rust/src/libstd/rt/sched.rs

1380 lines
47 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use either::{Left, Right};
use option::{Option, Some, None};
use cast::{transmute, transmute_mut_region, transmute_mut_unsafe};
use clone::Clone;
use unstable::raw;
use super::sleeper_list::SleeperList;
use super::work_queue::WorkQueue;
use super::stack::{StackPool};
use super::rtio::EventLoop;
use super::context::Context;
use super::task::{Task, AnySched, Sched};
use super::message_queue::MessageQueue;
use rt::kill::BlockedTask;
use rt::local_ptr;
use rt::local::Local;
use rt::rtio::{RemoteCallback, PausibleIdleCallback, Callback};
use borrow::{to_uint};
use cell::Cell;
use rand::{XorShiftRng, Rng, Rand};
use iter::range;
use vec::{OwnedVector};
/// A scheduler is responsible for coordinating the execution of Tasks
/// on a single thread. The scheduler runs inside a slightly modified
/// Rust Task. When not running this task is stored in the scheduler
/// struct. The scheduler struct acts like a baton, all scheduling
/// actions are transfers of the baton.
///
/// XXX: This creates too many callbacks to run_sched_once, resulting
/// in too much allocation and too many events.
pub struct Scheduler {
/// There are N work queues, one per scheduler.
priv work_queue: WorkQueue<~Task>,
/// Work queues for the other schedulers. These are created by
/// cloning the core work queues.
work_queues: ~[WorkQueue<~Task>],
/// The queue of incoming messages from other schedulers.
/// These are enqueued by SchedHandles after which a remote callback
/// is triggered to handle the message.
priv message_queue: MessageQueue<SchedMessage>,
/// A shared list of sleeping schedulers. We'll use this to wake
/// up schedulers when pushing work onto the work queue.
sleeper_list: SleeperList,
/// Indicates that we have previously pushed a handle onto the
/// SleeperList but have not yet received the Wake message.
/// Being `true` does not necessarily mean that the scheduler is
/// not active since there are multiple event sources that may
/// wake the scheduler. It just prevents the scheduler from pushing
/// multiple handles onto the sleeper list.
priv sleepy: bool,
/// A flag to indicate we've received the shutdown message and should
/// no longer try to go to sleep, but exit instead.
no_sleep: bool,
stack_pool: StackPool,
/// The scheduler runs on a special task. When it is not running
/// it is stored here instead of the work queue.
priv sched_task: Option<~Task>,
/// An action performed after a context switch on behalf of the
/// code running before the context switch
priv cleanup_job: Option<CleanupJob>,
/// Should this scheduler run any task, or only pinned tasks?
run_anything: bool,
/// If the scheduler shouldn't run some tasks, a friend to send
/// them to.
priv friend_handle: Option<SchedHandle>,
/// A fast XorShift rng for scheduler use
rng: XorShiftRng,
/// A toggleable idle callback
priv idle_callback: Option<~PausibleIdleCallback>,
/// A countdown that starts at a random value and is decremented
/// every time a yield check is performed. When it hits 0 a task
/// will yield.
priv yield_check_count: uint,
/// A flag to tell the scheduler loop it needs to do some stealing
/// in order to introduce randomness as part of a yield
priv steal_for_yield: bool,
// n.b. currently destructors of an object are run in top-to-bottom in order
// of field declaration. Due to its nature, the pausible idle callback
// must have some sort of handle to the event loop, so it needs to get
// destroyed before the event loop itself. For this reason, we destroy
// the event loop last to ensure that any unsafe references to it are
// destroyed before it's actually destroyed.
/// The event loop used to drive the scheduler and perform I/O
event_loop: ~EventLoop,
}
/// An indication of how hard to work on a given operation, the difference
/// mainly being whether memory is synchronized or not
#[deriving(Eq)]
enum EffortLevel {
DontTryTooHard,
GiveItYourBest
}
static MAX_YIELD_CHECKS: uint = 200;
fn reset_yield_check(rng: &mut XorShiftRng) -> uint {
let r: uint = Rand::rand(rng);
r % MAX_YIELD_CHECKS + 1
}
impl Scheduler {
// * Initialization Functions
pub fn new(event_loop: ~EventLoop,
work_queue: WorkQueue<~Task>,
work_queues: ~[WorkQueue<~Task>],
sleeper_list: SleeperList)
-> Scheduler {
Scheduler::new_special(event_loop, work_queue,
work_queues,
sleeper_list, true, None)
}
pub fn new_special(event_loop: ~EventLoop,
work_queue: WorkQueue<~Task>,
work_queues: ~[WorkQueue<~Task>],
sleeper_list: SleeperList,
run_anything: bool,
friend: Option<SchedHandle>)
-> Scheduler {
let mut sched = Scheduler {
sleeper_list: sleeper_list,
message_queue: MessageQueue::new(),
sleepy: false,
no_sleep: false,
event_loop: event_loop,
work_queue: work_queue,
work_queues: work_queues,
stack_pool: StackPool::new(),
sched_task: None,
cleanup_job: None,
run_anything: run_anything,
friend_handle: friend,
rng: new_sched_rng(),
idle_callback: None,
yield_check_count: 0,
steal_for_yield: false
};
sched.yield_check_count = reset_yield_check(&mut sched.rng);
return sched;
}
// XXX: This may eventually need to be refactored so that
// the scheduler itself doesn't have to call event_loop.run.
