18cef3fad4
I'm not sure if this was even intentional at this point.
1057 lines
43 KiB
Rust
1057 lines
43 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! A pass that checks to make sure private fields and methods aren't used
|
|
//! outside their scopes. This pass will also generate a set of exported items
|
|
//! which are available for use externally when compiled as a library.
|
|
|
|
use std::hashmap::{HashSet, HashMap};
|
|
use std::util;
|
|
|
|
use middle::resolve;
|
|
use middle::ty;
|
|
use middle::typeck::{method_map, method_origin, method_param};
|
|
use middle::typeck::{method_static, method_object};
|
|
|
|
use syntax::ast;
|
|
use syntax::ast_map;
|
|
use syntax::ast_util::{is_local, def_id_of_def, local_def};
|
|
use syntax::attr;
|
|
use syntax::codemap::Span;
|
|
use syntax::parse::token;
|
|
use syntax::opt_vec;
|
|
use syntax::visit;
|
|
use syntax::visit::Visitor;
|
|
|
|
type Context<'a> = (&'a method_map, &'a resolve::ExportMap2);
|
|
|
|
/// A set of AST nodes exported by the crate.
|
|
pub type ExportedItems = HashSet<ast::NodeId>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// The parent visitor, used to determine what's the parent of what (node-wise)
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct ParentVisitor {
|
|
parents: HashMap<ast::NodeId, ast::NodeId>,
|
|
curparent: ast::NodeId,
|
|
}
|
|
|
|
impl Visitor<()> for ParentVisitor {
|
|
fn visit_item(&mut self, item: @ast::item, _: ()) {
|
|
self.parents.insert(item.id, self.curparent);
|
|
|
|
let prev = self.curparent;
|
|
match item.node {
|
|
ast::item_mod(..) => { self.curparent = item.id; }
|
|
// Enum variants are parented to the enum definition itself beacuse
|
|
// they inherit privacy
|
|
ast::item_enum(ref def, _) => {
|
|
for variant in def.variants.iter() {
|
|
// If variants are private, then their logical "parent" is
|
|
// the enclosing module because everyone in the enclosing
|
|
// module can still use the private variant
|
|
if variant.node.vis == ast::private {
|
|
self.parents.insert(variant.node.id, self.curparent);
|
|
|
|
// Otherwise, if the variant is public, then the parent is
|
|
// considered the enclosing enum because the enum will
|
|
// dictate the privacy visibility of this variant instead.
|
|
} else {
|
|
self.parents.insert(variant.node.id, item.id);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Trait methods are always considered "public", but if the trait is
|
|
// private then we need some private item in the chain from the
|
|
// method to the root. In this case, if the trait is private, then
|
|
// parent all the methods to the trait to indicate that they're
|
|
// private.
|
|
ast::item_trait(_, _, ref methods) if item.vis != ast::public => {
|
|
for m in methods.iter() {
|
|
match *m {
|
|
ast::provided(ref m) => self.parents.insert(m.id, item.id),
|
|
ast::required(ref m) => self.parents.insert(m.id, item.id),
|
|
};
|
|
}
|
|
}
|
|
|
|
_ => {}
|
|
}
|
|
visit::walk_item(self, item, ());
|
|
self.curparent = prev;
|
|
}
|
|
|
|
fn visit_foreign_item(&mut self, a: @ast::foreign_item, _: ()) {
|
|
self.parents.insert(a.id, self.curparent);
|
|
visit::walk_foreign_item(self, a, ());
|
|
}
|
|
|
|
fn visit_fn(&mut self, a: &visit::fn_kind, b: &ast::fn_decl,
|
|
c: ast::P<ast::Block>, d: Span, id: ast::NodeId, _: ()) {
|
|
// We already took care of some trait methods above, otherwise things
|
|
// like impl methods and pub trait methods are parented to the
|
|
// containing module, not the containing trait.
|
|
if !self.parents.contains_key(&id) {
|
|
self.parents.insert(id, self.curparent);
|
|
}
|
|
visit::walk_fn(self, a, b, c, d, id, ());
|
|
}
|
|
|
|
fn visit_struct_def(&mut self, s: @ast::struct_def, i: ast::Ident,
|
|
g: &ast::Generics, n: ast::NodeId, _: ()) {
|
|
// Struct constructors are parented to their struct definitions because
|
|
// they essentially are the struct definitions.
|
|
match s.ctor_id {
|
|
Some(id) => { self.parents.insert(id, n); }
|
|
None => {}
|
|
}
|
|
|
|
// While we have the id of the struct definition, go ahead and parent
|
|
// all the fields.
|
|
for field in s.fields.iter() {
|
|
let vis = match field.node.kind {
|
|
ast::named_field(_, vis) => vis,
|
|
ast::unnamed_field => continue
|
|
};
|
|
|
|
// Private fields are scoped to this module, so parent them directly
|
|
// to the module instead of the struct. This is similar to the case
|
|
// of private enum variants.
