rust/compiler/rustc_resolve/src/late/lifetimes.rs
2021-04-21 12:26:19 -04:00

3525 lines
143 KiB
Rust

// ignore-tidy-filelength
//! Name resolution for lifetimes.
//!
//! Name resolution for lifetimes follows *much* simpler rules than the
//! full resolve. For example, lifetime names are never exported or
//! used between functions, and they operate in a purely top-down
//! way. Therefore, we break lifetime name resolution into a separate pass.
use crate::late::diagnostics::{ForLifetimeSpanType, MissingLifetimeSpot};
use rustc_ast::walk_list;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefIdMap;
use rustc_hir::hir_id::ItemLocalId;
use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
use rustc_hir::{GenericArg, GenericParam, LifetimeName, Node, ParamName, QPath};
use rustc_hir::{GenericParamKind, HirIdMap, HirIdSet, LifetimeParamKind};
use rustc_middle::hir::map::Map;
use rustc_middle::middle::resolve_lifetime::*;
use rustc_middle::ty::{self, DefIdTree, GenericParamDefKind, TyCtxt};
use rustc_middle::{bug, span_bug};
use rustc_session::lint;
use rustc_span::def_id::{DefId, LocalDefId};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::Span;
use std::borrow::Cow;
use std::cell::Cell;
use std::fmt;
use std::mem::take;
use tracing::{debug, span, Level};
// This counts the no of times a lifetime is used
#[derive(Clone, Copy, Debug)]
pub enum LifetimeUseSet<'tcx> {
One(&'tcx hir::Lifetime),
Many,
}
trait RegionExt {
fn early(hir_map: &Map<'_>, index: &mut u32, param: &GenericParam<'_>) -> (ParamName, Region);
fn late(index: u32, hir_map: &Map<'_>, param: &GenericParam<'_>) -> (ParamName, Region);
fn late_anon(named_late_bound_vars: u32, index: &Cell<u32>) -> Region;
fn id(&self) -> Option<DefId>;
fn shifted(self, amount: u32) -> Region;
fn shifted_out_to_binder(self, binder: ty::DebruijnIndex) -> Region;
fn subst<'a, L>(self, params: L, map: &NamedRegionMap) -> Option<Region>
where
L: Iterator<Item = &'a hir::Lifetime>;
}
impl RegionExt for Region {
fn early(hir_map: &Map<'_>, index: &mut u32, param: &GenericParam<'_>) -> (ParamName, Region) {
let i = *index;
*index += 1;
let def_id = hir_map.local_def_id(param.hir_id);
let origin = LifetimeDefOrigin::from_param(param);
debug!("Region::early: index={} def_id={:?}", i, def_id);
(param.name.normalize_to_macros_2_0(), Region::EarlyBound(i, def_id.to_def_id(), origin))
}
fn late(idx: u32, hir_map: &Map<'_>, param: &GenericParam<'_>) -> (ParamName, Region) {
let depth = ty::INNERMOST;
let def_id = hir_map.local_def_id(param.hir_id);
let origin = LifetimeDefOrigin::from_param(param);
debug!(
"Region::late: idx={:?}, param={:?} depth={:?} def_id={:?} origin={:?}",
idx, param, depth, def_id, origin,
);
(
param.name.normalize_to_macros_2_0(),
Region::LateBound(depth, idx, def_id.to_def_id(), origin),
)
}
fn late_anon(named_late_bound_vars: u32, index: &Cell<u32>) -> Region {
let i = index.get();
index.set(i + 1);
let depth = ty::INNERMOST;
Region::LateBoundAnon(depth, named_late_bound_vars + i, i)
}
fn id(&self) -> Option<DefId> {
match *self {
Region::Static | Region::LateBoundAnon(..) => None,
Region::EarlyBound(_, id, _) | Region::LateBound(_, _, id, _) | Region::Free(_, id) => {
Some(id)
}
}
}
fn shifted(self, amount: u32) -> Region {
match self {
Region::LateBound(debruijn, idx, id, origin) => {
Region::LateBound(debruijn.shifted_in(amount), idx, id, origin)
}
Region::LateBoundAnon(debruijn, index, anon_index) => {
Region::LateBoundAnon(debruijn.shifted_in(amount), index, anon_index)
}
_ => self,
}
}
fn shifted_out_to_binder(self, binder: ty::DebruijnIndex) -> Region {
match self {
Region::LateBound(debruijn, index, id, origin) => {
Region::LateBound(debruijn.shifted_out_to_binder(binder), index, id, origin)
}
Region::LateBoundAnon(debruijn, index, anon_index) => {
Region::LateBoundAnon(debruijn.shifted_out_to_binder(binder), index, anon_index)
}
_ => self,
}
}
fn subst<'a, L>(self, mut params: L, map: &NamedRegionMap) -> Option<Region>
where
L: Iterator<Item = &'a hir::Lifetime>,
{
if let Region::EarlyBound(index, _, _) = self {
params.nth(index as usize).and_then(|lifetime| map.defs.get(&lifetime.hir_id).cloned())
} else {
Some(self)
}
}
}
/// Maps the id of each lifetime reference to the lifetime decl
/// that it corresponds to.