// That will be important for embedding the runtime into external
// event loops.
// Take a main task to run, and a scheduler to run it in. Create a
// scheduler task and bootstrap into it.
pub fn bootstrap(mut ~self, task: ~Task) {
// Build an Idle callback.
let cb = ~SchedRunner as ~Callback;
self.idle_callback = Some(self.event_loop.pausible_idle_callback(cb));
// Initialize the TLS key.
local_ptr::init_tls_key();
// Create a task for the scheduler with an empty context.
let sched_task = ~Task::new_sched_task();
// Now that we have an empty task struct for the scheduler
// task, put it in TLS.
Local::put(sched_task);
// Before starting our first task, make sure the idle callback
// is active. As we do not start in the sleep state this is
// important.
self.idle_callback.get_mut_ref().resume();
// Now, as far as all the scheduler state is concerned, we are
// inside the "scheduler" context. So we can act like the
// scheduler and resume the provided task.
self.resume_task_immediately(task);
// Now we are back in the scheduler context, having
// successfully run the input task. Start by running the
// scheduler. Grab it out of TLS - performing the scheduler
// action will have given it away.
let sched: ~Scheduler = Local::take();
rtdebug!("starting scheduler {}", sched.sched_id());
sched.run();
// Close the idle callback.
let mut sched: ~Scheduler = Local::take();
sched.idle_callback.take();
// Make one go through the loop to run the close callback.
sched.run();
// Now that we are done with the scheduler, clean up the
// scheduler task. Do so by removing it from TLS and manually
// cleaning up the memory it uses. As we didn't actually call
// task.run() on the scheduler task we never get through all
// the cleanup code it runs.
let mut stask: ~Task = Local::take();
rtdebug!("stopping scheduler {}", stask.sched.get_ref().sched_id());
// Should not have any messages
let message = stask.sched.get_mut_ref().message_queue.pop();
rtassert!(message.is_none());
stask.destroyed = true;
}
// This does not return a scheduler, as the scheduler is placed
// inside the task.
pub fn run(mut ~self) {
// This is unsafe because we need to place the scheduler, with
// the event_loop inside, inside our task. But we still need a
// mutable reference to the event_loop to give it the "run"
// command.
unsafe {
let event_loop: *mut ~EventLoop = &mut self.event_loop;
// Our scheduler must be in the task before the event loop
// is started.
let self_sched = Cell::new(self);
do Local::borrow |stask: &mut Task| {
stask.sched = Some(self_sched.take());
};
(*event_loop).run();
}
}
// * Execution Functions - Core Loop Logic
// The model for this function is that you continue through it
// until you either use the scheduler while performing a schedule
// action, in which case you give it away and return early, or
// you reach the end and sleep. In the case that a scheduler
// action is performed the loop is evented such that this function
// is called again.
fn run_sched_once() {
// When we reach the scheduler context via the event loop we
// already have a scheduler stored in our local task, so we
// start off by taking it. This is the only path through the
// scheduler where we get the scheduler this way.
let mut sched: ~Scheduler = Local::take();
// Assume that we need to continue idling unless we reach the
// end of this function without performing an action.
sched.idle_callback.get_mut_ref().resume();
// First we check for scheduler messages, these are higher
// priority than regular tasks.
let sched = match sched.interpret_message_queue(DontTryTooHard) {
Some(sched) => sched,
None => return
};
// This helper will use a randomized work-stealing algorithm
// to find work.
let sched = match sched.do_work() {
Some(sched) => sched,
None => return
};
// Now, before sleeping we need to find out if there really
// were any messages. Give it your best!
let mut sched = match sched.interpret_message_queue(GiveItYourBest) {
Some(sched) => sched,
None => return
};
// If we got here then there was no work to do.
// Generate a SchedHandle and push it to the sleeper list so
// somebody can wake us up later.
if !sched.sleepy && !sched.no_sleep {
rtdebug!("scheduler has no work to do, going to sleep");
sched.sleepy = true;
let handle = sched.make_handle();
sched.sleeper_list.push(handle);
// Since we are sleeping, deactivate the idle callback.
sched.idle_callback.get_mut_ref().pause();
} else {
rtdebug!("not sleeping, already doing so or no_sleep set");
// We may not be sleeping, but we still need to deactivate
// the idle callback.
sched.idle_callback.get_mut_ref().pause();
}
// Finished a cycle without using the Scheduler. Place it back
// in TLS.