|
|
if vis == ast::private {
|
|
self.parents.insert(field.node.id, self.curparent);
|
|
|
|
// Otherwise public fields are scoped to the visibility of the
|
|
// struct itself
|
|
} else {
|
|
self.parents.insert(field.node.id, n);
|
|
}
|
|
}
|
|
visit::walk_struct_def(self, s, i, g, n, ())
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// The embargo visitor, used to determine the exports of the ast
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct EmbargoVisitor<'a> {
|
|
tcx: ty::ctxt,
|
|
exp_map2: &'a resolve::ExportMap2,
|
|
|
|
// This flag is an indicator of whether the previous item in the
|
|
// hierarchical chain was exported or not. This is the indicator of whether
|
|
// children should be exported as well. Note that this can flip from false
|
|
// to true if a reexported module is entered (or an action similar).
|
|
prev_exported: bool,
|
|
|
|
// This is a list of all exported items in the AST. An exported item is any
|
|
// function/method/item which is usable by external crates. This essentially
|
|
// means that the result is "public all the way down", but the "path down"
|
|
// may jump across private boundaries through reexport statements.
|
|
exported_items: ExportedItems,
|
|
|
|
// This sets contains all the destination nodes which are publicly
|
|
// re-exported. This is *not* a set of all reexported nodes, only a set of
|
|
// all nodes which are reexported *and* reachable from external crates. This
|
|
// means that the destination of the reexport is exported, and hence the
|
|
// destination must also be exported.
|
|
reexports: HashSet<ast::NodeId>,
|
|
}
|
|
|
|
impl<'a> EmbargoVisitor<'a> {
|
|
// There are checks inside of privacy which depend on knowing whether a
|
|
// trait should be exported or not. The two current consumers of this are:
|
|
//
|
|
// 1. Should default methods of a trait be exported?
|
|
// 2. Should the methods of an implementation of a trait be exported?
|
|
//
|
|
// The answer to both of these questions partly rely on whether the trait
|
|
// itself is exported or not. If the trait is somehow exported, then the
|
|
// answers to both questions must be yes. Right now this question involves
|
|
// more analysis than is currently done in rustc, so we conservatively
|
|
// answer "yes" so that all traits need to be exported.
|
|
fn exported_trait(&self, _id: ast::NodeId) -> bool {
|
|
true
|
|
}
|
|
}
|
|
|
|
impl<'a> Visitor<()> for EmbargoVisitor<'a> {
|
|
fn visit_item(&mut self, item: @ast::item, _: ()) {
|
|
let orig_all_pub = self.prev_exported;
|
|
match item.node {
|
|
// impls/extern blocks do not break the "public chain" because they
|
|
// cannot have visibility qualifiers on them anyway
|
|
ast::item_impl(..) | ast::item_foreign_mod(..) => {}
|
|
|
|
// Traits are a little special in that even if they themselves are
|
|
// not public they may still be exported.
|
|
ast::item_trait(..) => {
|
|
self.prev_exported = self.exported_trait(item.id);
|
|
}
|
|
|
|
// Private by default, hence we only retain the "public chain" if
|
|
// `pub` is explicitly listed.
|
|
_ => {
|
|
self.prev_exported =
|
|
(orig_all_pub && item.vis == ast::public) ||
|
|
self.reexports.contains(&item.id);
|
|
}
|
|
}
|
|
|
|
let public_first = self.prev_exported &&
|
|
self.exported_items.insert(item.id);
|
|
|
|
match item.node {
|
|
// Enum variants inherit from their parent, so if the enum is
|
|
// public all variants are public unless they're explicitly priv
|
|
ast::item_enum(ref def, _) if public_first => {
|
|
for variant in def.variants.iter() {
|
|
if variant.node.vis != ast::private {
|
|
self.exported_items.insert(variant.node.id);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Implementations are a little tricky to determine what's exported
|
|
// out of them. Here's a few cases which are currently defined:
|
|
//
|
|
// * Impls for private types do not need to export their methods
|
|
// (either public or private methods)
|
|
//
|
|
// * Impls for public types only have public methods exported
|
|
//
|
|
// * Public trait impls for public types must have all methods
|
|
// exported.
|
|
//
|
|
// * Private trait impls for public types can be ignored
|
|
//
|
|
// * Public trait impls for private types have their methods
|
|
// exported. I'm not entirely certain that this is the correct
|
|
// thing to do, but I have seen use cases of where this will cause
|
|
// undefined symbols at linkage time if this case is not handled.