///
/// FIXME. This struct gets converted to a `ResolveLifetimes` for
/// actual use. It has the same data, but indexed by `LocalDefId`. This
/// is silly.
#[derive(Debug, Default)]
struct NamedRegionMap {
// maps from every use of a named (not anonymous) lifetime to a
// `Region` describing how that region is bound
defs: HirIdMap<Region>,
// the set of lifetime def ids that are late-bound; a region can
// be late-bound if (a) it does NOT appear in a where-clause and
// (b) it DOES appear in the arguments.
late_bound: HirIdSet,
// Maps relevant hir items to the bound vars on them. These include:
// - function defs
// - function pointers
// - closures
// - trait refs
// - bound types (like `T` in `for<'a> T<'a>: Foo`)
late_bound_vars: HirIdMap<Vec<ty::BoundVariableKind>>,
}
crate struct LifetimeContext<'a, 'tcx> {
crate tcx: TyCtxt<'tcx>,
map: &'a mut NamedRegionMap,
scope: ScopeRef<'a>,
/// Used to disallow the use of in-band lifetimes in `fn` or `Fn` syntax.
is_in_fn_syntax: bool,
is_in_const_generic: bool,
/// Indicates that we only care about the definition of a trait. This should
/// be false if the `Item` we are resolving lifetimes for is not a trait or
/// we eventually need lifetimes resolve for trait items.
trait_definition_only: bool,
/// List of labels in the function/method currently under analysis.
labels_in_fn: Vec<Ident>,
/// Cache for cross-crate per-definition object lifetime defaults.
xcrate_object_lifetime_defaults: DefIdMap<Vec<ObjectLifetimeDefault>>,
lifetime_uses: &'a mut DefIdMap<LifetimeUseSet<'tcx>>,
/// When encountering an undefined named lifetime, we will suggest introducing it in these
/// places.
crate missing_named_lifetime_spots: Vec<MissingLifetimeSpot<'tcx>>,
}
#[derive(Debug)]
enum Scope<'a> {
/// Declares lifetimes, and each can be early-bound or late-bound.
/// The `DebruijnIndex` of late-bound lifetimes starts at `1` and
/// it should be shifted by the number of `Binder`s in between the
/// declaration `Binder` and the location it's referenced from.
Binder {
lifetimes: FxHashMap<hir::ParamName, Region>,
/// if we extend this scope with another scope, what is the next index
/// we should use for an early-bound region?
next_early_index: u32,
/// Flag is set to true if, in this binder, `'_` would be
/// equivalent to a "single-use region". This is true on
/// impls, but not other kinds of items.
track_lifetime_uses: bool,
/// Whether or not this binder would serve as the parent
/// binder for opaque types introduced within. For example:
///
/// ```text
/// fn foo<'a>() -> impl for<'b> Trait<Item = impl Trait2<'a>>
/// ```
///
/// Here, the opaque types we create for the `impl Trait`
/// and `impl Trait2` references will both have the `foo` item
/// as their parent. When we get to `impl Trait2`, we find
/// that it is nested within the `for<>` binder -- this flag
/// allows us to skip that when looking for the parent binder
/// of the resulting opaque type.
opaque_type_parent: bool,
scope_type: BinderScopeType,
/// The late bound vars for a given item are stored by `HirId` to be
/// queried later. However, if we enter an elision scope, we have to
/// later append the elided bound vars to the list and need to know what
/// to append to.
hir_id: hir::HirId,
s: ScopeRef<'a>,
},
/// Lifetimes introduced by a fn are scoped to the call-site for that fn,
/// if this is a fn body, otherwise the original definitions are used.