Local::put(sched);
}
// This function returns None if the scheduler is "used", or it
// returns the still-available scheduler. At this point all
// message-handling will count as a turn of work, and as a result
// return None.
fn interpret_message_queue(mut ~self, effort: EffortLevel) -> Option<~Scheduler> {
let msg = if effort == DontTryTooHard {
// Do a cheap check that may miss messages
self.message_queue.casual_pop()
} else {
self.message_queue.pop()
};
match msg {
Some(PinnedTask(task)) => {
let mut task = task;
task.give_home(Sched(self.make_handle()));
self.resume_task_immediately(task);
return None;
}
Some(TaskFromFriend(task)) => {
rtdebug!("got a task from a friend. lovely!");
self.process_task(task, Scheduler::resume_task_immediately_cl);
return None;
}
Some(RunOnce(task)) => {
// bypass the process_task logic to force running this task once
// on this home scheduler. This is often used for I/O (homing).
Scheduler::resume_task_immediately_cl(self, task);
return None;
}
Some(Wake) => {
self.sleepy = false;
Local::put(self);
return None;
}
Some(Shutdown) => {
rtdebug!("shutting down");
if self.sleepy {
// There may be an outstanding handle on the
// sleeper list. Pop them all to make sure that's
// not the case.
loop {
match self.sleeper_list.pop() {
Some(handle) => {
let mut handle = handle;
handle.send(Wake);
}
None => break
}
}
}
// No more sleeping. After there are no outstanding
// event loop references we will shut down.
self.no_sleep = true;
self.sleepy = false;
Local::put(self);
return None;
}
None => {
return Some(self);
}
}
}
fn do_work(mut ~self) -> Option<~Scheduler> {
rtdebug!("scheduler calling do work");
match self.find_work() {
Some(task) => {
rtdebug!("found some work! processing the task");
self.process_task(task, Scheduler::resume_task_immediately_cl);
return None;
}
None => {
rtdebug!("no work was found, returning the scheduler struct");
return Some(self);
}
}
}
// Workstealing: In this iteration of the runtime each scheduler
// thread has a distinct work queue. When no work is available
// locally, make a few attempts to steal work from the queues of
// other scheduler threads. If a few steals fail we end up in the
// old "no work" path which is fine.
// First step in the process is to find a task. This function does
// that by first checking the local queue, and if there is no work
// there, trying to steal from the remote work queues.
fn find_work(&mut self) -> Option<~Task> {
rtdebug!("scheduler looking for work");
if !self.steal_for_yield {
match self.work_queue.pop() {
Some(task) => {
rtdebug!("found a task locally");
return Some(task)
}
None => {
rtdebug!("scheduler trying to steal");
return self.try_steals();
}
}
} else {
// During execution of the last task, it performed a 'yield',
// so we're doing some work stealing in order to introduce some
// scheduling randomness. Otherwise we would just end up popping
// that same task again. This is pretty lame and is to work around
// the problem that work stealing is not designed for 'non-strict'
// (non-fork-join) task parallelism.
self.steal_for_yield = false;
match self.try_steals() {
Some(task) => {
rtdebug!("stole a task after yielding");
return Some(task);
}
None => {
rtdebug!("did not steal a task after yielding");
// Back to business
return self.find_work();
}
}
}
}
// Try stealing from all queues the scheduler knows about. This
// naive implementation can steal from our own queue or from other
// special schedulers.
fn try_steals(&mut self) -> Option<~Task> {
let work_queues = &mut self.work_queues;
let len = work_queues.len();
let start_index = self.rng.gen_range(0, len);
for index in range(0, len).map(|i| (i + start_index) % len) {
match work_queues[index].steal() {
Some(task) => {
rtdebug!("found task by stealing");
return Some(task)
}
None => ()
}
};
rtdebug!("giving up on stealing");
return None;
}
// * Task Routing Functions - Make sure tasks send up in the right
// place.
fn process_task(mut ~self, mut task: ~Task, schedule_fn: SchedulingFn) {
rtdebug!("processing a task");
let home = task.take_unwrap_home();
match home {
Sched(home_handle) => {
if home_handle.sched_id != self.sched_id() {
rtdebug!("sending task home");
task.give_home(Sched(home_handle));
Scheduler::send_task_home(task);
Local::put(self);
} else {
rtdebug!("running task here");
task.give_home(Sched(home_handle));
schedule_fn(self, task);
}
}
AnySched if self.run_anything => {
rtdebug!("running anysched task here");
task.give_home(AnySched);
schedule_fn(self, task);
}
AnySched => {
rtdebug!("sending task to friend");
task.give_home(AnySched);
self.send_to_friend(task);
Local::put(self);
}
}
}
fn send_task_home(task: ~Task) {
let mut task = task;
let mut home = task.take_unwrap_home();
match home {
Sched(ref mut home_handle) => {
home_handle.send(PinnedTask(task));
}
AnySched => {
rtabort!("error: cannot send anysched task home");
}
}
}
/// Take a non-homed task we aren't allowed to run here and send
/// it to the designated friend scheduler to execute.
fn send_to_friend(&mut self, task: ~Task) {
rtdebug!("sending a task to friend");
match self.friend_handle {
Some(ref mut handle) => {
handle.send(TaskFromFriend(task));
}
None => {
rtabort!("tried to send task to a friend but scheduler has no friends");
}
}
}
/// Schedule a task to be executed later.
