseDelim(token::Brace) => *last_block_expr = Some(e),
|
|
_ => {
|
|
stmts.push(P(Spanned {
|
|
node: StmtExpr(e, ast::DUMMY_NODE_ID),
|
|
span: span
|
|
}));
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
// Parses a sequence of bounds if a `:` is found,
|
|
// otherwise returns empty list.
|
|
fn parse_colon_then_ty_param_bounds(&mut self,
|
|
mode: BoundParsingMode)
|
|
-> PResult<OwnedSlice<TyParamBound>>
|
|
{
|
|
if !try!(self.eat(&token::Colon) ){
|
|
Ok(OwnedSlice::empty())
|
|
} else {
|
|
self.parse_ty_param_bounds(mode)
|
|
}
|
|
}
|
|
|
|
// matches bounds = ( boundseq )?
|
|
// where boundseq = ( polybound + boundseq ) | polybound
|
|
// and polybound = ( 'for' '<' 'region '>' )? bound
|
|
// and bound = 'region | trait_ref
|
|
fn parse_ty_param_bounds(&mut self,
|
|
mode: BoundParsingMode)
|
|
-> PResult<OwnedSlice<TyParamBound>>
|
|
{
|
|
let mut result = vec!();
|
|
loop {
|
|
let question_span = self.span;
|
|
let ate_question = try!(self.eat(&token::Question));
|
|
match self.token {
|
|
token::Lifetime(lifetime) => {
|
|
if ate_question {
|
|
self.span_err(question_span,
|
|
"`?` may only modify trait bounds, not lifetime bounds");
|
|
}
|
|
result.push(RegionTyParamBound(ast::Lifetime {
|
|
id: ast::DUMMY_NODE_ID,
|
|
span: self.span,
|
|
name: lifetime.name
|
|
}));
|
|
try!(self.bump());
|
|
}
|
|
token::ModSep | token::Ident(..) => {
|
|
let poly_trait_ref = try!(self.parse_poly_trait_ref());
|
|
let modifier = if ate_question {
|
|
if mode == BoundParsingMode::Modified {
|
|
TraitBoundModifier::Maybe
|
|
} else {
|
|
self.span_err(question_span,
|
|
"unexpected `?`");
|
|
TraitBoundModifier::None
|
|
}
|
|
} else {
|
|
TraitBoundModifier::None
|
|
};
|
|
result.push(TraitTyParamBound(poly_trait_ref, modifier))
|
|
}
|
|
_ => break,
|
|
}
|
|
|
|
if !try!(self.eat(&token::BinOp(token::Plus)) ){
|
|
break;
|
|
}
|
|
}
|
|
|
|
return Ok(OwnedSlice::from_vec(result));
|
|
}
|
|
|
|
/// Matches typaram = IDENT (`?` unbound)? optbounds ( EQ ty )?
|
|
fn parse_ty_param(&mut self) -> PResult<TyParam> {
|
|
let span = self.span;
|
|
let ident = try!(self.parse_ident());
|
|
|
|
let bounds = try!(self.parse_colon_then_ty_param_bounds(BoundParsingMode::Modified));
|
|
|
|
let default = if self.check(&token::Eq) {
|
|
try!(self.bump());
|
|
Some(try!(self.parse_ty_sum()))
|
|
} else {
|
|
None
|
|
};
|
|
|
|
Ok(TyParam {
|
|
ident: ident,
|
|
id: ast::DUMMY_NODE_ID,
|
|
bounds: bounds,
|
|
default: default,
|
|
span: span,
|
|
})
|
|
}
|
|
|
|
/// Parse a set of optional generic type parameter declarations. Where
|
|
/// clauses are not parsed here, and must be added later via
|
|
/// `parse_where_clause()`.
|
|
///
|
|
/// matches generics = ( ) | ( < > ) | ( < typaramseq ( , )? > ) | ( < lifetimes ( , )? > )
|
|
/// | ( < lifetimes , typaramseq ( , )? > )
|
|
/// where typaramseq = ( typaram ) | ( typaram , typaramseq )
|
|
pub fn parse_generics(&mut self) -> PResult<ast::Generics> {
|
|
if try!(self.eat(&token::Lt) ){
|
|
let lifetime_defs = try!(self.parse_lifetime_defs());
|
|
let mut seen_default = false;
|
|
let ty_params = try!(self.parse_seq_to_gt(Some(token::Comma), |p| {
|
|
try!(p.forbid_lifetime());
|
|
let ty_param = try!(p.parse_ty_param());
|
|
if ty_param.default.is_some() {
|
|
seen_default = true;
|
|
} else if seen_default {
|
|
let last_span = p.last_span;
|
|
p.span_err(last_span,
|
|
"type parameters with a default must be trailing");
|
|
}
|
|
Ok(ty_param)
|
|
}));
|
|
Ok(ast::Generics {
|
|
lifetimes: lifetime_defs,
|
|
ty_params: ty_params,
|
|
where_clause: WhereClause {
|
|
id: ast::DUMMY_NODE_ID,
|
|
predicates: Vec::new(),
|
|
}
|
|
})
|
|
} else {
|
|
Ok(ast_util::empty_generics())
|
|
}
|
|
}
|
|
|
|
fn parse_generic_values_after_lt(&mut self) -> PResult<(Vec<ast::Lifetime>,
|
|
Vec<P<Ty>>,
|
|
Vec<P<TypeBinding>>)> {
|
|
let lifetimes = try!(self.parse_lifetimes(token::Comma));
|
|
|
|
// First parse types.
|
|
let (types, returned) = try!(self.parse_seq_to_gt_or_return(
|
|
Some(token::Comma),
|
|
|p| {
|
|
try!(p.forbid_lifetime());
|
|
if p.look_ahead(1, |t| t == &token::Eq) {
|
|
Ok(None)
|
|
} else {
|
|
Ok(Some(try!(p.parse_ty_sum())))
|
|
}
|
|
}
|
|
));
|
|
|
|
// If we found the `>`, don't continue.
|
|
if !returned {
|
|
return Ok((lifetimes, types.into_vec(), Vec::new()));
|
|
}
|
|
|
|
// Then parse type bindings.
|
|
let bindings = try!(self.parse_seq_to_gt(
|
|
Some(token::Comma),
|
|
|p| {
|
|
try!(p.forbid_lifetime());
|
|
let lo = p.span.lo;
|
|
let ident = try!(p.parse_ident());
|
|
let found_eq = try!(p.eat(&token::Eq));
|
|
if !found_eq {
|
|
let span = p.span;
|
|
p.span_warn(span, "whoops, no =?");
|
|
}
|
|
let ty = try!(p.parse_ty_nopanic());
|
|
let hi = p.span.hi;
|
|
let span = mk_sp(lo, hi);
|
|
return Ok(P(TypeBinding{id: ast::DUMMY_NODE_ID,
|
|
ident: ident,
|
|
ty: ty,
|
|
span: span,
|
|
}));
|
|
}
|
|
));
|
|
Ok((lifetimes, types.into_vec(), bindings.into_vec()))
|
|
}
|
|
|
|
fn forbid_lifetime(&mut self) -> PResult<()> {
|
|
if self.token.is_lifetime() {
|
|
let span = self.span;
|
|
return Err(self.span_fatal(span, "lifetime parameters must be declared \
|
|
prior to type parameters"))
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Parses an optional `where` clause and places it in `generics`.
|
|
///
|
|
/// ```
|
|
/// where T : Trait<U, V> + 'b, 'a : 'b
|
|
/// ```
|
|
pub fn parse_where_clause(&mut self) -> PResult<ast::WhereClause> {
|
|
let mut where_clause = WhereClause {
|
|
id: ast::DUMMY_NODE_ID,
|
|
predicates: Vec::new(),
|
|
};
|
|
|
|
if !try!(self.eat_keyword(keywords::Where)) {
|
|
return Ok(where_clause);
|
|
}
|
|
|
|
let mut parsed_something = false;
|
|
loop {
|
|
let lo = self.span.lo;
|
|
match self.token {
|
|
token::OpenDelim(token::Brace) => {
|
|
break
|
|
}
|
|
|
|
token::Lifetime(..) => {
|
|
let bounded_lifetime =
|
|
try!(self.parse_lifetime());
|
|
|
|
try!(self.eat(&token::Colon));
|
|
|
|
let bounds =
|
|
try!(self.parse_lifetimes(token::BinOp(token::Plus)));
|
|
|
|
let hi = self.span.hi;
|
|
let span = mk_sp(lo, hi);
|
|
|
|
where_clause.predicates.push(ast::WherePredicate::RegionPredicate(
|
|
ast::WhereRegionPredicate {
|
|
span: span,
|
|
lifetime: bounded_lifetime,
|
|
bounds: bounds
|
|
}
|
|
));
|
|
|
|
parsed_something = true;
|
|
}
|
|
|
|
_ => {
|
|
let bound_lifetimes = if try!(self.eat_keyword(keywords::For) ){
|
|
// Higher ranked constraint.