/// Unspecified lifetimes are inferred, unless an elision scope is nested,
/// e.g., `(&T, fn(&T) -> &T);` becomes `(&'_ T, for<'a> fn(&'a T) -> &'a T)`.
Body {
id: hir::BodyId,
s: ScopeRef<'a>,
},
/// A scope which either determines unspecified lifetimes or errors
/// on them (e.g., due to ambiguity). For more details, see `Elide`.
Elision {
elide: Elide,
s: ScopeRef<'a>,
},
/// Use a specific lifetime (if `Some`) or leave it unset (to be
/// inferred in a function body or potentially error outside one),
/// for the default choice of lifetime in a trait object type.
ObjectLifetimeDefault {
lifetime: Option<Region>,
s: ScopeRef<'a>,
},
/// When we have nested trait refs, we concanetate late bound vars for inner
/// trait refs from outer ones. But we also need to include any HRTB
/// lifetimes encountered when identifying the trait that an associated type
/// is declared on.
Supertrait {
lifetimes: Vec<ty::BoundVariableKind>,
s: ScopeRef<'a>,
},
TraitRefBoundary {
s: ScopeRef<'a>,
},
Root,
}
#[derive(Copy, Clone, Debug)]
enum BinderScopeType {
/// Any non-concatenating binder scopes.
Normal,
/// Within a syntactic trait ref, there may be multiple poly trait refs that
/// are nested (under the `associcated_type_bounds` feature). The binders of
/// the innner poly trait refs are extended from the outer poly trait refs
/// and don't increase the late bound depth. If you had
/// `T: for<'a> Foo<Bar: for<'b> Baz<'a, 'b>>`, then the `for<'b>` scope
/// would be `Concatenating`. This also used in trait refs in where clauses
/// where we have two binders `for<> T: for<> Foo` (I've intentionally left
/// out any lifetimes because they aren't needed to show the two scopes).
/// The inner `for<>` has a scope of `Concatenating`.
Concatenating,
}
// A helper struct for debugging scopes without printing parent scopes
struct TruncatedScopeDebug<'a>(&'a Scope<'a>);
impl<'a> fmt::Debug for TruncatedScopeDebug<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.0 {
Scope::Binder {
lifetimes,
next_early_index,
track_lifetime_uses,
opaque_type_parent,
scope_type,
hir_id,
s: _,
} => f
.debug_struct("Binder")
.field("lifetimes", lifetimes)
.field("next_early_index", next_early_index)
.field("track_lifetime_uses", track_lifetime_uses)
.field("opaque_type_parent", opaque_type_parent)
.field("scope_type", scope_type)
.field("hir_id", hir_id)
.field("s", &"..")
.finish(),
Scope::Body { id, s: _ } => {
f.debug_struct("Body").field("id", id).field("s", &"..").finish()
}
Scope::Elision { elide, s: _ } => {
f.debug_struct("Elision").field("elide", elide).field("s", &"..").finish()
}
Scope::ObjectLifetimeDefault { lifetime, s: _ } => f
.debug_struct("ObjectLifetimeDefault")
.field("lifetime", lifetime)
.field("s", &"..")
.finish(),
Scope::Supertrait { lifetimes, s: _ } => f
.debug_struct("Supertrait")
.field("lifetimes", lifetimes)
.field("s", &"..")
.finish(),
Scope::TraitRefBoundary { s: _ } => f.debug_struct("TraitRefBoundary").finish(),
Scope::Root => f.debug_struct("Root").finish(),
}
}
}
#[derive(Clone, Debug)]
enum Elide {
/// Use a fresh anonymous late-bound lifetime each time, by
/// incrementing the counter to generate sequential indices. All
/// anonymous lifetimes must start *after* named bound vars.
FreshLateAnon(u32, Cell<u32>),
/// Always use this one lifetime.
Exact(Region),
/// Less or more than one lifetime were found, error on unspecified.
Error(Vec<ElisionFailureInfo>),
/// Forbid lifetime elision inside of a larger scope where it would be
/// permitted. For example, in let position impl trait.