|
|
//
|
|
// * Private trait impls for private types can be completely ignored
|
|
ast::item_impl(_, _, ref ty, ref methods) => {
|
|
let public_ty = match ty.node {
|
|
ast::ty_path(_, _, id) => {
|
|
let def_map = self.tcx.def_map.borrow();
|
|
match def_map.get().get_copy(&id) {
|
|
ast::DefPrimTy(..) => true,
|
|
def => {
|
|
let did = def_id_of_def(def);
|
|
!is_local(did) ||
|
|
self.exported_items.contains(&did.node)
|
|
}
|
|
}
|
|
}
|
|
_ => true,
|
|
};
|
|
let tr = ty::impl_trait_ref(self.tcx, local_def(item.id));
|
|
let public_trait = tr.map_default(false, |tr| {
|
|
!is_local(tr.def_id) ||
|
|
self.exported_items.contains(&tr.def_id.node)
|
|
});
|
|
|
|
if public_ty || public_trait {
|
|
for method in methods.iter() {
|
|
let meth_public = match method.explicit_self.node {
|
|
ast::sty_static => public_ty,
|
|
_ => true,
|
|
} && method.vis == ast::public;
|
|
if meth_public || tr.is_some() {
|
|
self.exported_items.insert(method.id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Default methods on traits are all public so long as the trait
|
|
// is public
|
|
ast::item_trait(_, _, ref methods) if public_first => {
|
|
for method in methods.iter() {
|
|
match *method {
|
|
ast::provided(ref m) => {
|
|
debug!("provided {}", m.id);
|
|
self.exported_items.insert(m.id);
|
|
}
|
|
ast::required(ref m) => {
|
|
debug!("required {}", m.id);
|
|
self.exported_items.insert(m.id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Struct constructors are public if the struct is all public.
|
|
ast::item_struct(ref def, _) if public_first => {
|
|
match def.ctor_id {
|
|
Some(id) => { self.exported_items.insert(id); }
|
|
None => {}
|
|
}
|
|
}
|
|
|
|
_ => {}
|
|
}
|
|
|
|
visit::walk_item(self, item, ());
|
|
|
|
self.prev_exported = orig_all_pub;
|
|
}
|
|
|
|
fn visit_foreign_item(&mut self, a: @ast::foreign_item, _: ()) {
|
|
if self.prev_exported && a.vis == ast::public {
|
|
self.exported_items.insert(a.id);
|
|
}
|
|
}
|
|
|
|
fn visit_mod(&mut self, m: &ast::_mod, _sp: Span, id: ast::NodeId, _: ()) {
|
|
// This code is here instead of in visit_item so that the
|
|
// crate module gets processed as well.
|
|
if self.prev_exported {
|
|
let exp_map2 = self.exp_map2.borrow();
|
|
assert!(exp_map2.get().contains_key(&id), "wut {:?}", id);
|
|
for export in exp_map2.get().get(&id).iter() {
|
|
if is_local(export.def_id) && export.reexport {
|
|
self.reexports.insert(export.def_id.node);
|
|
}
|
|
}
|
|
}
|
|
visit::walk_mod(self, m, ())
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// The privacy visitor, where privacy checks take place (violations reported)
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct PrivacyVisitor<'a> {
|
|
tcx: ty::ctxt,
|
|
curitem: ast::NodeId,
|
|
in_fn: bool,
|
|
in_foreign: bool,
|
|
method_map: &'a method_map,
|
|
parents: HashMap<ast::NodeId, ast::NodeId>,
|
|
external_exports: resolve::ExternalExports,
|
|
last_private_map: resolve::LastPrivateMap,
|
|
}
|
|
|
|
enum PrivacyResult {
|
|
Allowable,
|
|
ExternallyDenied,
|
|
DisallowedBy(ast::NodeId),
|
|
}
|
|
|
|
impl<'a> PrivacyVisitor<'a> {
|
|
// used when debugging
|
|
fn nodestr(&self, id: ast::NodeId) -> ~str {
|
|
ast_map::node_id_to_str(self.tcx.items, id, token::get_ident_interner())
|
|
}
|
|
|
|
// Determines whether the given definition is public from the point of view
|
|
// of the current item.
|
|
fn def_privacy(&self, did: ast::DefId) -> PrivacyResult {
|
|
if !is_local(did) {
|
|
if self.external_exports.contains(&did) {
|
|
debug!("privacy - {:?} was externally exported", did);
|
|
return Allowable;
|
|
}
|
|
debug!("privacy - is {:?} a public method", did);
|
|
|
|
let methods = self.tcx.methods.borrow();
|
|
return match methods.get().find(&did) {
|
|
Some(meth) => {
|
|
debug!("privacy - well at least it's a method: {:?}", meth);
|
|
match meth.container {
|
|
ty::TraitContainer(id) => {
|
|
debug!("privacy - recursing on trait {:?}", id);
|
|
self.def_privacy(id)
|
|
}
|
|
ty::ImplContainer(id) => {
|
|
match ty::impl_trait_ref(self.tcx, id) {
|
|
Some(t) => {
|
|
debug!("privacy - impl of trait {:?}", id);
|
|
self.def_privacy(t.def_id)
|
|
}
|
|
None => {
|
|
debug!("privacy - found a method {:?}",
|
|
meth.vis);
|
|
if meth.vis == ast::public {
|
|
Allowable
|
|
} else {
|
|
ExternallyDenied
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
debug!("privacy - nope, not even a method");
|
|
ExternallyDenied
|
|
}
|
|
};
|
|
}
|
|
|
|
debug!("privacy - local {:?} not public all the way down", did);
|
|
// return quickly for things in the same module
|
|
if self.parents.find(&did.node) == self.parents.find(&self.curitem) {
|
|
debug!("privacy - same parent, we're done here");
|
|
return Allowable;
|
|
}
|
|
|
|
// We now know that there is at least one private member between the
|
|
// destination and the root.