///
/// Pushes the task onto the work stealing queue and tells the
/// event loop to run it later. Always use this instead of pushing
/// to the work queue directly.
pub fn enqueue_task(&mut self, task: ~Task) {
// We push the task onto our local queue clone.
self.work_queue.push(task);
self.idle_callback.get_mut_ref().resume();
// We've made work available. Notify a
// sleeping scheduler.
match self.sleeper_list.casual_pop() {
Some(handle) => {
let mut handle = handle;
handle.send(Wake)
}
None => { (/* pass */) }
};
}
/// As enqueue_task, but with the possibility for the blocked task to
/// already have been killed.
pub fn enqueue_blocked_task(&mut self, blocked_task: BlockedTask) {
do blocked_task.wake().map |task| {
self.enqueue_task(task);
};
}
// * Core Context Switching Functions
// The primary function for changing contexts. In the current
// design the scheduler is just a slightly modified GreenTask, so
// all context swaps are from Task to Task. The only difference
// between the various cases is where the inputs come from, and
// what is done with the resulting task. That is specified by the
// cleanup function f, which takes the scheduler and the
// old task as inputs.
pub fn change_task_context(mut ~self,
next_task: ~Task,
f: |&mut Scheduler, ~Task|) {
// The current task is grabbed from TLS, not taken as an input.
// Doing an unsafe_take to avoid writing back a null pointer -
// We're going to call `put` later to do that.
let current_task: ~Task = unsafe { Local::unsafe_take() };
// Check that the task is not in an atomically() section (e.g.,
// holding a pthread mutex, which could deadlock the scheduler).
current_task.death.assert_may_sleep();
// These transmutes do something fishy with a closure.
let f_fake_region = unsafe {
transmute::<|&mut Scheduler, ~Task|,
|&mut Scheduler, ~Task|>(f)
};
let f_opaque = ClosureConverter::from_fn(f_fake_region);
// The current task is placed inside an enum with the cleanup
// function. This enum is then placed inside the scheduler.
self.cleanup_job = Some(CleanupJob::new(current_task, f_opaque));
// The scheduler is then placed inside the next task.
let mut next_task = next_task;
next_task.sched = Some(self);
// However we still need an internal mutable pointer to the
// original task. The strategy here was "arrange memory, then
// get pointers", so we crawl back up the chain using
// transmute to eliminate borrowck errors.
unsafe {
let sched: &mut Scheduler =
transmute_mut_region(*next_task.sched.get_mut_ref());
let current_task: &mut Task = match sched.cleanup_job {
Some(CleanupJob { task: ref task, _ }) => {
let task_ptr: *~Task = task;
transmute_mut_region(*transmute_mut_unsafe(task_ptr))
}
None => {
rtabort!("no cleanup job");
}
};
let (current_task_context, next_task_context) =
Scheduler::get_contexts(current_task, next_task);
// Done with everything - put the next task in TLS. This
// works because due to transmute the borrow checker
// believes that we have no internal pointers to
// next_task.
Local::put(next_task);
// The raw context swap operation. The next action taken
// will be running the cleanup job from the context of the
// next task.
Context::swap(current_task_context, next_task_context);
}
// When the context swaps back to this task we immediately
// run the cleanup job, as expected by the previously called
// swap_contexts function.
unsafe {
let task: *mut Task = Local::unsafe_borrow();
(*task).sched.get_mut_ref().run_cleanup_job();
// Must happen after running the cleanup job (of course).
(*task).death.check_killed((*task).unwinder.unwinding);
}
}
// Returns a mutable reference to both contexts involved in this
// swap. This is unsafe - we are getting mutable internal
// references to keep even when we don't own the tasks. It looks
// kinda safe because we are doing transmutes before passing in
// the arguments.
pub fn get_contexts<'a>(current_task: &mut Task, next_task: &mut Task) ->
(&'a mut Context, &'a mut Context) {
let current_task_context =
&mut current_task.coroutine.get_mut_ref().saved_context;
let next_task_context =
&mut next_task.coroutine.get_mut_ref().saved_context;
unsafe {
(transmute_mut_region(current_task_context),
transmute_mut_region(next_task_context))
}
}
// * Context Swapping Helpers - Here be ugliness!
pub fn resume_task_immediately(~self, task: ~Task) {
do self.change_task_context(task) |sched, stask| {
sched.sched_task = Some(stask);
}
}
fn resume_task_immediately_cl(sched: ~Scheduler,
task: ~Task) {
sched.resume_task_immediately(task)
}
pub fn resume_blocked_task_immediately(~self, blocked_task: BlockedTask) {
match blocked_task.wake() {
Some(task) => { self.resume_task_immediately(task); }
None => Local::put(self)
};
}
/// Block a running task, context switch to the scheduler, then pass the
/// blocked task to a closure.