Forbid,
}
#[derive(Clone, Debug)]
crate struct ElisionFailureInfo {
/// Where we can find the argument pattern.
parent: Option<hir::BodyId>,
/// The index of the argument in the original definition.
index: usize,
lifetime_count: usize,
have_bound_regions: bool,
crate span: Span,
}
type ScopeRef<'a> = &'a Scope<'a>;
const ROOT_SCOPE: ScopeRef<'static> = &Scope::Root;
pub fn provide(providers: &mut ty::query::Providers) {
*providers = ty::query::Providers {
resolve_lifetimes_trait_definition,
resolve_lifetimes,
named_region_map: |tcx, id| resolve_lifetimes_for(tcx, id).defs.get(&id),
is_late_bound_map,
object_lifetime_defaults_map: |tcx, id| {
let hir_id = tcx.hir().local_def_id_to_hir_id(id);
match tcx.hir().find(hir_id) {
Some(Node::Item(item)) => compute_object_lifetime_defaults(tcx, item),
_ => None,
}
},
late_bound_vars_map: |tcx, id| resolve_lifetimes_for(tcx, id).late_bound_vars.get(&id),
..*providers
};
}
/// Like `resolve_lifetimes`, but does not resolve lifetimes for trait items.
/// Also does not generate any diagnostics.
///
/// This is ultimately a subset of the `resolve_lifetimes` work. It effectively
/// resolves lifetimes only within the trait "header" -- that is, the trait
/// and supertrait list. In contrast, `resolve_lifetimes` resolves all the
/// lifetimes within the trait and its items. There is room to refactor this,
/// for example to resolve lifetimes for each trait item in separate queries,
/// but it's convenient to do the entire trait at once because the lifetimes
/// from the trait definition are in scope within the trait items as well.
///
/// The reason for this separate call is to resolve what would otherwise
/// be a cycle. Consider this example:
///
/// ```rust
/// trait Base<'a> {
/// type BaseItem;
/// }
/// trait Sub<'b>: for<'a> Base<'a> {
/// type SubItem: Sub<BaseItem = &'b u32>;
/// }
/// ```
///
/// When we resolve `Sub` and all its items, we also have to resolve `Sub<BaseItem = &'b u32>`.
/// To figure out the index of `'b`, we have to know about the supertraits
/// of `Sub` so that we can determine that the `for<'a>` will be in scope.
/// (This is because we -- currently at least -- flatten all the late-bound
/// lifetimes into a single binder.) This requires us to resolve the
/// *trait definition* of `Sub`; basically just enough lifetime information
/// to look at the supertraits.
#[tracing::instrument(level = "debug", skip(tcx))]
fn resolve_lifetimes_trait_definition(
tcx: TyCtxt<'_>,
local_def_id: LocalDefId,
) -> ResolveLifetimes {
do_resolve(tcx, local_def_id, true)
}
/// Computes the `ResolveLifetimes` map that contains data for an entire `Item`.
/// You should not read the result of this query directly, but rather use
/// `named_region_map`, `is_late_bound_map`, etc.
#[tracing::instrument(level = "debug", skip(tcx))]
fn resolve_lifetimes(tcx: TyCtxt<'_>, local_def_id: LocalDefId) -> ResolveLifetimes {
do_resolve(tcx, local_def_id, false)
}
fn do_resolve(
tcx: TyCtxt<'_>,
local_def_id: LocalDefId,
trait_definition_only: bool,
) -> ResolveLifetimes {
let item = tcx.hir().expect_item(tcx.hir().local_def_id_to_hir_id(local_def_id));
let mut named_region_map = NamedRegionMap {
defs: Default::default(),
late_bound: Default::default(),
late_bound_vars: Default::default(),
};
let mut visitor = LifetimeContext {
tcx,
map: &mut named_region_map,
scope: ROOT_SCOPE,
is_in_fn_syntax: false,
is_in_const_generic: false,
trait_definition_only,
labels_in_fn: vec![],
xcrate_object_lifetime_defaults: Default::default(),
lifetime_uses: &mut Default::default(),
missing_named_lifetime_spots: vec![],
};
visitor.visit_item(item);
let mut rl = ResolveLifetimes::default();
for (hir_id, v) in named_region_map.defs {
let map = rl.defs.entry(hir_id.owner).or_default();
map.insert(hir_id.local_id, v);
}
for hir_id in named_region_map.late_bound {
let map = rl.late_bound.entry(hir_id.owner).or_default();
map.insert(hir_id.local_id);
}
for (hir_id, v) in named_region_map.late_bound_vars {
let map = rl.late_bound_vars.entry(hir_id.owner).or_default();
map.insert(hir_id.local_id, v);
}
debug!(?rl.defs);
rl
}
/// Given `any` owner (structs, traits, trait methods, etc.), does lifetime resolution.