|
|
let mut closest_private_id = did.node;
|
|
loop {
|
|
debug!("privacy - examining {}", self.nodestr(closest_private_id));
|
|
let items = self.tcx.items.borrow();
|
|
let vis = match items.get().find(&closest_private_id) {
|
|
// If this item is a method, then we know for sure that it's an
|
|
// actual method and not a static method. The reason for this is
|
|
// that these cases are only hit in the ExprMethodCall
|
|
// expression, and ExprCall will have its path checked later
|
|
// (the path of the trait/impl) if it's a static method.
|
|
//
|
|
// With this information, then we can completely ignore all
|
|
// trait methods. The privacy violation would be if the trait
|
|
// couldn't get imported, not if the method couldn't be used
|
|
// (all trait methods are public).
|
|
//
|
|
// However, if this is an impl method, then we dictate this
|
|
// decision solely based on the privacy of the method
|
|
// invocation.
|
|
// FIXME(#10573) is this the right behavior? Why not consider
|
|
// where the method was defined?
|
|
Some(&ast_map::node_method(ref m, imp, _)) => {
|
|
match ty::impl_trait_ref(self.tcx, imp) {
|
|
Some(..) => return Allowable,
|
|
_ if m.vis == ast::public => return Allowable,
|
|
_ => m.vis
|
|
}
|
|
}
|
|
Some(&ast_map::node_trait_method(..)) => {
|
|
return Allowable;
|
|
}
|
|
|
|
// This is not a method call, extract the visibility as one
|
|
// would normally look at it
|
|
Some(&ast_map::node_item(it, _)) => it.vis,
|
|
Some(&ast_map::node_foreign_item(_, _, v, _)) => v,
|
|
Some(&ast_map::node_variant(ref v, _, _)) => {
|
|
// sadly enum variants still inherit visibility, so only
|
|
// break out of this is explicitly private
|
|
if v.node.vis == ast::private { break }
|
|
ast::public // need to move up a level (to the enum)
|
|
}
|
|
_ => ast::public,
|
|
};
|
|
if vis != ast::public { break }
|
|
// if we've reached the root, then everything was allowable and this
|
|
// access is public.
|
|
if closest_private_id == ast::CRATE_NODE_ID { return Allowable }
|
|
closest_private_id = *self.parents.get(&closest_private_id);
|
|
|
|
// If we reached the top, then we were public all the way down and
|
|
// we can allow this access.
|
|
if closest_private_id == ast::DUMMY_NODE_ID { return Allowable }
|
|
}
|
|
debug!("privacy - closest priv {}", self.nodestr(closest_private_id));
|
|
if self.private_accessible(closest_private_id) {
|
|
Allowable
|
|
} else {
|
|
DisallowedBy(closest_private_id)
|
|
}
|
|
}
|
|
|
|
/// For a local private node in the AST, this function will determine
|
|
/// whether the node is accessible by the current module that iteration is
|
|
/// inside.
|
|
fn private_accessible(&self, id: ast::NodeId) -> bool {
|
|
let parent = *self.parents.get(&id);
|
|
debug!("privacy - accessible parent {}", self.nodestr(parent));
|
|
|
|
// After finding `did`'s closest private member, we roll ourselves back
|
|
// to see if this private member's parent is anywhere in our ancestry.
|
|
// By the privacy rules, we can access all of our ancestor's private
|
|
// members, so that's why we test the parent, and not the did itself.
|
|
let mut cur = self.curitem;
|
|
loop {
|
|
debug!("privacy - questioning {}", self.nodestr(cur));
|
|
match cur {
|
|
// If the relevant parent is in our history, then we're allowed
|
|
// to look inside any of our ancestor's immediate private items,
|
|
// so this access is valid.
|
|
x if x == parent => return true,
|
|
|
|
// If we've reached the root, then we couldn't access this item
|
|
// in the first place
|
|
ast::DUMMY_NODE_ID => return false,
|
|
|
|
// Keep going up
|
|
_ => {}
|
|
}
|
|
|
|
cur = *self.parents.get(&cur);
|
|
}
|
|
}
|
|
|
|
/// Guarantee that a particular definition is public, possibly emitting an
|
|
/// error message if it's not.