|
|
try!(self.expect(&token::Lt));
|
|
let lifetime_defs = try!(self.parse_lifetime_defs());
|
|
try!(self.expect_gt());
|
|
lifetime_defs
|
|
} else {
|
|
vec![]
|
|
};
|
|
|
|
let bounded_ty = try!(self.parse_ty_nopanic());
|
|
|
|
if try!(self.eat(&token::Colon) ){
|
|
let bounds = try!(self.parse_ty_param_bounds(BoundParsingMode::Bare));
|
|
let hi = self.span.hi;
|
|
let span = mk_sp(lo, hi);
|
|
|
|
if bounds.is_empty() {
|
|
self.span_err(span,
|
|
"each predicate in a `where` clause must have \
|
|
at least one bound in it");
|
|
}
|
|
|
|
where_clause.predicates.push(ast::WherePredicate::BoundPredicate(
|
|
ast::WhereBoundPredicate {
|
|
span: span,
|
|
bound_lifetimes: bound_lifetimes,
|
|
bounded_ty: bounded_ty,
|
|
bounds: bounds,
|
|
}));
|
|
|
|
parsed_something = true;
|
|
} else if try!(self.eat(&token::Eq) ){
|
|
// let ty = try!(self.parse_ty_nopanic());
|
|
let hi = self.span.hi;
|
|
let span = mk_sp(lo, hi);
|
|
// where_clause.predicates.push(
|
|
// ast::WherePredicate::EqPredicate(ast::WhereEqPredicate {
|
|
// id: ast::DUMMY_NODE_ID,
|
|
// span: span,
|
|
// path: panic!("NYI"), //bounded_ty,
|
|
// ty: ty,
|
|
// }));
|
|
// parsed_something = true;
|
|
// // FIXME(#18433)
|
|
self.span_err(span,
|
|
"equality constraints are not yet supported \
|
|
in where clauses (#20041)");
|
|
} else {
|
|
let last_span = self.last_span;
|
|
self.span_err(last_span,
|
|
"unexpected token in `where` clause");
|
|
}
|
|
}
|
|
};
|
|
|
|
if !try!(self.eat(&token::Comma) ){
|
|
break
|
|
}
|
|
}
|
|
|
|
if !parsed_something {
|
|
let last_span = self.last_span;
|
|
self.span_err(last_span,
|
|
"a `where` clause must have at least one predicate \
|
|
in it");
|
|
}
|
|
|
|
Ok(where_clause)
|
|
}
|
|
|
|
fn parse_fn_args(&mut self, named_args: bool, allow_variadic: bool)
|
|
-> PResult<(Vec<Arg> , bool)> {
|
|
let sp = self.span;
|
|
let mut args: Vec<Option<Arg>> =
|
|
try!(self.parse_unspanned_seq(
|
|
&token::OpenDelim(token::Paren),
|
|
&token::CloseDelim(token::Paren),
|
|
seq_sep_trailing_allowed(token::Comma),
|
|
|p| {
|
|
if p.token == token::DotDotDot {
|
|
try!(p.bump());
|
|
if allow_variadic {
|
|
if p.token != token::CloseDelim(token::Paren) {
|
|
let span = p.span;
|
|
return Err(p.span_fatal(span,
|
|
"`...` must be last in argument list for variadic function"))
|
|
}
|
|
} else {
|
|
let span = p.span;
|
|
return Err(p.span_fatal(span,
|
|
"only foreign functions are allowed to be variadic"))
|
|
}
|
|
Ok(None)
|
|
} else {
|
|
Ok(Some(try!(p.parse_arg_general(named_args))))
|
|
}
|
|
}
|
|
));
|
|
|
|
let variadic = match args.pop() {
|
|
Some(None) => true,
|
|
Some(x) => {
|
|
// Need to put back that last arg
|
|
args.push(x);
|
|
false
|
|
}
|
|
None => false
|
|
};
|
|
|
|
if variadic && args.is_empty() {
|
|
self.span_err(sp,
|
|
"variadic function must be declared with at least one named argument");
|
|
}
|
|
|
|
let args = args.into_iter().map(|x| x.unwrap()).collect();
|
|
|
|
Ok((args, variadic))
|
|
}
|
|
|
|
/// Parse the argument list and result type of a function declaration
|
|
pub fn parse_fn_decl(&mut self, allow_variadic: bool) -> PResult<P<FnDecl>> {
|
|
|
|
let (args, variadic) = try!(self.parse_fn_args(true, allow_variadic));
|
|
let ret_ty = try!(self.parse_ret_ty());
|
|
|
|
Ok(P(FnDecl {
|
|
inputs: args,
|
|
output: ret_ty,
|
|
variadic: variadic
|
|
}))
|
|
}
|
|
|
|
fn is_self_ident(&mut self) -> bool {
|
|
match self.token {
|
|
token::Ident(id, token::Plain) => id.name == special_idents::self_.name,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
fn expect_self_ident(&mut self) -> PResult<ast::Ident> {
|
|
match self.token {
|
|
token::Ident(id, token::Plain) if id.name == special_idents::self_.name => {
|
|
try!(self.bump());
|
|
Ok(id)
|
|
},
|
|
_ => {
|
|
let token_str = self.this_token_to_string();
|
|
return Err(self.fatal(&format!("expected `self`, found `{}`",
|
|
token_str)))
|
|
}
|
|
}
|
|
}
|
|
|
|
fn is_self_type_ident(&mut self) -> bool {
|
|
match self.token {
|
|
token::Ident(id, token::Plain) => id.name == special_idents::type_self.name,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
fn expect_self_type_ident(&mut self) -> PResult<ast::Ident> {
|
|
match self.token {
|
|
token::Ident(id, token::Plain) if id.name == special_idents::type_self.name => {
|
|
try!(self.bump());
|
|
Ok(id)
|
|
},
|
|
_ => {
|
|
let token_str = self.this_token_to_string();
|
|
Err(self.fatal(&format!("expected `Self`, found `{}`",
|
|
token_str)))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Parse the argument list and result type of a function
|
|
/// that may have a self type.
|
|
fn parse_fn_decl_with_self<F>(&mut self,
|
|
parse_arg_fn: F) -> PResult<(ExplicitSelf, P<FnDecl>)> where
|
|
F: FnMut(&mut Parser) -> PResult<Arg>,
|
|
{
|
|
fn maybe_parse_borrowed_explicit_self(this: &mut Parser)
|
|
-> PResult<ast::ExplicitSelf_> {
|
|
// The following things are possible to see here:
|
|
//
|
|
// fn(&mut self)
|
|
// fn(&mut self)
|
|
// fn(&'lt self)
|
|
// fn(&'lt mut self)
|
|
//
|
|
// We already know that the current token is `&`.
|
|
|
|
if this.look_ahead(1, |t| t.is_keyword(keywords::SelfValue)) {
|
|
try!(this.bump());
|
|
Ok(SelfRegion(None, MutImmutable, try!(this.expect_self_ident())))
|
|
} else if this.look_ahead(1, |t| t.is_mutability()) &&
|
|
this.look_ahead(2, |t| t.is_keyword(keywords::SelfValue)) {
|
|
try!(this.bump());
|
|
let mutability = try!(this.parse_mutability());
|
|
Ok(SelfRegion(None, mutability, try!(this.expect_self_ident())))
|
|
} else if this.look_ahead(1, |t| t.is_lifetime()) &&
|
|
this.look_ahead(2, |t| t.is_keyword(keywords::SelfValue)) {
|
|
try!(this.bump());
|
|
let lifetime = try!(this.parse_lifetime());
|
|
Ok(SelfRegion(Some(lifetime), MutImmutable, try!(this.expect_self_ident())))
|
|
} else if this.look_ahead(1, |t| t.is_lifetime()) &&
|
|
this.look_ahead(2, |t| t.is_mutability()) &&
|
|
this.look_ahead(3, |t| t.is_keyword(keywords::SelfValue)) {
|
|
try!(this.bump());
|
|
let lifetime = try!(this.parse_lifetime());
|
|
let mutability = try!(this.parse_mutability());
|
|
Ok(SelfRegion(Some(lifetime), mutability, try!(this.expect_self_ident())))
|
|
} else {
|
|
Ok(SelfStatic)
|
|
}
|
|
}
|
|
|
|
try!(self.expect(&token::OpenDelim(token::Paren)));
|
|
|
|
// A bit of complexity and lookahead is needed here in order to be
|
|
// backwards compatible.
|
|
let lo = self.span.lo;
|
|
let mut self_ident_lo = self.span.lo;
|
|
let mut self_ident_hi = self.span.hi;
|
|
|
|
let mut mutbl_self = MutImmutable;
|
|
let explicit_self = match self.token {
|
|
token::BinOp(token::And) => {
|
|
let eself = try!(maybe_parse_borrowed_explicit_self(self));
|
|
self_ident_lo = self.last_span.lo;
|
|
self_ident_hi = self.last_span.hi;
|
|
eself
|
|
}
|
|
token::BinOp(token::Star) => {
|
|
// Possibly "*self" or "*mut self" -- not supported. Try to avoid
|
|
// emitting cryptic "unexpected token" errors.
|
|
try!(self.bump());
|
|
let _mutability = if self.token.is_mutability() {
|
|
try!(self.parse_mutability())
|
|
} else {
|
|
MutImmutable
|
|
};
|
|
if self.is_self_ident() {
|
|
let span = self.span;
|
|
self.span_err(span, "cannot pass self by unsafe pointer");
|
|
try!(self.bump());
|
|
}
|
|
// error case, making bogus self ident:
|
|
SelfValue(special_idents::self_)
|
|
}
|
|
token::Ident(..) => {
|
|
if self.is_self_ident() {
|
|
let self_ident = try!(self.expect_self_ident());
|
|
|
|
// Determine whether this is the fully explicit form, `self:
|
|
// TYPE`.
|
|
if try!(self.eat(&token::Colon) ){
|
|
SelfExplicit(try!(self.parse_ty_sum()), self_ident)
|
|
} else {
|
|
SelfValue(self_ident)
|
|
}
|
|
} else if self.token.is_mutability() &&
|
|
self.look_ahead(1, |t| t.is_keyword(keywords::SelfValue)) {
|
|
mutbl_self = try!(self.parse_mutability());
|
|
let self_ident = try!(self.expect_self_ident());
|
|
|
|
// Determine whether this is the fully explicit form,
|
|
// `self: TYPE`.