/// There are two important things this does.
/// First, we have to resolve lifetimes for
/// the entire *`Item`* that contains this owner, because that's the largest "scope"
/// where we can have relevant lifetimes.
/// Second, if we are asking for lifetimes in a trait *definition*, we use `resolve_lifetimes_trait_definition`
/// instead of `resolve_lifetimes`, which does not descend into the trait items and does not emit diagnostics.
/// This allows us to avoid cycles. Importantly, if we ask for lifetimes for lifetimes that have an owner
/// other than the trait itself (like the trait methods or associated types), then we just use the regular
/// `resolve_lifetimes`.
fn resolve_lifetimes_for<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &'tcx ResolveLifetimes {
let item_id = item_for(tcx, def_id);
if item_id == def_id {
let item = tcx.hir().item(hir::ItemId { def_id: item_id });
match item.kind {
hir::ItemKind::Trait(..) => tcx.resolve_lifetimes_trait_definition(item_id),
_ => tcx.resolve_lifetimes(item_id),
}
} else {
tcx.resolve_lifetimes(item_id)
}
}
/// Finds the `Item` that contains the given `LocalDefId`
fn item_for(tcx: TyCtxt<'_>, local_def_id: LocalDefId) -> LocalDefId {
let hir_id = tcx.hir().local_def_id_to_hir_id(local_def_id);
match tcx.hir().find(hir_id) {
Some(Node::Item(item)) => {
return item.def_id;
}
_ => {}
}
let item = {
let hir = tcx.hir();
let mut parent_iter = hir.parent_iter(hir_id);
loop {
let node = parent_iter.next().map(|n| n.1);
match node {
Some(hir::Node::Item(item)) => break item.def_id,
Some(hir::Node::Crate(_)) | None => bug!("Called `item_for` on an Item."),
_ => {}
}
}
};
item
}
fn is_late_bound_map<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: LocalDefId,
) -> Option<(LocalDefId, &'tcx FxHashSet<ItemLocalId>)> {
match tcx.def_kind(def_id) {
DefKind::AnonConst => {
let mut def_id = tcx
.parent(def_id.to_def_id())
.unwrap_or_else(|| bug!("anon const or closure without a parent"));
// We search for the next outer anon const or fn here
// while skipping closures.
//
// Note that for `AnonConst` we still just recurse until we
// find a function body, but who cares :shrug:
while tcx.is_closure(def_id) {
def_id = tcx
.parent(def_id)
.unwrap_or_else(|| bug!("anon const or closure without a parent"));
}
tcx.is_late_bound_map(def_id.expect_local())
}
_ => resolve_lifetimes_for(tcx, def_id).late_bound.get(&def_id).map(|lt| (def_id, lt)),
}
}
/// In traits, there is an implicit `Self` type parameter which comes before the generics.
/// We have to account for this when computing the index of the other generic parameters.
/// This function returns whether there is such an implicit parameter defined on the given item.
fn sub_items_have_self_param(node: &hir::ItemKind<'_>) -> bool {
matches!(*node, hir::ItemKind::Trait(..) | hir::ItemKind::TraitAlias(..))
}
fn late_region_as_bound_region<'tcx>(tcx: TyCtxt<'tcx>, region: &Region) -> ty::BoundVariableKind {
match region {
Region::LateBound(_, _, def_id, _) => {
let name = tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id.expect_local()));
ty::BoundVariableKind::Region(ty::BrNamed(*def_id, name))
}
Region::LateBoundAnon(_, _, anon_idx) => {
ty::BoundVariableKind::Region(ty::BrAnon(*anon_idx))
}
_ => bug!("{:?} is not a late region", region),
}
}
impl<'a, 'tcx> LifetimeContext<'a, 'tcx> {
/// Returns the binders in scope and the type of `Binder` that should be created for a poly trait ref.