|
|
fn ensure_public(&self, span: Span, to_check: ast::DefId,
|
|
source_did: Option<ast::DefId>, msg: &str) -> bool {
|
|
match self.def_privacy(to_check) {
|
|
ExternallyDenied => {
|
|
self.tcx.sess.span_err(span, format!("{} is private", msg))
|
|
}
|
|
DisallowedBy(id) => {
|
|
if id == source_did.unwrap_or(to_check).node {
|
|
self.tcx.sess.span_err(span, format!("{} is private", msg));
|
|
return false;
|
|
} else {
|
|
self.tcx.sess.span_err(span, format!("{} is inaccessible",
|
|
msg));
|
|
}
|
|
let items = self.tcx.items.borrow();
|
|
match items.get().find(&id) {
|
|
Some(&ast_map::node_item(item, _)) => {
|
|
let desc = match item.node {
|
|
ast::item_mod(..) => "module",
|
|
ast::item_trait(..) => "trait",
|
|
_ => return false,
|
|
};
|
|
let msg = format!("{} `{}` is private", desc,
|
|
token::ident_to_str(&item.ident));
|
|
self.tcx.sess.span_note(span, msg);
|
|
}
|
|
Some(..) | None => {}
|
|
}
|
|
}
|
|
Allowable => return true
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Checks that a field is in scope.
|
|
// FIXME #6993: change type (and name) from Ident to Name
|
|
fn check_field(&mut self, span: Span, id: ast::DefId, ident: ast::Ident) {
|
|
let fields = ty::lookup_struct_fields(self.tcx, id);
|
|
for field in fields.iter() {
|
|
if field.name != ident.name { continue; }
|
|
// public fields are public everywhere
|
|
if field.vis != ast::private { break }
|
|
if !is_local(field.id) ||
|
|
!self.private_accessible(field.id.node) {
|
|
self.tcx.sess.span_err(span, format!("field `{}` is private",
|
|
token::ident_to_str(&ident)));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Given the ID of a method, checks to ensure it's in scope.
|
|
fn check_static_method(&mut self, span: Span, method_id: ast::DefId,
|
|
name: &ast::Ident) {
|
|
// If the method is a default method, we need to use the def_id of
|
|
// the default implementation.
|
|
let method_id = ty::method(self.tcx, method_id).provided_source
|
|
.unwrap_or(method_id);
|
|
|
|
self.ensure_public(span, method_id, None,
|
|
format!("method `{}`", token::ident_to_str(name)));
|
|
}
|
|
|
|
// Checks that a path is in scope.
|
|
fn check_path(&mut self, span: Span, path_id: ast::NodeId, path: &ast::Path) {
|
|
debug!("privacy - path {}", self.nodestr(path_id));
|
|
let def_map = self.tcx.def_map.borrow();
|
|
let def = def_map.get().get_copy(&path_id);
|
|
let ck = |tyname: &str| {
|
|
let origdid = def_id_of_def(def);
|
|
match *self.last_private_map.get(&path_id) {
|
|
resolve::AllPublic => {},
|
|
resolve::DependsOn(def) => {
|
|
let name = token::ident_to_str(&path.segments.last()
|
|
.identifier);
|
|
self.ensure_public(span, def, Some(origdid),
|
|
format!("{} `{}`", tyname, name));
|
|
}
|
|
}
|
|
};
|
|
let def_map = self.tcx.def_map.borrow();
|
|
match def_map.get().get_copy(&path_id) {
|
|
ast::DefStaticMethod(..) => ck("static method"),
|
|
ast::DefFn(..) => ck("function"),
|
|
ast::DefStatic(..) => ck("static"),
|
|
ast::DefVariant(..) => ck("variant"),
|
|
ast::DefTy(..) => ck("type"),
|
|
ast::DefTrait(..) => ck("trait"),
|
|
ast::DefStruct(..) => ck("struct"),
|
|
ast::DefMethod(_, Some(..)) => ck("trait method"),
|
|
ast::DefMethod(..) => ck("method"),
|
|
ast::DefMod(..) => ck("module"),
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
// Checks that a method is in scope.
|
|
fn check_method(&mut self, span: Span, origin: &method_origin,
|
|
ident: ast::Ident) {
|
|
match *origin {
|
|
method_static(method_id) => {
|
|
self.check_static_method(span, method_id, &ident)
|
|
}
|
|
// Trait methods are always all public. The only controlling factor
|
|
// is whether the trait itself is accessible or not.
|
|
method_param(method_param { trait_id: trait_id, .. }) |
|
|
method_object(method_object { trait_id: trait_id, .. }) => {
|
|
self.ensure_public(span, trait_id, None, "source trait");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Visitor<()> for PrivacyVisitor<'a> {
|
|
fn visit_item(&mut self, item: @ast::item, _: ()) {
|
|
// Do not check privacy inside items with the resolve_unexported
|
|
// attribute. This is used for the test runner.
|
|
if attr::contains_name(item.attrs, "!resolve_unexported") {
|
|
return;
|
|
}
|
|
|
|
let orig_curitem = util::replace(&mut self.curitem, item.id);
|
|
visit::walk_item(self, item, ());
|
|
self.curitem = orig_curitem;
|
|
}
|
|
|
|
fn visit_expr(&mut self, expr: @ast::Expr, _: ()) {
|
|
match expr.node {
|
|
ast::ExprField(base, ident, _) => {
|
|
// Method calls are now a special syntactic form,
|
|
// so `a.b` should always be a field.