|
|
if try!(self.eat(&token::Colon) ){
|
|
SelfExplicit(try!(self.parse_ty_sum()), self_ident)
|
|
} else {
|
|
SelfValue(self_ident)
|
|
}
|
|
} else {
|
|
SelfStatic
|
|
}
|
|
}
|
|
_ => SelfStatic,
|
|
};
|
|
|
|
let explicit_self_sp = mk_sp(self_ident_lo, self_ident_hi);
|
|
|
|
// shared fall-through for the three cases below. borrowing prevents simply
|
|
// writing this as a closure
|
|
macro_rules! parse_remaining_arguments {
|
|
($self_id:ident) =>
|
|
{
|
|
// If we parsed a self type, expect a comma before the argument list.
|
|
match self.token {
|
|
token::Comma => {
|
|
try!(self.bump());
|
|
let sep = seq_sep_trailing_allowed(token::Comma);
|
|
let mut fn_inputs = try!(self.parse_seq_to_before_end(
|
|
&token::CloseDelim(token::Paren),
|
|
sep,
|
|
parse_arg_fn
|
|
));
|
|
fn_inputs.insert(0, Arg::new_self(explicit_self_sp, mutbl_self, $self_id));
|
|
fn_inputs
|
|
}
|
|
token::CloseDelim(token::Paren) => {
|
|
vec!(Arg::new_self(explicit_self_sp, mutbl_self, $self_id))
|
|
}
|
|
_ => {
|
|
let token_str = self.this_token_to_string();
|
|
return Err(self.fatal(&format!("expected `,` or `)`, found `{}`",
|
|
token_str)))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let fn_inputs = match explicit_self {
|
|
SelfStatic => {
|
|
let sep = seq_sep_trailing_allowed(token::Comma);
|
|
try!(self.parse_seq_to_before_end(&token::CloseDelim(token::Paren),
|
|
sep, parse_arg_fn))
|
|
}
|
|
SelfValue(id) => parse_remaining_arguments!(id),
|
|
SelfRegion(_,_,id) => parse_remaining_arguments!(id),
|
|
SelfExplicit(_,id) => parse_remaining_arguments!(id),
|
|
};
|
|
|
|
|
|
try!(self.expect(&token::CloseDelim(token::Paren)));
|
|
|
|
let hi = self.span.hi;
|
|
|
|
let ret_ty = try!(self.parse_ret_ty());
|
|
|
|
let fn_decl = P(FnDecl {
|
|
inputs: fn_inputs,
|
|
output: ret_ty,
|
|
variadic: false
|
|
});
|
|
|
|
Ok((spanned(lo, hi, explicit_self), fn_decl))
|
|
}
|
|
|
|
// parse the |arg, arg| header on a lambda
|
|
fn parse_fn_block_decl(&mut self) -> PResult<P<FnDecl>> {
|
|
let inputs_captures = {
|
|
if try!(self.eat(&token::OrOr) ){
|
|
Vec::new()
|
|
} else {
|
|
try!(self.expect(&token::BinOp(token::Or)));
|
|
try!(self.parse_obsolete_closure_kind());
|
|
let args = try!(self.parse_seq_to_before_end(
|
|
&token::BinOp(token::Or),
|
|
seq_sep_trailing_allowed(token::Comma),
|
|
|p| p.parse_fn_block_arg()
|
|
));
|
|
try!(self.bump());
|
|
args
|
|
}
|
|
};
|
|
let output = try!(self.parse_ret_ty());
|
|
|
|
Ok(P(FnDecl {
|
|
inputs: inputs_captures,
|
|
output: output,
|
|
variadic: false
|
|
}))
|
|
}
|
|
|
|
/// Parse the name and optional generic types of a function header.
|
|
fn parse_fn_header(&mut self) -> PResult<(Ident, ast::Generics)> {
|
|
let id = try!(self.parse_ident());
|
|
let generics = try!(self.parse_generics());
|
|
Ok((id, generics))
|
|
}
|
|
|
|
fn mk_item(&mut self, lo: BytePos, hi: BytePos, ident: Ident,
|
|
node: Item_, vis: Visibility,
|
|
attrs: Vec<Attribute>) -> P<Item> {
|
|
P(Item {
|
|
ident: ident,
|
|
attrs: attrs,
|
|
id: ast::DUMMY_NODE_ID,
|
|
node: node,
|
|
vis: vis,
|
|
span: mk_sp(lo, hi)
|
|
})
|
|
}
|
|
|
|
/// Parse an item-position function declaration.
|
|
fn parse_item_fn(&mut self, unsafety: Unsafety, abi: abi::Abi) -> PResult<ItemInfo> {
|
|
let (ident, mut generics) = try!(self.parse_fn_header());
|
|
let decl = try!(self.parse_fn_decl(false));
|
|
generics.where_clause = try!(self.parse_where_clause());
|
|
let (inner_attrs, body) = try!(self.parse_inner_attrs_and_block());
|
|
Ok((ident, ItemFn(decl, unsafety, abi, generics, body), Some(inner_attrs)))
|
|
}
|
|
|
|
/// Parse an impl item.
|
|
pub fn parse_impl_item(&mut self) -> PResult<P<ImplItem>> {
|
|
let lo = self.span.lo;
|
|
let mut attrs = self.parse_outer_attributes();
|
|
let vis = try!(self.parse_visibility());
|
|
let (name, node) = if try!(self.eat_keyword(keywords::Type)) {
|
|
let name = try!(self.parse_ident());
|
|
try!(self.expect(&token::Eq));
|
|
let typ = try!(self.parse_ty_sum());
|
|
try!(self.expect(&token::Semi));
|
|
(name, TypeImplItem(typ))
|
|
} else {
|
|
let (name, inner_attrs, node) = try!(self.parse_impl_method(vis));
|
|
attrs.extend(inner_attrs.into_iter());
|
|
(name, node)
|
|
};
|
|
|
|
Ok(P(ImplItem {
|
|
id: ast::DUMMY_NODE_ID,
|
|
span: mk_sp(lo, self.last_span.hi),
|
|
ident: name,
|
|
vis: vis,
|
|
attrs: attrs,
|
|
node: node
|
|
}))
|
|
}
|
|
|
|
fn complain_if_pub_macro(&mut self, visa: Visibility, span: Span) {
|
|
match visa {
|
|
Public => {
|
|
self.span_err(span, "can't qualify macro invocation with `pub`");
|
|
self.fileline_help(span, "try adjusting the macro to put `pub` inside \
|
|
the invocation");
|
|
}
|
|
Inherited => (),
|
|
}
|
|
}
|
|
|
|
/// Parse a method or a macro invocation in a trait impl.
|
|
fn parse_impl_method(&mut self, vis: Visibility)
|
|
-> PResult<(Ident, Vec<ast::Attribute>, ast::ImplItem_)> {
|
|
// code copied from parse_macro_use_or_failure... abstraction!
|
|
if !self.token.is_any_keyword()
|
|
&& self.look_ahead(1, |t| *t == token::Not)
|
|
&& (self.look_ahead(2, |t| *t == token::OpenDelim(token::Paren))
|
|
|| self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))) {
|
|
// method macro.
|
|
|
|
let last_span = self.last_span;
|
|
self.complain_if_pub_macro(vis, last_span);
|
|
|
|
let pth = try!(self.parse_path(NoTypesAllowed));
|
|
try!(self.expect(&token::Not));
|
|
|
|
// eat a matched-delimiter token tree:
|
|
let delim = try!(self.expect_open_delim());
|
|
let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
|
|
seq_sep_none(),
|
|
|p| p.parse_token_tree()));
|
|
let m_ = ast::MacInvocTT(pth, tts, EMPTY_CTXT);
|
|
let m: ast::Mac = codemap::Spanned { node: m_,
|
|
span: mk_sp(self.span.lo,
|
|
self.span.hi) };
|
|
if delim != token::Brace {
|
|
try!(self.expect(&token::Semi))
|
|
}
|
|
Ok((token::special_idents::invalid, vec![], ast::MacImplItem(m)))
|
|
} else {
|
|
let unsafety = try!(self.parse_unsafety());
|
|
let abi = if try!(self.eat_keyword(keywords::Extern)) {
|
|
try!(self.parse_opt_abi()).unwrap_or(abi::C)
|
|
} else {
|
|
abi::Rust
|
|
};
|
|
try!(self.expect_keyword(keywords::Fn));
|
|
let ident = try!(self.parse_ident());
|
|
let mut generics = try!(self.parse_generics());
|
|
let (explicit_self, decl) = try!(self.parse_fn_decl_with_self(|p| {
|
|
p.parse_arg()
|
|
}));
|
|
generics.where_clause = try!(self.parse_where_clause());
|
|
let (inner_attrs, body) = try!(self.parse_inner_attrs_and_block());
|
|
Ok((ident, inner_attrs, MethodImplItem(ast::MethodSig {
|
|
generics: generics,
|
|
abi: abi,
|
|
explicit_self: explicit_self,
|
|
unsafety: unsafety,
|
|
decl: decl
|
|
}, body)))
|
|
}
|
|
}
|
|
|
|
/// Parse trait Foo { ... }
|
|
fn parse_item_trait(&mut self, unsafety: Unsafety) -> PResult<ItemInfo> {
|
|
|
|
let ident = try!(self.parse_ident());
|
|
let mut tps = try!(self.parse_generics());
|
|
|
|
// Parse supertrait bounds.
|
|
let bounds = try!(self.parse_colon_then_ty_param_bounds(BoundParsingMode::Bare));
|
|
|
|
tps.where_clause = try!(self.parse_where_clause());
|
|
|
|
let meths = try!(self.parse_trait_items());
|
|
Ok((ident, ItemTrait(unsafety, tps, bounds, meths), None))
|
|
}
|
|
|
|
/// Parses items implementations variants
|
|
/// impl<T> Foo { ... }
|
|
/// impl<T> ToString for &'static T { ... }
|
|
/// impl Send for .. {}
|
|
fn parse_item_impl(&mut self, unsafety: ast::Unsafety) -> PResult<ItemInfo> {
|
|
let impl_span = self.span;
|
|
|
|
// First, parse type parameters if necessary.