///
/// # Safety note
///
/// The closure here is a *stack* closure that lives in the
/// running task. It gets transmuted to the scheduler's lifetime
/// and called while the task is blocked.
///
/// This passes a Scheduler pointer to the fn after the context switch
/// in order to prevent that fn from performing further scheduling operations.
/// Doing further scheduling could easily result in infinite recursion.
pub fn deschedule_running_task_and_then(mut ~self,
f: |&mut Scheduler, BlockedTask|) {
// Trickier - we need to get the scheduler task out of self
// and use it as the destination.
let stask = self.sched_task.take_unwrap();
// Otherwise this is the same as below.
self.switch_running_tasks_and_then(stask, f);
}
pub fn switch_running_tasks_and_then(~self, next_task: ~Task,
f: |&mut Scheduler, BlockedTask|) {
// This is where we convert the BlockedTask-taking closure into one
// that takes just a Task, and is aware of the block-or-killed protocol.
do self.change_task_context(next_task) |sched, task| {
// Task might need to receive a kill signal instead of blocking.
// We can call the "and_then" only if it blocks successfully.
match BlockedTask::try_block(task) {
Left(killed_task) => sched.enqueue_task(killed_task),
Right(blocked_task) => f(sched, blocked_task),
}
}
}
fn switch_task(sched: ~Scheduler, task: ~Task) {
do sched.switch_running_tasks_and_then(task) |sched, last_task| {
sched.enqueue_blocked_task(last_task);
};
}
// * Task Context Helpers
/// Called by a running task to end execution, after which it will
/// be recycled by the scheduler for reuse in a new task.
pub fn terminate_current_task(mut ~self) {
// Similar to deschedule running task and then, but cannot go through
// the task-blocking path. The task is already dying.
let stask = self.sched_task.take_unwrap();
do self.change_task_context(stask) |sched, mut dead_task| {
let coroutine = dead_task.coroutine.take_unwrap();
coroutine.recycle(&mut sched.stack_pool);
}
}
pub fn run_task(task: ~Task) {
let sched: ~Scheduler = Local::take();
sched.process_task(task, Scheduler::switch_task);
}
pub fn run_task_later(next_task: ~Task) {
let next_task = Cell::new(next_task);
do Local::borrow |sched: &mut Scheduler| {
sched.enqueue_task(next_task.take());
};
}
/// Yield control to the scheduler, executing another task. This is guaranteed
/// to introduce some amount of randomness to the scheduler. Currently the
/// randomness is a result of performing a round of work stealing (which
/// may end up stealing from the current scheduler).
pub fn yield_now(mut ~self) {
self.yield_check_count = reset_yield_check(&mut self.rng);
// Tell the scheduler to start stealing on the next iteration
self.steal_for_yield = true;
do self.deschedule_running_task_and_then |sched, task| {
sched.enqueue_blocked_task(task);
}
}
pub fn maybe_yield(mut ~self) {
// The number of times to do the yield check before yielding, chosen arbitrarily.