|
|
let method_map = self.method_map.borrow();
|
|
assert!(!method_map.get().contains_key(&expr.id));
|
|
|
|
// With type_autoderef, make sure we don't
|
|
// allow pointers to violate privacy
|
|
let t = ty::type_autoderef(self.tcx,
|
|
ty::expr_ty(self.tcx, base));
|
|
match ty::get(t).sty {
|
|
ty::ty_struct(id, _) => {
|
|
self.check_field(expr.span, id, ident);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
ast::ExprMethodCall(_, base, ident, _, _, _) => {
|
|
// see above
|
|
let t = ty::type_autoderef(self.tcx,
|
|
ty::expr_ty(self.tcx, base));
|
|
match ty::get(t).sty {
|
|
ty::ty_enum(_, _) | ty::ty_struct(_, _) => {
|
|
let method_map = self.method_map.borrow();
|
|
let entry = match method_map.get().find(&expr.id) {
|
|
None => {
|
|
self.tcx.sess.span_bug(expr.span,
|
|
"method call not in \
|
|
method map");
|
|
}
|
|
Some(entry) => entry
|
|
};
|
|
debug!("(privacy checking) checking impl method");
|
|
self.check_method(expr.span, &entry.origin, ident);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
ast::ExprStruct(_, ref fields, _) => {
|
|
match ty::get(ty::expr_ty(self.tcx, expr)).sty {
|
|
ty::ty_struct(id, _) => {
|
|
for field in (*fields).iter() {
|
|
self.check_field(expr.span, id, field.ident.node);
|
|
}
|
|
}
|
|
ty::ty_enum(_, _) => {
|
|
let def_map = self.tcx.def_map.borrow();
|
|
match def_map.get().get_copy(&expr.id) {
|
|
ast::DefVariant(_, variant_id, _) => {
|
|
for field in fields.iter() {
|
|
self.check_field(expr.span, variant_id,
|
|
field.ident.node);
|
|
}
|
|
}
|
|
_ => self.tcx.sess.span_bug(expr.span,
|
|
"resolve didn't \
|
|
map enum struct \
|
|
constructor to a \
|
|
variant def"),
|
|
}
|
|
}
|
|
_ => self.tcx.sess.span_bug(expr.span, "struct expr \
|
|
didn't have \
|
|
struct type?!"),
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
visit::walk_expr(self, expr, ());
|
|
}
|
|
|
|
fn visit_view_item(&mut self, a: &ast::view_item, _: ()) {
|
|
match a.node {
|
|
ast::view_item_extern_mod(..) => {}
|
|
ast::view_item_use(ref uses) => {
|
|
for vpath in uses.iter() {
|
|
match vpath.node {
|
|
ast::view_path_simple(..) |
|
|
ast::view_path_glob(..) => {}
|
|
ast::view_path_list(_, ref list, _) => {
|
|
for pid in list.iter() {
|
|
debug!("privacy - list {}", pid.node.id);
|
|
let seg = ast::PathSegment {
|
|
identifier: pid.node.name,
|
|
lifetimes: opt_vec::Empty,
|
|
types: opt_vec::Empty,
|
|
};
|
|
let segs = ~[seg];
|
|
let path = ast::Path {
|
|
global: false,
|
|
span: pid.span,
|
|
segments: segs,
|
|
};
|
|
self.check_path(pid.span, pid.node.id, &path);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
visit::walk_view_item(self, a, ());
|
|
}
|
|
|
|
fn visit_pat(&mut self, pattern: &ast::Pat, _: ()) {
|
|
// Foreign functions do not have their patterns mapped in the def_map,
|
|
// and there's nothing really relevant there anyway, so don't bother
|
|
// checking privacy. If you can name the type then you can pass it to an
|
|
// external C function anyway.