fn poly_trait_ref_binder_info(&mut self) -> (Vec<ty::BoundVariableKind>, BinderScopeType) {
let mut scope = self.scope;
let mut supertrait_lifetimes = vec![];
loop {
match scope {
Scope::Body { .. } | Scope::Root => {
break (vec![], BinderScopeType::Normal);
}
Scope::Elision { s, .. } | Scope::ObjectLifetimeDefault { s, .. } => {
scope = s;
}
Scope::Supertrait { s, lifetimes } => {
supertrait_lifetimes = lifetimes.clone();
scope = s;
}
Scope::TraitRefBoundary { .. } => {
// We should only see super trait lifetimes if there is a `Binder` above
assert!(supertrait_lifetimes.is_empty());
break (vec![], BinderScopeType::Normal);
}
Scope::Binder { hir_id, .. } => {
// Nested poly trait refs have the binders concatenated
let mut full_binders =
self.map.late_bound_vars.entry(*hir_id).or_default().clone();
full_binders.extend(supertrait_lifetimes.into_iter());
break (full_binders, BinderScopeType::Concatenating);
}
}
}
}
}
impl<'a, 'tcx> Visitor<'tcx> for LifetimeContext<'a, 'tcx> {
type Map = Map<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::All(self.tcx.hir())
}
// We want to nest trait/impl items in their parent, but nothing else.
fn visit_nested_item(&mut self, _: hir::ItemId) {}
fn visit_trait_item_ref(&mut self, ii: &'tcx hir::TraitItemRef) {
if !self.trait_definition_only {
intravisit::walk_trait_item_ref(self, ii)
}
}
fn visit_nested_body(&mut self, body: hir::BodyId) {
// Each body has their own set of labels, save labels.
let saved = take(&mut self.labels_in_fn);
let body = self.tcx.hir().body(body);
extract_labels(self, body);
self.with(Scope::Body { id: body.id(), s: self.scope }, |_, this| {
this.visit_body(body);
});
self.labels_in_fn = saved;
}
fn visit_fn(
&mut self,
fk: intravisit::FnKind<'tcx>,
fd: &'tcx hir::FnDecl<'tcx>,
b: hir::BodyId,
s: rustc_span::Span,
hir_id: hir::HirId,
) {
let name = match fk {
intravisit::FnKind::ItemFn(id, _, _, _) => id.as_str(),
intravisit::FnKind::Method(id, _, _) => id.as_str(),
intravisit::FnKind::Closure => Symbol::intern("closure").as_str(),
};
let name: &str = &name;
let span = span!(Level::DEBUG, "visit_fn", name);
let _enter = span.enter();
match fk {
// Any `Binders` are handled elsewhere
intravisit::FnKind::ItemFn(..) | intravisit::FnKind::Method(..) => {
intravisit::walk_fn(self, fk, fd, b, s, hir_id)
}
intravisit::FnKind::Closure => {
self.map.late_bound_vars.insert(hir_id, vec![]);
let scope = Scope::Binder {
hir_id,
lifetimes: FxHashMap::default(),
next_early_index: self.next_early_index(),
s: self.scope,
track_lifetime_uses: true,
opaque_type_parent: false,
scope_type: BinderScopeType::Normal,
};
self.with(scope, move |_old_scope, this| {
intravisit::walk_fn(this, fk, fd, b, s, hir_id)
});
}
}
}
fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
match &item.kind {
hir::ItemKind::Impl(hir::Impl { of_trait, .. }) => {
if let Some(of_trait) = of_trait {
self.map.late_bound_vars.insert(of_trait.hir_ref_id, Vec::default());
}
}
_ => {}
}
match item.kind {
hir::ItemKind::Fn(ref sig, ref generics, _) => {
self.missing_named_lifetime_spots.push(generics.into());
self.visit_early_late(None, item.hir_id(), &sig.decl, generics, |this| {
intravisit::walk_item(this, item);
});
self.missing_named_lifetime_spots.pop();
}
hir::ItemKind::ExternCrate(_)
| hir::ItemKind::Use(..)
| hir::ItemKind::Mod(..)
| hir::ItemKind::ForeignMod { .. }
| hir::ItemKind::GlobalAsm(..) => {
// These sorts of items have no lifetime parameters at all.
intravisit::walk_item(self, item);
}
hir::ItemKind::Static(..) | hir::ItemKind::Const(..) => {
// No lifetime parameters, but implied 'static.
let scope = Scope::Elision { elide: Elide::Exact(Region::Static), s: ROOT_SCOPE };
self.with(scope, |_, this| intravisit::walk_item(this, item));
}
hir::ItemKind::OpaqueTy(hir::OpaqueTy { .. }) => {
// Opaque types are visited when we visit the
// `TyKind::OpaqueDef`, so that they have the lifetimes from
// their parent opaque_ty in scope.