rtassert!(self.yield_check_count > 0);
self.yield_check_count -= 1;
if self.yield_check_count == 0 {
self.yield_now();
} else {
Local::put(self);
}
}
// * Utility Functions
pub fn sched_id(&self) -> uint { to_uint(self) }
pub fn run_cleanup_job(&mut self) {
let cleanup_job = self.cleanup_job.take_unwrap();
cleanup_job.run(self);
}
pub fn make_handle(&mut self) -> SchedHandle {
let remote = self.event_loop.remote_callback(~SchedRunner as ~Callback);
return SchedHandle {
remote: remote,
queue: self.message_queue.clone(),
sched_id: self.sched_id()
};
}
}
// Supporting types
type SchedulingFn = extern "Rust" fn (~Scheduler, ~Task);
pub enum SchedMessage {
Wake,
Shutdown,
PinnedTask(~Task),
TaskFromFriend(~Task),
RunOnce(~Task),
}
pub struct SchedHandle {
priv remote: ~RemoteCallback,
priv queue: MessageQueue<SchedMessage>,
sched_id: uint
}
impl SchedHandle {
pub fn send(&mut self, msg: SchedMessage) {
self.queue.push(msg);
self.remote.fire();
}
}
struct SchedRunner;
impl Callback for SchedRunner {
fn call(&mut self) {
Scheduler::run_sched_once();
}
}
struct CleanupJob {
task: ~Task,
f: UnsafeTaskReceiver
}
impl CleanupJob {
pub fn new(task: ~Task, f: UnsafeTaskReceiver) -> CleanupJob {
CleanupJob {
task: task,
f: f
}
}
pub fn run(self, sched: &mut Scheduler) {
let CleanupJob { task: task, f: f } = self;
f.to_fn()(sched, task)
}
}
// XXX: Some hacks to put a || closure in Scheduler without borrowck
// complaining
type UnsafeTaskReceiver = raw::Closure;
trait ClosureConverter {
fn from_fn(|&mut Scheduler, ~Task|) -> Self;
fn to_fn(self) -> |&mut Scheduler, ~Task|;
}
impl ClosureConverter for UnsafeTaskReceiver {
fn from_fn(f: |&mut Scheduler, ~Task|) -> UnsafeTaskReceiver {
unsafe { transmute(f) }
}
fn to_fn(self) -> |&mut Scheduler, ~Task| { unsafe { transmute(self) } }
}
// On unix, we read randomness straight from /dev/urandom, but the
// default constructor of an XorShiftRng does this via io::fs, which
// relies on the scheduler existing, so we have to manually load
// randomness. Windows has its own C API for this, so we don't need to
// worry there.
#[cfg(windows)]
fn new_sched_rng() -> XorShiftRng {
XorShiftRng::new()
}
#[cfg(unix)]
fn new_sched_rng() -> XorShiftRng {
use libc;
use mem;
use c_str::ToCStr;
use vec::MutableVector;
use iter::Iterator;
use rand::SeedableRng;
let fd = do "/dev/urandom".with_c_str |name| {
unsafe { libc::open(name, libc::O_RDONLY, 0) }
};
if fd == -1 {
rtabort!("could not open /dev/urandom for reading.")
}
let mut seeds = [0u32, .. 4];
let size = mem::size_of_val(&seeds);
loop {
let nbytes = do seeds.as_mut_buf |buf, _| {
unsafe {
libc::read(fd,
buf as *mut libc::c_void,
size as libc::size_t)
}
};
rtassert!(nbytes as uint == size);
if !seeds.iter().all(|x| *x == 0) {
break;
}
}
unsafe {libc::close(fd);}
SeedableRng::from_seed(seeds)
}
#[cfg(test)]
mod test {
extern mod extra;
use prelude::*;
use rt::test::*;
use unstable::run_in_bare_thread;
use borrow::to_uint;
use rt::sched::{Scheduler};
use cell::Cell;
use rt::thread::Thread;
use rt::task::{Task, Sched};
use rt::basic;
use rt::util;
use option::{Some};
use rt::task::UnwindResult;
#[test]
fn trivial_run_in_newsched_task_test() {
let mut task_ran = false;
let task_ran_ptr: *mut bool = &mut task_ran;
do run_in_newsched_task || {
unsafe { *task_ran_ptr = true };
rtdebug!("executed from the new scheduler")
}
assert!(task_ran);
}
#[test]
fn multiple_task_test() {
let total = 10;
let mut task_run_count = 0;
let task_run_count_ptr: *mut uint = &mut task_run_count;
do run_in_newsched_task || {
for _ in range(0u, total) {
do spawntask || {
unsafe { *task_run_count_ptr = *task_run_count_ptr + 1};
}
}
}
assert!(task_run_count == total);
}
#[test]
fn multiple_task_nested_test() {
let mut task_run_count = 0;
let task_run_count_ptr: *mut uint = &mut task_run_count;
do run_in_newsched_task || {
do spawntask || {
unsafe { *task_run_count_ptr = *task_run_count_ptr + 1 };
do spawntask || {
unsafe { *task_run_count_ptr = *task_run_count_ptr + 1 };
do spawntask || {
unsafe { *task_run_count_ptr = *task_run_count_ptr + 1 };
}
}
}
}
assert!(task_run_count == 3);
}
// Confirm that a sched_id actually is the uint form of the
// pointer to the scheduler struct.
#[test]
fn simple_sched_id_test() {
do run_in_bare_thread {
let sched = ~new_test_uv_sched();
assert!(to_uint(sched) == sched.sched_id());
}
}
// Compare two scheduler ids that are different, this should never
// fail but may catch a mistake someday.
#[test]
fn compare_sched_id_test() {
do run_in_bare_thread {
let sched_one = ~new_test_uv_sched();
let sched_two = ~new_test_uv_sched();
assert!(sched_one.sched_id() != sched_two.sched_id());
}
}
// A very simple test that confirms that a task executing on the
// home scheduler notices that it is home.