|
|
let mut generics = try!(self.parse_generics());
|
|
|
|
// Special case: if the next identifier that follows is '(', don't
|
|
// allow this to be parsed as a trait.
|
|
let could_be_trait = self.token != token::OpenDelim(token::Paren);
|
|
|
|
let neg_span = self.span;
|
|
let polarity = if try!(self.eat(&token::Not) ){
|
|
ast::ImplPolarity::Negative
|
|
} else {
|
|
ast::ImplPolarity::Positive
|
|
};
|
|
|
|
// Parse the trait.
|
|
let mut ty = try!(self.parse_ty_sum());
|
|
|
|
// Parse traits, if necessary.
|
|
let opt_trait = if could_be_trait && try!(self.eat_keyword(keywords::For) ){
|
|
// New-style trait. Reinterpret the type as a trait.
|
|
match ty.node {
|
|
TyPath(None, ref path) => {
|
|
Some(TraitRef {
|
|
path: (*path).clone(),
|
|
ref_id: ty.id,
|
|
})
|
|
}
|
|
_ => {
|
|
self.span_err(ty.span, "not a trait");
|
|
None
|
|
}
|
|
}
|
|
} else {
|
|
match polarity {
|
|
ast::ImplPolarity::Negative => {
|
|
// This is a negated type implementation
|
|
// `impl !MyType {}`, which is not allowed.
|
|
self.span_err(neg_span, "inherent implementation can't be negated");
|
|
},
|
|
_ => {}
|
|
}
|
|
None
|
|
};
|
|
|
|
if try!(self.eat(&token::DotDot) ){
|
|
if generics.is_parameterized() {
|
|
self.span_err(impl_span, "default trait implementations are not \
|
|
allowed to have genercis");
|
|
}
|
|
|
|
try!(self.expect(&token::OpenDelim(token::Brace)));
|
|
try!(self.expect(&token::CloseDelim(token::Brace)));
|
|
Ok((ast_util::impl_pretty_name(&opt_trait, None),
|
|
ItemDefaultImpl(unsafety, opt_trait.unwrap()), None))
|
|
} else {
|
|
if opt_trait.is_some() {
|
|
ty = try!(self.parse_ty_sum());
|
|
}
|
|
generics.where_clause = try!(self.parse_where_clause());
|
|
|
|
try!(self.expect(&token::OpenDelim(token::Brace)));
|
|
let attrs = self.parse_inner_attributes();
|
|
|
|
let mut impl_items = vec![];
|
|
while !try!(self.eat(&token::CloseDelim(token::Brace))) {
|
|
impl_items.push(try!(self.parse_impl_item()));
|
|
}
|
|
|
|
Ok((ast_util::impl_pretty_name(&opt_trait, Some(&*ty)),
|
|
ItemImpl(unsafety, polarity, generics, opt_trait, ty, impl_items),
|
|
Some(attrs)))
|
|
}
|
|
}
|
|
|
|
/// Parse a::B<String,i32>
|
|
fn parse_trait_ref(&mut self) -> PResult<TraitRef> {
|
|
Ok(ast::TraitRef {
|
|
path: try!(self.parse_path(LifetimeAndTypesWithoutColons)),
|
|
ref_id: ast::DUMMY_NODE_ID,
|
|
})
|
|
}
|
|
|
|
fn parse_late_bound_lifetime_defs(&mut self) -> PResult<Vec<ast::LifetimeDef>> {
|
|
if try!(self.eat_keyword(keywords::For) ){
|
|
try!(self.expect(&token::Lt));
|
|
let lifetime_defs = try!(self.parse_lifetime_defs());
|
|
try!(self.expect_gt());
|
|
Ok(lifetime_defs)
|
|
} else {
|
|
Ok(Vec::new())
|
|
}
|
|
}
|
|
|
|
/// Parse for<'l> a::B<String,i32>
|
|
fn parse_poly_trait_ref(&mut self) -> PResult<PolyTraitRef> {
|
|
let lo = self.span.lo;
|
|
let lifetime_defs = try!(self.parse_late_bound_lifetime_defs());
|
|
|
|
Ok(ast::PolyTraitRef {
|
|
bound_lifetimes: lifetime_defs,
|
|
trait_ref: try!(self.parse_trait_ref()),
|
|
span: mk_sp(lo, self.last_span.hi),
|
|
})
|
|
}
|
|
|
|
/// Parse struct Foo { ... }
|
|
fn parse_item_struct(&mut self) -> PResult<ItemInfo> {
|
|
let class_name = try!(self.parse_ident());
|
|
let mut generics = try!(self.parse_generics());
|
|
|
|
if try!(self.eat(&token::Colon) ){
|
|
let ty = try!(self.parse_ty_sum());
|
|
self.span_err(ty.span, "`virtual` structs have been removed from the language");
|
|
}
|
|
|
|
// There is a special case worth noting here, as reported in issue #17904.
|
|
// If we are parsing a tuple struct it is the case that the where clause
|
|
// should follow the field list. Like so:
|
|
//
|
|
// struct Foo<T>(T) where T: Copy;
|
|
//
|
|
// If we are parsing a normal record-style struct it is the case
|
|
// that the where clause comes before the body, and after the generics.
|
|
// So if we look ahead and see a brace or a where-clause we begin
|
|
// parsing a record style struct.
|
|
//
|
|
// Otherwise if we look ahead and see a paren we parse a tuple-style
|
|
// struct.
|
|
|
|
let (fields, ctor_id) = if self.token.is_keyword(keywords::Where) {
|
|
generics.where_clause = try!(self.parse_where_clause());
|
|
if try!(self.eat(&token::Semi)) {
|
|
// If we see a: `struct Foo<T> where T: Copy;` style decl.
|
|
(Vec::new(), Some(ast::DUMMY_NODE_ID))
|
|
} else {
|
|
// If we see: `struct Foo<T> where T: Copy { ... }`
|
|
(try!(self.parse_record_struct_body(&class_name)), None)
|
|
}
|
|
// No `where` so: `struct Foo<T>;`
|
|
} else if try!(self.eat(&token::Semi) ){
|
|
(Vec::new(), Some(ast::DUMMY_NODE_ID))
|
|
// Record-style struct definition
|
|
} else if self.token == token::OpenDelim(token::Brace) {
|
|
let fields = try!(self.parse_record_struct_body(&class_name));
|
|
(fields, None)
|
|
// Tuple-style struct definition with optional where-clause.
|
|
} else {
|
|
let fields = try!(self.parse_tuple_struct_body(&class_name, &mut generics));
|
|
(fields, Some(ast::DUMMY_NODE_ID))
|
|
};
|
|
|
|
Ok((class_name,
|
|
ItemStruct(P(ast::StructDef {
|
|
fields: fields,
|
|
ctor_id: ctor_id,
|
|
}), generics),
|
|
None))
|
|
}
|
|
|
|
pub fn parse_record_struct_body(&mut self,
|
|
class_name: &ast::Ident) -> PResult<Vec<StructField>> {
|
|
let mut fields = Vec::new();
|
|
if try!(self.eat(&token::OpenDelim(token::Brace)) ){
|
|
while self.token != token::CloseDelim(token::Brace) {
|
|
fields.push(try!(self.parse_struct_decl_field(true)));
|
|
}
|
|
|
|
if fields.is_empty() {
|
|
return Err(self.fatal(&format!("unit-like struct definition should be \
|
|
written as `struct {};`",
|
|
token::get_ident(class_name.clone()))));
|
|
}
|
|
|
|
try!(self.bump());
|
|
} else {
|
|
let token_str = self.this_token_to_string();
|
|
return Err(self.fatal(&format!("expected `where`, or `{}` after struct \
|
|
name, found `{}`", "{",
|
|
token_str)));
|
|
}
|
|
|
|
Ok(fields)
|
|
}
|
|
|
|
pub fn parse_tuple_struct_body(&mut self,
|
|
class_name: &ast::Ident,
|
|
generics: &mut ast::Generics)
|
|
-> PResult<Vec<StructField>> {
|
|
// This is the case where we find `struct Foo<T>(T) where T: Copy;`
|
|
if self.check(&token::OpenDelim(token::Paren)) {
|
|
let fields = try!(self.parse_unspanned_seq(
|
|
&token::OpenDelim(token::Paren),
|
|
&token::CloseDelim(token::Paren),
|
|
seq_sep_trailing_allowed(token::Comma),
|
|
|p| {
|
|
let attrs = p.parse_outer_attributes();
|
|
let lo = p.span.lo;
|
|
let struct_field_ = ast::StructField_ {
|
|
kind: UnnamedField(try!(p.parse_visibility())),
|
|
id: ast::DUMMY_NODE_ID,
|
|
ty: try!(p.parse_ty_sum()),
|
|
attrs: attrs,
|
|
};
|
|
Ok(spanned(lo, p.span.hi, struct_field_))
|
|
}));
|
|
|
|
if fields.is_empty() {
|
|
return Err(self.fatal(&format!("unit-like struct definition should be \
|
|
written as `struct {};`",
|
|
token::get_ident(class_name.clone()))));
|
|
}
|
|
|
|
generics.where_clause = try!(self.parse_where_clause());
|
|
try!(self.expect(&token::Semi));
|
|
Ok(fields)
|
|
// This is the case where we just see struct Foo<T> where T: Copy;
|
|
} else if self.token.is_keyword(keywords::Where) {
|
|
generics.where_clause = try!(self.parse_where_clause());
|
|
try!(self.expect(&token::Semi));