|
|
if self.in_foreign { return }
|
|
|
|
match pattern.node {
|
|
ast::PatStruct(_, ref fields, _) => {
|
|
match ty::get(ty::pat_ty(self.tcx, pattern)).sty {
|
|
ty::ty_struct(id, _) => {
|
|
for field in fields.iter() {
|
|
self.check_field(pattern.span, id, field.ident);
|
|
}
|
|
}
|
|
ty::ty_enum(_, _) => {
|
|
let def_map = self.tcx.def_map.borrow();
|
|
match def_map.get().find(&pattern.id) {
|
|
Some(&ast::DefVariant(_, variant_id, _)) => {
|
|
for field in fields.iter() {
|
|
self.check_field(pattern.span, variant_id,
|
|
field.ident);
|
|
}
|
|
}
|
|
_ => self.tcx.sess.span_bug(pattern.span,
|
|
"resolve didn't \
|
|
map enum struct \
|
|
pattern to a \
|
|
variant def"),
|
|
}
|
|
}
|
|
_ => self.tcx.sess.span_bug(pattern.span,
|
|
"struct pattern didn't have \
|
|
struct type?!"),
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
visit::walk_pat(self, pattern, ());
|
|
}
|
|
|
|
fn visit_foreign_item(&mut self, fi: @ast::foreign_item, _: ()) {
|
|
self.in_foreign = true;
|
|
visit::walk_foreign_item(self, fi, ());
|
|
self.in_foreign = false;
|
|
}
|
|
|
|
fn visit_path(&mut self, path: &ast::Path, id: ast::NodeId, _: ()) {
|
|
self.check_path(path.span, id, path);
|
|
visit::walk_path(self, path, ());
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// The privacy sanity check visitor, ensures unnecessary visibility isn't here
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct SanePrivacyVisitor {
|
|
tcx: ty::ctxt,
|
|
in_fn: bool,
|
|
}
|
|
|
|
impl Visitor<()> for SanePrivacyVisitor {
|
|
fn visit_item(&mut self, item: @ast::item, _: ()) {
|
|
if self.in_fn {
|
|
self.check_all_inherited(item);
|
|
} else {
|
|
self.check_sane_privacy(item);
|
|
}
|
|
|
|
let orig_in_fn = util::replace(&mut self.in_fn, match item.node {
|
|
ast::item_mod(..) => false, // modules turn privacy back on
|
|
_ => self.in_fn, // otherwise we inherit
|
|
});
|
|
visit::walk_item(self, item, ());
|
|
self.in_fn = orig_in_fn;
|
|
}
|
|
|
|
fn visit_fn(&mut self, fk: &visit::fn_kind, fd: &ast::fn_decl,
|
|
b: ast::P<ast::Block>, s: Span, n: ast::NodeId, _: ()) {
|
|
// This catches both functions and methods
|
|
let orig_in_fn = util::replace(&mut self.in_fn, true);
|
|
visit::walk_fn(self, fk, fd, b, s, n, ());
|
|
self.in_fn = orig_in_fn;
|
|
}
|
|
}
|
|
|
|
impl SanePrivacyVisitor {
|
|
/// Validates all of the visibility qualifers placed on the item given. This
|
|
/// ensures that there are no extraneous qualifiers that don't actually do
|
|
/// anything. In theory these qualifiers wouldn't parse, but that may happen
|
|
/// later on down the road...
|
|
fn check_sane_privacy(&self, item: @ast::item) {
|
|
let tcx = self.tcx;
|
|
let check_inherited = |sp: Span, vis: ast::visibility, note: &str| {
|
|
if vis != ast::inherited {
|
|
tcx.sess.span_err(sp, "unnecessary visibility qualifier");
|
|
if note.len() > 0 {
|
|
tcx.sess.span_note(sp, note);
|
|
}
|
|
}
|
|
};
|
|
let check_not_priv = |sp: Span, vis: ast::visibility, note: &str| {
|
|
if vis == ast::private {
|
|
tcx.sess.span_err(sp, "unnecessary `priv` qualifier");
|
|
if note.len() > 0 {
|
|
tcx.sess.span_note(sp, note);
|
|
}
|
|
}
|
|
};
|
|
let check_struct = |def: &@ast::struct_def| {
|
|
for f in def.fields.iter() {
|
|
match f.node.kind {
|
|
ast::named_field(_, ast::public) => {
|
|
tcx.sess.span_err(f.span, "unnecessary `pub` \
|
|
visibility");
|
|
}
|
|
ast::named_field(_, ast::private) => {
|
|
// Fields should really be private by default...
|
|
}
|
|
ast::named_field(..) | ast::unnamed_field => {}
|
|
}
|
|
}
|
|
};
|
|
match item.node {
|
|
// implementations of traits don't need visibility qualifiers because
|
|
// that's controlled by having the trait in scope.