#[test]
fn test_home_sched() {
do run_in_bare_thread {
let mut task_ran = false;
let task_ran_ptr: *mut bool = &mut task_ran;
let mut sched = ~new_test_uv_sched();
let sched_handle = sched.make_handle();
let mut task = ~do Task::new_root_homed(&mut sched.stack_pool, None,
Sched(sched_handle)) {
unsafe { *task_ran_ptr = true };
assert!(Task::on_appropriate_sched());
};
let on_exit: proc(UnwindResult) = |exit_status| {
rtassert!(exit_status.is_success())
};
task.death.on_exit = Some(on_exit);
sched.bootstrap(task);
}
}
// An advanced test that checks all four possible states that a
// (task,sched) can be in regarding homes.
#[test]
fn test_schedule_home_states() {
use rt::sleeper_list::SleeperList;
use rt::work_queue::WorkQueue;
use rt::sched::Shutdown;
use borrow;
use rt::comm::*;
do run_in_bare_thread {
let sleepers = SleeperList::new();
let normal_queue = WorkQueue::new();
let special_queue = WorkQueue::new();
let queues = ~[normal_queue.clone(), special_queue.clone()];
// Our normal scheduler
let mut normal_sched = ~Scheduler::new(
basic::event_loop(),
normal_queue,
queues.clone(),
sleepers.clone());
let normal_handle = Cell::new(normal_sched.make_handle());
let friend_handle = normal_sched.make_handle();
// Our special scheduler
let mut special_sched = ~Scheduler::new_special(
basic::event_loop(),
special_queue.clone(),
queues.clone(),
sleepers.clone(),
false,
Some(friend_handle));
let special_handle = Cell::new(special_sched.make_handle());
let t1_handle = special_sched.make_handle();
let t4_handle = special_sched.make_handle();
// Four test tasks:
// 1) task is home on special
// 2) task not homed, sched doesn't care
// 3) task not homed, sched requeues
// 4) task not home, send home
let task1 = ~do Task::new_root_homed(&mut special_sched.stack_pool, None,
Sched(t1_handle)) || {
rtassert!(Task::on_appropriate_sched());
};
rtdebug!("task1 id: **{}**", borrow::to_uint(task1));
let task2 = ~do Task::new_root(&mut normal_sched.stack_pool, None) {
rtassert!(Task::on_appropriate_sched());
};
let task3 = ~do Task::new_root(&mut normal_sched.stack_pool, None) {
rtassert!(Task::on_appropriate_sched());
};
let task4 = ~do Task::new_root_homed(&mut special_sched.stack_pool, None,
Sched(t4_handle)) {
rtassert!(Task::on_appropriate_sched());
};
rtdebug!("task4 id: **{}**", borrow::to_uint(task4));
let task1 = Cell::new(task1);
let task2 = Cell::new(task2);
let task3 = Cell::new(task3);
let task4 = Cell::new(task4);
// Signal from the special task that we are done.
let (port, chan) = oneshot::<()>();
let port = Cell::new(port);
let chan = Cell::new(chan);
let normal_task = ~do Task::new_root(&mut normal_sched.stack_pool, None) {
rtdebug!("*about to submit task2*");
Scheduler::run_task(task2.take());
rtdebug!("*about to submit task4*");
Scheduler::run_task(task4.take());
rtdebug!("*normal_task done*");
port.take().recv();
let mut nh = normal_handle.take();
nh.send(Shutdown);
let mut sh = special_handle.take();
sh.send(Shutdown);
};
rtdebug!("normal task: {}", borrow::to_uint(normal_task));
let special_task = ~do Task::new_root(&mut special_sched.stack_pool, None) {
rtdebug!("*about to submit task1*");
Scheduler::run_task(task1.take());
rtdebug!("*about to submit task3*");
Scheduler::run_task(task3.take());
rtdebug!("*done with special_task*");
chan.take().send(());
};
rtdebug!("special task: {}", borrow::to_uint(special_task));
let special_sched = Cell::new(special_sched);
let normal_sched = Cell::new(normal_sched);
let special_task = Cell::new(special_task);
let normal_task = Cell::new(normal_task);
let normal_thread = do Thread::start {
normal_sched.take().bootstrap(normal_task.take());
rtdebug!("finished with normal_thread");
};
let special_thread = do Thread::start {
special_sched.take().bootstrap(special_task.take());
rtdebug!("finished with special_sched");
};
normal_thread.join();
special_thread.join();
}
}
#[test]
fn test_stress_schedule_task_states() {
if util::limit_thread_creation_due_to_osx_and_valgrind() { return; }
let n = stress_factor() * 120;
for _ in range(0, n as int) {
test_schedule_home_states();
}
}
#[test]
fn test_io_callback() {
use io::timer;
// This is a regression test that when there are no schedulable tasks
// in the work queue, but we are performing I/O, that once we do put
// something in the work queue again the scheduler picks it up and doesn't
// exit before emptying the work queue
do run_in_uv_task {
do spawntask {
timer::sleep(10);
}
}
}
#[test]
fn handle() {
use rt::comm::*;
do run_in_bare_thread {
let (port, chan) = oneshot::<()>();
let port = Cell::new(port);
let chan = Cell::new(chan);
let thread_one = do Thread::start {
let chan = Cell::new(chan.take());
do run_in_newsched_task_core {
chan.take().send(());
}
};
let thread_two = do Thread::start {
let port = Cell::new(port.take());
do run_in_newsched_task_core {
port.take().recv();
}
};
thread_two.join();
thread_one.join();
}
}
// A regression test that the final message is always handled.