|
|
Ok(Vec::new())
|
|
// This case is where we see: `struct Foo<T>;`
|
|
} else {
|
|
let token_str = self.this_token_to_string();
|
|
Err(self.fatal(&format!("expected `where`, `{}`, `(`, or `;` after struct \
|
|
name, found `{}`", "{", token_str)))
|
|
}
|
|
}
|
|
|
|
/// Parse a structure field declaration
|
|
pub fn parse_single_struct_field(&mut self,
|
|
vis: Visibility,
|
|
attrs: Vec<Attribute> )
|
|
-> PResult<StructField> {
|
|
let a_var = try!(self.parse_name_and_ty(vis, attrs));
|
|
match self.token {
|
|
token::Comma => {
|
|
try!(self.bump());
|
|
}
|
|
token::CloseDelim(token::Brace) => {}
|
|
_ => {
|
|
let span = self.span;
|
|
let token_str = self.this_token_to_string();
|
|
return Err(self.span_fatal_help(span,
|
|
&format!("expected `,`, or `}}`, found `{}`",
|
|
token_str),
|
|
"struct fields should be separated by commas"))
|
|
}
|
|
}
|
|
Ok(a_var)
|
|
}
|
|
|
|
/// Parse an element of a struct definition
|
|
fn parse_struct_decl_field(&mut self, allow_pub: bool) -> PResult<StructField> {
|
|
|
|
let attrs = self.parse_outer_attributes();
|
|
|
|
if try!(self.eat_keyword(keywords::Pub) ){
|
|
if !allow_pub {
|
|
let span = self.last_span;
|
|
self.span_err(span, "`pub` is not allowed here");
|
|
}
|
|
return self.parse_single_struct_field(Public, attrs);
|
|
}
|
|
|
|
return self.parse_single_struct_field(Inherited, attrs);
|
|
}
|
|
|
|
/// Parse visibility: PUB, PRIV, or nothing
|
|
fn parse_visibility(&mut self) -> PResult<Visibility> {
|
|
if try!(self.eat_keyword(keywords::Pub)) { Ok(Public) }
|
|
else { Ok(Inherited) }
|
|
}
|
|
|
|
/// Given a termination token, parse all of the items in a module
|
|
fn parse_mod_items(&mut self, term: &token::Token, inner_lo: BytePos) -> PResult<Mod> {
|
|
let mut items = vec![];
|
|
while let Some(item) = try!(self.parse_item_nopanic()) {
|
|
items.push(item);
|
|
}
|
|
|
|
if !try!(self.eat(term)) {
|
|
let token_str = self.this_token_to_string();
|
|
return Err(self.fatal(&format!("expected item, found `{}`", token_str)));
|
|
}
|
|
|
|
Ok(ast::Mod {
|
|
inner: mk_sp(inner_lo, self.span.lo),
|
|
items: items
|
|
})
|
|
}
|
|
|
|
fn parse_item_const(&mut self, m: Option<Mutability>) -> PResult<ItemInfo> {
|
|
let id = try!(self.parse_ident());
|
|
try!(self.expect(&token::Colon));
|
|
let ty = try!(self.parse_ty_sum());
|
|
try!(self.expect(&token::Eq));
|
|
let e = try!(self.parse_expr_nopanic());
|
|
try!(self.commit_expr_expecting(&*e, token::Semi));
|
|
let item = match m {
|
|
Some(m) => ItemStatic(ty, m, e),
|
|
None => ItemConst(ty, e),
|
|
};
|
|
Ok((id, item, None))
|
|
}
|
|
|
|
/// Parse a `mod <foo> { ... }` or `mod <foo>;` item
|
|
fn parse_item_mod(&mut self, outer_attrs: &[Attribute]) -> PResult<ItemInfo> {
|
|
let id_span = self.span;
|
|
let id = try!(self.parse_ident());
|
|
if self.check(&token::Semi) {
|
|
try!(self.bump());
|
|
// This mod is in an external file. Let's go get it!
|
|
let (m, attrs) = try!(self.eval_src_mod(id, outer_attrs, id_span));
|
|
Ok((id, m, Some(attrs)))
|
|
} else {
|
|
self.push_mod_path(id, outer_attrs);
|
|
try!(self.expect(&token::OpenDelim(token::Brace)));
|
|
let mod_inner_lo = self.span.lo;
|
|
let old_owns_directory = self.owns_directory;
|
|
self.owns_directory = true;
|
|
let attrs = self.parse_inner_attributes();
|
|
let m = try!(self.parse_mod_items(&token::CloseDelim(token::Brace), mod_inner_lo));
|
|
self.owns_directory = old_owns_directory;
|
|
self.pop_mod_path();
|
|
Ok((id, ItemMod(m), Some(attrs)))
|
|
}
|
|
}
|
|
|
|
fn push_mod_path(&mut self, id: Ident, attrs: &[Attribute]) {
|
|
let default_path = self.id_to_interned_str(id);
|
|
let file_path = match ::attr::first_attr_value_str_by_name(attrs,
|
|
"path") {
|
|
Some(d) => d,
|
|
None => default_path,
|
|
};
|
|
self.mod_path_stack.push(file_path)
|
|
}
|
|
|
|
fn pop_mod_path(&mut self) {
|
|
self.mod_path_stack.pop().unwrap();
|
|
}
|
|
|
|
/// Read a module from a source file.
|
|
fn eval_src_mod(&mut self,
|
|
id: ast::Ident,
|
|
outer_attrs: &[ast::Attribute],
|
|
id_sp: Span)
|
|
-> PResult<(ast::Item_, Vec<ast::Attribute> )> {
|
|
let mut prefix = PathBuf::from(&self.sess.span_diagnostic.cm
|
|
.span_to_filename(self.span));
|
|
prefix.pop();
|
|
let mut dir_path = prefix;
|
|
for part in &self.mod_path_stack {
|
|
dir_path.push(&**part);
|
|
}
|
|
let mod_string = token::get_ident(id);
|
|
let (file_path, owns_directory) = match ::attr::first_attr_value_str_by_name(
|
|
outer_attrs, "path") {
|
|
Some(d) => (dir_path.join(&*d), true),
|
|
None => {
|
|
let mod_name = mod_string.to_string();
|
|
let default_path_str = format!("{}.rs", mod_name);
|
|
let secondary_path_str = format!("{}/mod.rs", mod_name);
|
|
let default_path = dir_path.join(&default_path_str[..]);
|
|
let secondary_path = dir_path.join(&secondary_path_str[..]);
|
|
let default_exists = fs::metadata(&default_path).is_ok();
|
|
let secondary_exists = fs::metadata(&secondary_path).is_ok();
|
|
|
|
if !self.owns_directory {
|
|
self.span_err(id_sp,
|
|
"cannot declare a new module at this location");
|
|
let this_module = match self.mod_path_stack.last() {
|
|
Some(name) => name.to_string(),
|
|
None => self.root_module_name.as_ref().unwrap().clone(),
|
|
};
|
|
self.span_note(id_sp,
|
|
&format!("maybe move this module `{0}` \
|
|
to its own directory via \
|
|
`{0}/mod.rs`",
|
|
this_module));
|
|
if default_exists || secondary_exists {
|
|
self.span_note(id_sp,
|
|
&format!("... or maybe `use` the module \
|
|
`{}` instead of possibly \
|
|
redeclaring it",
|
|
mod_name));
|
|
}
|
|
self.abort_if_errors();
|
|
}
|
|
|
|
match (default_exists, secondary_exists) {
|
|
(true, false) => (default_path, false),
|
|
(false, true) => (secondary_path, true),
|
|
(false, false) => {
|
|
return Err(self.span_fatal_help(id_sp,
|
|
&format!("file not found for module `{}`",
|
|
mod_name),
|
|
&format!("name the file either {} or {} inside \
|
|
the directory {:?}",
|
|
default_path_str,
|
|
secondary_path_str,
|
|
dir_path.display())));
|
|
}
|
|
(true, true) => {
|
|
return Err(self.span_fatal_help(
|
|
id_sp,
|
|
&format!("file for module `{}` found at both {} \
|
|
and {}",
|
|
mod_name,
|
|
default_path_str,
|
|
secondary_path_str),
|
|
"delete or rename one of them to remove the ambiguity"));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
self.eval_src_mod_from_path(file_path, owns_directory,
|
|
mod_string.to_string(), id_sp)
|
|
}
|
|
|
|
fn eval_src_mod_from_path(&mut self,
|
|
path: PathBuf,
|
|
owns_directory: bool,
|
|
name: String,
|
|
id_sp: Span) -> PResult<(ast::Item_, Vec<ast::Attribute> )> {
|
|
let mut included_mod_stack = self.sess.included_mod_stack.borrow_mut();
|
|
match included_mod_stack.iter().position(|p| *p == path) {
|
|
Some(i) => {
|
|
let mut err = String::from("circular modules: ");
|
|
let len = included_mod_stack.len();
|
|
for p in &included_mod_stack[i.. len] {
|
|
err.push_str(&p.to_string_lossy());
|
|
err.push_str(" -> ");
|
|
}
|
|
err.push_str(&path.to_string_lossy());
|
|
return Err(self.span_fatal(id_sp, &err[..]));
|
|
}
|
|
None => ()
|
|
}
|
|
included_mod_stack.push(path.clone());
|
|
drop(included_mod_stack);