|
|
ast::item_impl(_, Some(..), _, ref methods) => {
|
|
check_inherited(item.span, item.vis,
|
|
"visibility qualifiers have no effect on trait \
|
|
impls");
|
|
for m in methods.iter() {
|
|
check_inherited(m.span, m.vis, "");
|
|
}
|
|
}
|
|
|
|
ast::item_impl(_, _, _, ref methods) => {
|
|
check_inherited(item.span, item.vis,
|
|
"place qualifiers on individual methods instead");
|
|
for i in methods.iter() {
|
|
check_not_priv(i.span, i.vis, "functions are private by \
|
|
default");
|
|
}
|
|
}
|
|
ast::item_foreign_mod(ref fm) => {
|
|
check_inherited(item.span, item.vis,
|
|
"place qualifiers on individual functions \
|
|
instead");
|
|
for i in fm.items.iter() {
|
|
check_not_priv(i.span, i.vis, "functions are private by \
|
|
default");
|
|
}
|
|
}
|
|
|
|
ast::item_enum(ref def, _) => {
|
|
for v in def.variants.iter() {
|
|
match v.node.vis {
|
|
ast::public => {
|
|
if item.vis == ast::public {
|
|
tcx.sess.span_err(v.span, "unnecessary `pub` \
|
|
visibility");
|
|
}
|
|
}
|
|
ast::private => {
|
|
if item.vis != ast::public {
|
|
tcx.sess.span_err(v.span, "unnecessary `priv` \
|
|
visibility");
|
|
}
|
|
}
|
|
ast::inherited => {}
|
|
}
|
|
|
|
match v.node.kind {
|
|
ast::struct_variant_kind(ref s) => check_struct(s),
|
|
ast::tuple_variant_kind(..) => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::item_struct(ref def, _) => check_struct(def),
|
|
|
|
ast::item_trait(_, _, ref methods) => {
|
|
for m in methods.iter() {
|
|
match *m {
|
|
ast::provided(ref m) => {
|
|
check_inherited(m.span, m.vis,
|
|
"unnecessary visibility");
|
|
}
|
|
ast::required(..) => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::item_static(..) |
|
|
ast::item_fn(..) | ast::item_mod(..) | ast::item_ty(..) |
|
|
ast::item_mac(..) => {
|
|
check_not_priv(item.span, item.vis, "items are private by \
|
|
default");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// When inside of something like a function or a method, visibility has no
|
|
/// control over anything so this forbids any mention of any visibility
|
|
fn check_all_inherited(&self, item: @ast::item) {
|
|
let tcx = self.tcx;
|
|
let check_inherited = |sp: Span, vis: ast::visibility| {
|
|
if vis != ast::inherited {
|
|
tcx.sess.span_err(sp, "visibility has no effect inside functions");
|
|
}
|
|
};
|
|
let check_struct = |def: &@ast::struct_def| {
|
|
for f in def.fields.iter() {
|
|
match f.node.kind {
|
|
ast::named_field(_, p) => check_inherited(f.span, p),
|
|
ast::unnamed_field => {}
|
|
}
|
|
}
|
|
};
|
|
check_inherited(item.span, item.vis);
|
|
match item.node {
|
|
ast::item_impl(_, _, _, ref methods) => {
|
|
for m in methods.iter() {
|
|
check_inherited(m.span, m.vis);
|
|
}
|
|
}
|
|
ast::item_foreign_mod(ref fm) => {
|
|
for i in fm.items.iter() {
|
|
check_inherited(i.span, i.vis);
|
|
}
|
|
}
|
|
ast::item_enum(ref def, _) => {
|
|
for v in def.variants.iter() {
|
|
check_inherited(v.span, v.node.vis);
|
|
|
|
match v.node.kind {
|
|
ast::struct_variant_kind(ref s) => check_struct(s),
|
|
ast::tuple_variant_kind(..) => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::item_struct(ref def, _) => check_struct(def),
|
|
|
|
ast::item_trait(_, _, ref methods) => {
|
|
for m in methods.iter() {
|
|
match *m {
|
|
ast::required(..) => {}
|
|
ast::provided(ref m) => check_inherited(m.span, m.vis),
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::item_static(..) |
|
|
ast::item_fn(..) | ast::item_mod(..) | ast::item_ty(..) |
|
|
ast::item_mac(..) => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn check_crate(tcx: ty::ctxt,
|
|
method_map: &method_map,
|
|
exp_map2: &resolve::ExportMap2,
|
|
external_exports: resolve::ExternalExports,
|
|
last_private_map: resolve::LastPrivateMap,
|
|
crate: &ast::Crate) -> ExportedItems {
|
|
// Figure out who everyone's parent is
|
|
let mut visitor = ParentVisitor {
|
|
parents: HashMap::new(),
|
|
curparent: ast::DUMMY_NODE_ID,
|
|
};
|
|
visit::walk_crate(&mut visitor, crate, ());
|
|
|
|
// Use the parent map to check the privacy of everything
|
|
let mut visitor = PrivacyVisitor {
|
|
curitem: ast::DUMMY_NODE_ID,
|
|
in_fn: false,
|
|
in_foreign: false,
|
|
tcx: tcx,
|
|
parents: visitor.parents,
|
|
method_map: method_map,
|
|
external_exports: external_exports,
|
|
last_private_map: last_private_map,
|
|
};
|
|
visit::walk_crate(&mut visitor, crate, ());
|
|
|
|
// Sanity check to make sure that all privacy usage and controls are
|
|
// reasonable.
|
|
let mut visitor = SanePrivacyVisitor {
|
|
in_fn: false,
|
|
tcx: tcx,
|
|
};
|
|
visit::walk_crate(&mut visitor, crate, ());
|
|
|
|
tcx.sess.abort_if_errors();
|
|
|
|
// Build up a set of all exported items in the AST. This is a set of all
|
|
// items which are reachable from external crates based on visibility.
|
|
let mut visitor = EmbargoVisitor {
|
|
tcx: tcx,
|
|
exported_items: HashSet::new(),
|
|
reexports: HashSet::new(),
|
|
exp_map2: exp_map2,
|
|
prev_exported: true,
|
|
};
|
|
loop {
|
|
let before = visitor.exported_items.len();
|
|
visit::walk_crate(&mut visitor, crate, ());
|
|
if before == visitor.exported_items.len() {
|
|
break
|
|
}
|
|
}
|
|
|
|
return visitor.exported_items;
|
|
}
|