// Used to deadlock because Shutdown was never recvd.
#[test]
fn no_missed_messages() {
use rt::work_queue::WorkQueue;
use rt::sleeper_list::SleeperList;
use rt::stack::StackPool;
use rt::sched::{Shutdown, TaskFromFriend};
use util;
do run_in_bare_thread {
do stress_factor().times {
let sleepers = SleeperList::new();
let queue = WorkQueue::new();
let queues = ~[queue.clone()];
let mut sched = ~Scheduler::new(
basic::event_loop(),
queue,
queues.clone(),
sleepers.clone());
let mut handle = sched.make_handle();
let sched = Cell::new(sched);
let thread = do Thread::start {
let mut sched = sched.take();
let bootstrap_task = ~Task::new_root(&mut sched.stack_pool, None, ||());
sched.bootstrap(bootstrap_task);
};
let mut stack_pool = StackPool::new();
let task = ~Task::new_root(&mut stack_pool, None, ||());
handle.send(TaskFromFriend(task));
handle.send(Shutdown);
util::ignore(handle);
thread.join();
}
}
}
#[test]
fn multithreading() {
use rt::comm::*;
use num::Times;
use vec::OwnedVector;
use container::Container;
do run_in_mt_newsched_task {
let mut ports = ~[];
do 10.times {
let (port, chan) = oneshot();
let chan_cell = Cell::new(chan);
do spawntask_later {
chan_cell.take().send(());
}
ports.push(port);
}
while !ports.is_empty() {
ports.pop().recv();
}
}
}
#[test]
fn thread_ring() {
use rt::comm::*;
use comm::{GenericPort, GenericChan};
do run_in_mt_newsched_task {
let (end_port, end_chan) = oneshot();
let n_tasks = 10;
let token = 2000;
let (p, ch1) = stream();
let mut p = p;
ch1.send((token, end_chan));
let mut i = 2;
while i <= n_tasks {
let (next_p, ch) = stream();
let imm_i = i;
let imm_p = p;
do spawntask_random {
roundtrip(imm_i, n_tasks, &imm_p, &ch);
};
p = next_p;
i += 1;
}
let imm_p = p;
let imm_ch = ch1;
do spawntask_random {
roundtrip(1, n_tasks, &imm_p, &imm_ch);
}
end_port.recv();
}
fn roundtrip(id: int, n_tasks: int,
p: &Port<(int, ChanOne<()>)>, ch: &Chan<(int, ChanOne<()>)>) {
while (true) {
match p.recv() {
(1, end_chan) => {
debug!("{}\n", id);
end_chan.send(());
return;
}
(token, end_chan) => {
debug!("thread: {} got token: {}", id, token);
ch.send((token - 1, end_chan));
if token <= n_tasks {
return;
}
}
}
}
}
}
#[test]
fn start_closure_dtor() {
use ops::Drop;
// Regression test that the `start` task entrypoint can
// contain dtors that use task resources
do run_in_newsched_task {
struct S { field: () }
impl Drop for S {
fn drop(&mut self) {
let _foo = @0;
}
}
let s = S { field: () };
do spawntask {
let _ss = &s;
}
}
}
// FIXME: #9407: xfail-test
fn dont_starve_1() {
use rt::comm::oneshot;
do stress_factor().times {
do run_in_mt_newsched_task {
let (port, chan) = oneshot();
// This task should not be able to starve the sender;
// The sender should get stolen to another thread.
do spawntask {
while !port.peek() { }
}
chan.send(());
}
}
}
#[test]
fn dont_starve_2() {
use rt::comm::oneshot;
do stress_factor().times {
do run_in_newsched_task {
let (port, chan) = oneshot();
let (_port2, chan2) = stream();
// This task should not be able to starve the other task.
// The sends should eventually yield.
do spawntask {
while !port.peek() {
chan2.send(());
}
}
chan.send(());
}
}
}
// Regression test for a logic bug that would cause single-threaded schedulers
// to sleep forever after yielding and stealing another task.
#[test]
fn single_threaded_yield() {
use task::{spawn, spawn_sched, SingleThreaded, deschedule};
use num::Times;
do spawn_sched(SingleThreaded) {
do 5.times { deschedule(); }
}
do spawn { }
do spawn { }
}
}