|
|
|
|
let mut p0 =
|
|
new_sub_parser_from_file(self.sess,
|
|
self.cfg.clone(),
|
|
&path,
|
|
owns_directory,
|
|
Some(name),
|
|
id_sp);
|
|
let mod_inner_lo = p0.span.lo;
|
|
let mod_attrs = p0.parse_inner_attributes();
|
|
let m0 = try!(p0.parse_mod_items(&token::Eof, mod_inner_lo));
|
|
self.sess.included_mod_stack.borrow_mut().pop();
|
|
Ok((ast::ItemMod(m0), mod_attrs))
|
|
}
|
|
|
|
/// Parse a function declaration from a foreign module
|
|
fn parse_item_foreign_fn(&mut self, vis: ast::Visibility,
|
|
attrs: Vec<Attribute>) -> PResult<P<ForeignItem>> {
|
|
let lo = self.span.lo;
|
|
try!(self.expect_keyword(keywords::Fn));
|
|
|
|
let (ident, mut generics) = try!(self.parse_fn_header());
|
|
let decl = try!(self.parse_fn_decl(true));
|
|
generics.where_clause = try!(self.parse_where_clause());
|
|
let hi = self.span.hi;
|
|
try!(self.expect(&token::Semi));
|
|
Ok(P(ast::ForeignItem {
|
|
ident: ident,
|
|
attrs: attrs,
|
|
node: ForeignItemFn(decl, generics),
|
|
id: ast::DUMMY_NODE_ID,
|
|
span: mk_sp(lo, hi),
|
|
vis: vis
|
|
}))
|
|
}
|
|
|
|
/// Parse a static item from a foreign module
|
|
fn parse_item_foreign_static(&mut self, vis: ast::Visibility,
|
|
attrs: Vec<Attribute>) -> PResult<P<ForeignItem>> {
|
|
let lo = self.span.lo;
|
|
|
|
try!(self.expect_keyword(keywords::Static));
|
|
let mutbl = try!(self.eat_keyword(keywords::Mut));
|
|
|
|
let ident = try!(self.parse_ident());
|
|
try!(self.expect(&token::Colon));
|
|
let ty = try!(self.parse_ty_sum());
|
|
let hi = self.span.hi;
|
|
try!(self.expect(&token::Semi));
|
|
Ok(P(ForeignItem {
|
|
ident: ident,
|
|
attrs: attrs,
|
|
node: ForeignItemStatic(ty, mutbl),
|
|
id: ast::DUMMY_NODE_ID,
|
|
span: mk_sp(lo, hi),
|
|
vis: vis
|
|
}))
|
|
}
|
|
|
|
/// Parse extern crate links
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// extern crate foo;
|
|
/// extern crate bar as foo;
|
|
fn parse_item_extern_crate(&mut self,
|
|
lo: BytePos,
|
|
visibility: Visibility,
|
|
attrs: Vec<Attribute>)
|
|
-> PResult<P<Item>> {
|
|
|
|
let crate_name = try!(self.parse_ident());
|
|
let (maybe_path, ident) = if try!(self.eat_keyword(keywords::As)) {
|
|
(Some(crate_name.name), try!(self.parse_ident()))
|
|
} else {
|
|
(None, crate_name)
|
|
};
|
|
try!(self.expect(&token::Semi));
|
|
|
|
let last_span = self.last_span;
|
|
Ok(self.mk_item(lo,
|
|
last_span.hi,
|
|
ident,
|
|
ItemExternCrate(maybe_path),
|
|
visibility,
|
|
attrs))
|
|
}
|
|
|
|
/// Parse `extern` for foreign ABIs
|
|
/// modules.
|
|
///
|
|
/// `extern` is expected to have been
|
|
/// consumed before calling this method
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// extern "C" {}
|
|
/// extern {}
|
|
fn parse_item_foreign_mod(&mut self,
|
|
lo: BytePos,
|
|
opt_abi: Option<abi::Abi>,
|
|
visibility: Visibility,
|
|
mut attrs: Vec<Attribute>)
|
|
-> PResult<P<Item>> {
|
|
try!(self.expect(&token::OpenDelim(token::Brace)));
|
|
|
|
let abi = opt_abi.unwrap_or(abi::C);
|
|
|
|
attrs.extend(self.parse_inner_attributes().into_iter());
|
|
|
|
let mut foreign_items = vec![];
|
|
while let Some(item) = try!(self.parse_foreign_item()) {
|
|
foreign_items.push(item);
|
|
}
|
|
try!(self.expect(&token::CloseDelim(token::Brace)));
|
|
|
|
let last_span = self.last_span;
|
|
let m = ast::ForeignMod {
|
|
abi: abi,
|
|
items: foreign_items
|
|
};
|
|
Ok(self.mk_item(lo,
|
|
last_span.hi,
|
|
special_idents::invalid,
|
|
ItemForeignMod(m),
|
|
visibility,
|
|
attrs))
|
|
}
|
|
|
|
/// Parse type Foo = Bar;
|
|
fn parse_item_type(&mut self) -> PResult<ItemInfo> {
|
|
let ident = try!(self.parse_ident());
|
|
let mut tps = try!(self.parse_generics());
|
|
tps.where_clause = try!(self.parse_where_clause());
|
|
try!(self.expect(&token::Eq));
|
|
let ty = try!(self.parse_ty_sum());
|
|
try!(self.expect(&token::Semi));
|
|
Ok((ident, ItemTy(ty, tps), None))
|
|
}
|
|
|
|
/// Parse a structure-like enum variant definition
|
|
/// this should probably be renamed or refactored...
|
|
fn parse_struct_def(&mut self) -> PResult<P<StructDef>> {
|
|
let mut fields: Vec<StructField> = Vec::new();
|
|
while self.token != token::CloseDelim(token::Brace) {
|
|
fields.push(try!(self.parse_struct_decl_field(false)));
|
|
}
|
|
try!(self.bump());
|
|
|
|
Ok(P(StructDef {
|
|
fields: fields,
|
|
ctor_id: None,
|
|
}))
|
|
}
|
|
|
|
/// Parse the part of an "enum" decl following the '{'
|
|
fn parse_enum_def(&mut self, _generics: &ast::Generics) -> PResult<EnumDef> {
|
|
let mut variants = Vec::new();
|
|
let mut all_nullary = true;
|
|
let mut any_disr = None;
|
|
while self.token != token::CloseDelim(token::Brace) {
|
|
let variant_attrs = self.parse_outer_attributes();
|
|
let vlo = self.span.lo;
|
|
|
|
let vis = try!(self.parse_visibility());
|
|
|
|
let ident;
|
|
let kind;
|
|
let mut args = Vec::new();
|
|
let mut disr_expr = None;
|
|
ident = try!(self.parse_ident());
|
|
if try!(self.eat(&token::OpenDelim(token::Brace)) ){
|
|
// Parse a struct variant.
|
|
all_nullary = false;
|
|
let start_span = self.span;
|
|
let struct_def = try!(self.parse_struct_def());
|
|
if struct_def.fields.is_empty() {
|
|
self.span_err(start_span,
|
|
&format!("unit-like struct variant should be written \
|
|
without braces, as `{},`",
|
|
token::get_ident(ident)));
|
|
}
|
|
kind = StructVariantKind(struct_def);
|
|
} else if self.check(&token::OpenDelim(token::Paren)) {
|
|
all_nullary = false;
|
|
let arg_tys = try!(self.parse_enum_variant_seq(
|
|
&token::OpenDelim(token::Paren),
|
|
&token::CloseDelim(token::Paren),
|
|
seq_sep_trailing_allowed(token::Comma),
|
|
|p| p.parse_ty_sum()
|
|
));
|
|
for ty in arg_tys {
|
|
args.push(ast::VariantArg {
|
|
ty: ty,
|
|
id: ast::DUMMY_NODE_ID,
|
|
});
|
|
}
|
|
kind = TupleVariantKind(args);
|
|
} else if try!(self.eat(&token::Eq) ){
|
|
disr_expr = Some(try!(self.parse_expr_nopanic()));
|
|
any_disr = disr_expr.as_ref().map(|expr| expr.span);
|
|
kind = TupleVariantKind(args);
|
|
} else {
|
|
kind = TupleVariantKind(Vec::new());
|
|
}
|
|
|
|
let vr = ast::Variant_ {
|
|
name: ident,
|
|
attrs: variant_attrs,
|
|
kind: kind,
|
|
id: ast::DUMMY_NODE_ID,
|
|
disr_expr: disr_expr,
|
|
vis: vis,
|
|
};
|
|
variants.push(P(spanned(vlo, self.last_span.hi, vr)));
|
|
|
|
if !try!(self.eat(&token::Comma)) { break; }
|
|
}
|
|
try!(self.expect(&token::CloseDelim(token::Brace)));
|
|
match any_disr {
|
|
Some(disr_span) if !all_nullary =>
|
|
self.span_err(disr_span,
|
|
"discriminator values can only be used with a c-like enum"),
|
|
_ => ()
|
|
}
|
|
|
|
Ok(ast::EnumDef { variants: variants })
|
|
}
|
|
|
|
/// Parse an "enum" declaration
|
|
fn parse_item_enum(&mut self) -> PResult<ItemInfo> {
|
|
let id = try!(self.parse_ident());
|
|
let mut generics = try!(self.parse_generics());
|
|
generics.where_clause = try!(self.parse_where_clause());
|
|
try!(self.expect(&token::OpenDelim(token::Brace)));
|
|
|
|
let enum_definition = try!(self.parse_enum_def(&generics));
|
|
Ok((id, ItemEnum(enum_definition, generics), None))
|
|
}
|
|
|
|
/// Parses a string as an ABI spec on an extern type or module. Consumes
|
|
/// the `extern` keyword, if one is found.
|
|
fn parse_opt_abi(&mut self) -> PResult<Option<abi::Abi>> {
|
|
match self.token {
|
|
token::Literal(token::Str_(s), suf) | token::Literal(token::StrRaw(s, _), suf) => {
|
|
let sp = self.span;
|
|
self.expect_no_suffix(sp, "ABI spec", suf);
|
|
try!(self.bump());
|
|
let the_string = s.as_str();
|
|
match abi::lookup(the_string) {
|
|
Some(abi) => Ok(Some(abi)),
|
|
None => {
|
|
let last_span = self.last_span;
|
|
self.span_err(
|
|
last_span,
|
|
&format!("illegal ABI: expected one of [{}], \
|
|
found `{}`",
|
|
abi::all_names().connect(", "),
|
|
the_string));
|
|
Ok(None)
|
|
}
|
|
}
|
|
}
|
|
|
|
_ => Ok(None),
|
|
}
|
|
}
|
|
|
|
/// Parse one of the items allowed by the flags.
|
|
/// NB: this function no longer parses the items inside an
|
|
/// extern crate.
|
|
fn parse_item_(&mut self, attrs: Vec<Attribute>,
|
|
macros_allowed: bool) -> PResult<Option<P<Item>>> {
|
|
let nt_item = match self.token {
|
|
token::Interpolated(token::NtItem(ref item)) => {
|
|
Some((**item).clone())
|
|
}
|
|
_ => None
|
|
};
|
|
match nt_item {
|
|
Some(mut item) => {
|
|
try!(self.bump());
|
|
let mut attrs = attrs;
|
|
mem::swap(&mut item.attrs, &mut attrs);
|
|
item.attrs.extend(attrs.into_iter());
|
|
return Ok(Some(P(item)));
|
|
}
|
|
None => {}
|
|
}
|
|
|
|
let lo = self.span.lo;
|
|
|
|
let visibility = try!(self.parse_visibility());
|
|
|
|
if try!(self.eat_keyword(keywords::Use) ){
|
|
// USE ITEM
|
|
let item_ = ItemUse(try!(self.parse_view_path()));
|
|
try!(self.expect(&token::Semi));
|
|
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
token::special_idents::invalid,
|
|
item_,
|
|
visibility,
|
|
attrs);
|
|
return Ok(Some(item));
|
|
}
|
|
|
|
if try!(self.eat_keyword(keywords::Extern)) {
|
|
if try!(self.eat_keyword(keywords::Crate)) {
|
|
return Ok(Some(try!(self.parse_item_extern_crate(lo, visibility, attrs))));
|
|
}
|
|
|
|
let opt_abi = try!(self.parse_opt_abi());
|
|
|
|
if try!(self.eat_keyword(keywords::Fn) ){
|
|
// EXTERN FUNCTION ITEM
|
|
let abi = opt_abi.unwrap_or(abi::C);
|
|
let (ident, item_, extra_attrs) =
|
|
try!(self.parse_item_fn(Unsafety::Normal, abi));
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
ident,
|
|
item_,
|
|
visibility,
|
|
maybe_append(attrs, extra_attrs));
|
|
return Ok(Some(item));
|
|
} else if self.check(&token::OpenDelim(token::Brace)) {
|
|
return Ok(Some(try!(self.parse_item_foreign_mod(lo, opt_abi, visibility, attrs))));
|
|
}
|
|
|
|
let span = self.span;
|
|
let token_str = self.this_token_to_string();
|
|
return Err(self.span_fatal(span,
|
|
&format!("expected `{}` or `fn`, found `{}`", "{",
|
|
token_str)))
|
|
}
|
|
|
|
if try!(self.eat_keyword_noexpect(keywords::Virtual) ){
|
|
let span = self.span;
|
|
self.span_err(span, "`virtual` structs have been removed from the language");
|
|
}
|
|
|
|
if try!(self.eat_keyword(keywords::Static) ){
|
|
// STATIC ITEM
|
|
let m = if try!(self.eat_keyword(keywords::Mut)) {MutMutable} else {MutImmutable};
|
|
let (ident, item_, extra_attrs) = try!(self.parse_item_const(Some(m)));
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
ident,
|
|
item_,
|
|
visibility,
|
|
maybe_append(attrs, extra_attrs));
|
|
return Ok(Some(item));
|
|
}
|
|
if try!(self.eat_keyword(keywords::Const) ){
|
|
// CONST ITEM
|
|
if try!(self.eat_keyword(keywords::Mut) ){
|
|
let last_span = self.last_span;
|
|
self.span_err(last_span, "const globals cannot be mutable");
|
|
self.fileline_help(last_span, "did you mean to declare a static?");
|
|
}
|
|
let (ident, item_, extra_attrs) = try!(self.parse_item_const(None));
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
ident,
|
|
item_,
|
|
visibility,
|
|
maybe_append(attrs, extra_attrs));
|
|
return Ok(Some(item));
|
|
}
|
|
if self.check_keyword(keywords::Unsafe) &&
|
|
self.look_ahead(1, |t| t.is_keyword(keywords::Trait))
|
|
{
|
|
// UNSAFE TRAIT ITEM
|
|
try!(self.expect_keyword(keywords::Unsafe));
|
|
try!(self.expect_keyword(keywords::Trait));
|
|
let (ident, item_, extra_attrs) =
|
|
try!(self.parse_item_trait(ast::Unsafety::Unsafe));
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
ident,
|
|
item_,
|
|
visibility,
|
|
maybe_append(attrs, extra_attrs));
|
|
return Ok(Some(item));
|
|
}
|
|
if self.check_keyword(keywords::Unsafe) &&
|
|
self.look_ahead(1, |t| t.is_keyword(keywords::Impl))
|
|
{
|
|
// IMPL ITEM
|
|
try!(self.expect_keyword(keywords::Unsafe));
|
|
try!(self.expect_keyword(keywords::Impl));
|
|
let (ident, item_, extra_attrs) = try!(self.parse_item_impl(ast::Unsafety::Unsafe));
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
ident,
|
|
item_,
|
|
visibility,
|
|
maybe_append(attrs, extra_attrs));
|
|
return Ok(Some(item));
|
|
}
|
|
if self.check_keyword(keywords::Fn) {
|
|
// FUNCTION ITEM
|
|
try!(self.bump());
|
|
let (ident, item_, extra_attrs) =
|
|
try!(self.parse_item_fn(Unsafety::Normal, abi::Rust));
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
ident,
|
|
item_,
|
|
visibility,
|
|
maybe_append(attrs, extra_attrs));
|
|
return Ok(Some(item));
|
|
}
|
|
if self.check_keyword(keywords::Unsafe)
|
|
&& self.look_ahead(1, |t| *t != token::OpenDelim(token::Brace)) {
|
|
// UNSAFE FUNCTION ITEM
|
|
try!(self.bump());
|
|
let abi = if try!(self.eat_keyword(keywords::Extern) ){
|
|
try!(self.parse_opt_abi()).unwrap_or(abi::C)
|
|
} else {
|
|
abi::Rust
|
|
};
|
|
try!(self.expect_keyword(keywords::Fn));
|
|
let (ident, item_, extra_attrs) =
|
|
try!(self.parse_item_fn(Unsafety::Unsafe, abi));
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
ident,
|
|
item_,
|
|
visibility,
|
|
maybe_append(attrs, extra_attrs));
|
|
return Ok(Some(item));
|
|
}
|
|
if try!(self.eat_keyword(keywords::Mod) ){
|
|
// MODULE ITEM
|
|
let (ident, item_, extra_attrs) =
|
|
try!(self.parse_item_mod(&attrs[..]));
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
ident,
|
|
item_,
|
|
visibility,
|
|
maybe_append(attrs, extra_attrs));
|
|
return Ok(Some(item));
|
|
}
|
|
if try!(self.eat_keyword(keywords::Type) ){
|
|
// TYPE ITEM
|
|
let (ident, item_, extra_attrs) = try!(self.parse_item_type());
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
ident,
|
|
item_,
|
|
visibility,
|
|
maybe_append(attrs, extra_attrs));
|
|
return Ok(Some(item));
|
|
}
|
|
if try!(self.eat_keyword(keywords::Enum) ){
|
|
// ENUM ITEM
|
|
let (ident, item_, extra_attrs) = try!(self.parse_item_enum());
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
ident,
|
|
item_,
|
|
visibility,
|
|
maybe_append(attrs, extra_attrs));
|
|
return Ok(Some(item));
|
|
}
|
|
if try!(self.eat_keyword(keywords::Trait) ){
|
|
// TRAIT ITEM
|
|
let (ident, item_, extra_attrs) =
|
|
try!(self.parse_item_trait(ast::Unsafety::Normal));
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
ident,
|
|
item_,
|
|
visibility,
|
|
maybe_append(attrs, extra_attrs));
|
|
return Ok(Some(item));
|
|
}
|
|
if try!(self.eat_keyword(keywords::Impl) ){
|
|
// IMPL ITEM
|
|
let (ident, item_, extra_attrs) = try!(self.parse_item_impl(ast::Unsafety::Normal));
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
ident,
|
|
item_,
|
|
visibility,
|
|
maybe_append(attrs, extra_attrs));
|
|
return Ok(Some(item));
|
|
}
|
|
if try!(self.eat_keyword(keywords::Struct) ){
|
|
// STRUCT ITEM
|
|
let (ident, item_, extra_attrs) = try!(self.parse_item_struct());
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
ident,
|
|
item_,
|
|
visibility,
|
|
maybe_append(attrs, extra_attrs));
|
|
return Ok(Some(item));
|
|
}
|
|
self.parse_macro_use_or_failure(attrs,macros_allowed,lo,visibility)
|
|
}
|
|
|
|
/// Parse a foreign item.
|
|
fn parse_foreign_item(&mut self) -> PResult<Option<P<ForeignItem>>> {
|
|
let lo = self.span.lo;
|
|
|
|
let attrs = self.parse_outer_attributes();
|
|
let visibility = try!(self.parse_visibility());
|
|
|
|
if self.check_keyword(keywords::Static) {
|
|
// FOREIGN STATIC ITEM
|
|
return Ok(Some(try!(self.parse_item_foreign_static(visibility, attrs))));
|
|
}
|
|
if self.check_keyword(keywords::Fn) || self.check_keyword(keywords::Unsafe) {
|
|
// FOREIGN FUNCTION ITEM
|
|
return Ok(Some(try!(self.parse_item_foreign_fn(visibility, attrs))));
|
|
}
|
|
|
|
// FIXME #5668: this will occur for a macro invocation:
|
|
match try!(self.parse_macro_use_or_failure(attrs, true, lo, visibility)) {
|
|
Some(item) => {
|
|
return Err(self.span_fatal(item.span, "macros cannot expand to foreign items"));
|
|
}
|
|
None => Ok(None)
|
|
}
|
|
}
|
|
|
|
/// This is the fall-through for parsing items.
|
|
fn parse_macro_use_or_failure(
|
|
&mut self,
|
|
attrs: Vec<Attribute> ,
|
|
macros_allowed: bool,
|
|
lo: BytePos,
|
|
visibility: Visibility
|
|
) -> PResult<Option<P<Item>>> {
|
|
if macros_allowed && !self.token.is_any_keyword()
|
|
&& self.look_ahead(1, |t| *t == token::Not)
|
|
&& (self.look_ahead(2, |t| t.is_plain_ident())
|
|
|| self.look_ahead(2, |t| *t == token::OpenDelim(token::Paren))
|
|
|| self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))) {
|
|
// MACRO INVOCATION ITEM
|
|
|
|
let last_span = self.last_span;
|
|
self.complain_if_pub_macro(visibility, last_span);
|
|
|
|
// item macro.
|
|
let pth = try!(self.parse_path(NoTypesAllowed));
|
|
try!(self.expect(&token::Not));
|
|
|
|
// a 'special' identifier (like what `macro_rules!` uses)
|
|
// is optional. We should eventually unify invoc syntax
|
|
// and remove this.
|
|
let id = if self.token.is_plain_ident() {
|
|
try!(self.parse_ident())
|
|
} else {
|
|
token::special_idents::invalid // no special identifier
|
|
};
|
|
// eat a matched-delimiter token tree:
|
|
let delim = try!(self.expect_open_delim());
|
|
let tts = try!(self.parse_seq_to_end(&token::CloseDelim(delim),
|
|
seq_sep_none(),
|
|
|p| p.parse_token_tree()));
|
|
// single-variant-enum... :
|
|
let m = ast::MacInvocTT(pth, tts, EMPTY_CTXT);
|
|
let m: ast::Mac = codemap::Spanned { node: m,
|
|
span: mk_sp(self.span.lo,
|
|
self.span.hi) };
|
|
|
|
if delim != token::Brace {
|
|
if !try!(self.eat(&token::Semi) ){
|
|
let last_span = self.last_span;
|
|
self.span_err(last_span,
|
|
"macros that expand to items must either \
|
|
be surrounded with braces or followed by \
|
|
a semicolon");
|
|
}
|
|
}
|
|
|
|
let item_ = ItemMac(m);
|
|
let last_span = self.last_span;
|
|
let item = self.mk_item(lo,
|
|
last_span.hi,
|
|
id,
|
|
item_,
|
|
visibility,
|
|
attrs);
|
|
return Ok(Some(item));
|
|
}
|
|
|
|
// FAILURE TO PARSE ITEM
|
|
match visibility {
|
|
Inherited => {}
|
|
Public => {
|
|
let last_span = self.last_span;
|
|
return Err(self.span_fatal(last_span, "unmatched visibility `pub`"));
|
|
}
|
|
}
|
|
|
|
if !attrs.is_empty() {
|
|
self.expected_item_err(&attrs);
|
|
}
|
|
Ok(None)
|
|
}
|
|
|
|
pub fn parse_item_nopanic(&mut self) -> PResult<Option<P<Item>>> {
|
|
let attrs = self.parse_outer_attributes();
|
|
self.parse_item_(attrs, true)
|
|
}
|
|
|
|
|
|
/// Matches view_path : MOD? non_global_path as IDENT
|
|
/// | MOD? non_global_path MOD_SEP LBRACE RBRACE
|
|
/// | MOD? non_global_path MOD_SEP LBRACE ident_seq RBRACE
|
|
/// | MOD? non_global_path MOD_SEP STAR
|
|
/// | MOD? non_global_path
|
|
fn parse_view_path(&mut self) -> PResult<P<ViewPath>> {
|
|
let lo = self.span.lo;
|
|
|
|
// Allow a leading :: because the paths are absolute either way.
|
|
// This occurs with "use $crate::..." in macros.
|
|
try!(self.eat(&token::ModSep));
|
|
|
|
if self.check(&token::OpenDelim(token::Brace)) {
|
|
// use {foo,bar}
|
|
let idents = try!(self.parse_unspanned_seq(
|
|
&token::OpenDelim(token::Brace),
|
|
&token::CloseDelim(token::Brace),
|
|
seq_sep_trailing_allowed(token::Comma),
|
|
|p| p.parse_path_list_item()));
|
|
let path = ast::Path {
|
|
span: mk_sp(lo, self.span.hi),
|
|
global: false,
|
|
segments: Vec::new()
|
|
};
|
|
return Ok(P(spanned(lo, self.span.hi, ViewPathList(path, idents))));
|
|
}
|
|
|
|
let first_ident = try!(self.parse_ident());
|
|
let mut path = vec!(first_ident);
|
|
if let token::ModSep = self.token {
|
|
// foo::bar or foo::{a,b,c} or foo::*
|
|
while self.check(&token::ModSep) {
|
|
try!(self.bump());
|
|
|
|
match self.token {
|
|
token::Ident(..) => {
|
|
let ident = try!(self.parse_ident());
|
|
path.push(ident);
|
|
}
|
|
|
|
// foo::bar::{a,b,c}
|
|
token::OpenDelim(token::Brace) => {
|
|
let idents = try!(self.parse_unspanned_seq(
|
|
&token::OpenDelim(token::Brace),
|
|
&token::CloseDelim(token::Brace),
|
|
seq_sep_trailing_allowed(token::Comma),
|
|
|p| p.parse_path_list_item()
|
|
));
|
|
let path = ast::Path {
|
|
span: mk_sp(lo, self.span.hi),
|
|
global: false,
|
|
segments: path.into_iter().map(|identifier| {
|
|
ast::PathSegment {
|
|
identifier: identifier,
|
|
parameters: ast::PathParameters::none(),
|
|
}
|
|
}).collect()
|
|
};
|
|
return Ok(P(spanned(lo, self.span.hi, ViewPathList(path, idents))));
|
|
}
|
|
|
|
// foo::bar::*
|
|
token::BinOp(token::Star) => {
|
|
try!(self.bump());
|
|
let path = ast::Path {
|
|
span: mk_sp(lo, self.span.hi),
|
|
global: false,
|
|
segments: path.into_iter().map(|identifier| {
|
|
ast::PathSegment {
|
|
identifier: identifier,
|
|
parameters: ast::PathParameters::none(),
|
|
}
|
|
}).collect()
|
|
};
|
|
return Ok(P(spanned(lo, self.span.hi, ViewPathGlob(path))));
|
|
}
|
|
|
|
// fall-through for case foo::bar::;
|
|
token::Semi => {
|
|
self.span_err(self.span, "expected identifier or `{` or `*`, found `;`");
|
|
}
|
|
|
|
_ => break
|
|
}
|
|
}
|
|
}
|
|
let mut rename_to = path[path.len() - 1];
|
|
let path = ast::Path {
|
|
span: mk_sp(lo, self.last_span.hi),
|
|
global: false,
|
|
segments: path.into_iter().map(|identifier| {
|
|
ast::PathSegment {
|
|
identifier: identifier,
|
|
parameters: ast::PathParameters::none(),
|
|
}
|
|
}).collect()
|
|
};
|
|
if try!(self.eat_keyword(keywords::As)) {
|
|
rename_to = try!(self.parse_ident())
|
|
}
|
|
Ok(P(spanned(lo, self.last_span.hi, ViewPathSimple(rename_to, path))))
|
|
}
|
|
|
|
/// Parses a source module as a crate. This is the main
|
|
/// entry point for the parser.
|
|
pub fn parse_crate_mod(&mut self) -> PResult<Crate> {
|
|
let lo = self.span.lo;
|
|
Ok(ast::Crate {
|
|
attrs: self.parse_inner_attributes(),
|
|
module: try!(self.parse_mod_items(&token::Eof, lo)),
|
|
config: self.cfg.clone(),
|
|
span: mk_sp(lo, self.span.lo),
|
|
exported_macros: Vec::new(),
|
|
})
|
|
}
|
|
|
|
pub fn parse_optional_str(&mut self)
|
|
-> PResult<Option<(InternedString,
|
|
ast::StrStyle,
|
|
Option<ast::Name>)>> {
|
|
let ret = match self.token {
|
|
token::Literal(token::Str_(s), suf) => {
|
|
(self.id_to_interned_str(s.ident()), ast::CookedStr, suf)
|
|
}
|
|
token::Literal(token::StrRaw(s, n), suf) => {
|
|
(self.id_to_interned_str(s.ident()), ast::RawStr(n), suf)
|
|
}
|
|
_ => return Ok(None)
|
|
};
|
|
try!(self.bump());
|
|
Ok(Some(ret))
|
|
}
|
|
|
|
pub fn parse_str(&mut self) -> PResult<(InternedString, StrStyle)> {
|
|
match try!(self.parse_optional_str()) {
|
|
Some((s, style, suf)) => {
|
|
let sp = self.last_span;
|
|
self.expect_no_suffix(sp, "str literal", suf);
|
|
Ok((s, style))
|
|
}
|
|
_ => Err(self.fatal("expected string literal"))
|
|
}
|
|
}
|
|
}
|