//
// The core idea here is that since OpaqueTys are generated with the impl Trait as
// their owner, we can keep going until we find the Item that owns that. We then
// conservatively add all resolved lifetimes. Otherwise we run into problems in
// cases like `type Foo<'a> = impl Bar<As = impl Baz + 'a>`.
for (_hir_id, node) in
self.tcx.hir().parent_iter(self.tcx.hir().local_def_id_to_hir_id(item.def_id))
{
match node {
hir::Node::Item(parent_item) => {
let resolved_lifetimes: &ResolveLifetimes =
self.tcx.resolve_lifetimes(item_for(self.tcx, parent_item.def_id));
// We need to add *all* deps, since opaque tys may want them from *us*
for (&owner, defs) in resolved_lifetimes.defs.iter() {
defs.iter().for_each(|(&local_id, region)| {
self.map
.defs
.insert(hir::HirId { owner, local_id }, region.clone());
});
}
for (&owner, late_bound) in resolved_lifetimes.late_bound.iter() {
late_bound.iter().for_each(|&local_id| {
self.map.late_bound.insert(hir::HirId { owner, local_id });
});
}
for (&owner, late_bound_vars) in
resolved_lifetimes.late_bound_vars.iter()
{
late_bound_vars.iter().for_each(|(&local_id, late_bound_vars)| {
self.map.late_bound_vars.insert(
hir::HirId { owner, local_id },
late_bound_vars.clone(),
);
});
}
break;
}
hir::Node::Crate(_) => bug!("No Item about an OpaqueTy"),
_ => {}
}
}
}
hir::ItemKind::TyAlias(_, ref generics)
| hir::ItemKind::Enum(_, ref generics)
| hir::ItemKind::Struct(_, ref generics)
| hir::ItemKind::Union(_, ref generics)
| hir::ItemKind::Trait(_, _, ref generics, ..)
| hir::ItemKind::TraitAlias(ref generics, ..)
| hir::ItemKind::Impl(hir::Impl { ref generics, .. }) => {
self.missing_named_lifetime_spots.push(generics.into());
// Impls permit `'_` to be used and it is equivalent to "some fresh lifetime name".
// This is not true for other kinds of items.
let track_lifetime_uses = matches!(item.kind, hir::ItemKind::Impl { .. });
// These kinds of items have only early-bound lifetime parameters.
let mut index = if sub_items_have_self_param(&item.kind) {
1 // Self comes before lifetimes
} else {
0
};
let mut non_lifetime_count = 0;
let lifetimes = generics
.params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
Some(Region::early(&self.tcx.hir(), &mut index, param))
}
GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
non_lifetime_count += 1;
None
}
})
.collect();
self.map.late_bound_vars.insert(item.hir_id(), vec![]);
let scope = Scope::Binder {
hir_id: item.hir_id(),
lifetimes,
next_early_index: index + non_lifetime_count,
opaque_type_parent: true,
track_lifetime_uses,
scope_type: BinderScopeType::Normal,
s: ROOT_SCOPE,
};
self.with(scope, |old_scope, this| {
this.check_lifetime_params(old_scope, &generics.params);
let scope = Scope::TraitRefBoundary { s: this.scope };
this.with(scope, |_, this| {
intravisit::walk_item(this, item);
});
});
self.missing_named_lifetime_spots.pop();
}
}
}
fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
match item.kind {
hir::ForeignItemKind::Fn(ref decl, _, ref generics) => {
self.visit_early_late(None, item.hir_id(), decl, generics, |this| {
intravisit::walk_foreign_item(this, item);
})
}
hir::ForeignItemKind::Static(..) => {
intravisit::walk_foreign_item(self, item);
}
hir::ForeignItemKind::Type => {
intravisit::walk_foreign_item(self, item);
}
}
}
#[tracing::instrument(level = "debug", skip(self))]
fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
match ty.kind {
hir::TyKind::BareFn(ref c) => {
let next_early_index = self.next_early_index();
let was_in_fn_syntax = self.is_in_fn_syntax;
self.is_in_fn_syntax = true;
let lifetime_span: Option<Span> =
c.generic_params.iter().rev().find_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => Some(param.span),
_ => None,
});
let (span, span_type) = if let Some(span) = lifetime_span {
(span.shrink_to_hi(), ForLifetimeSpanType::TypeTail)
} else {
(ty.span.shrink_to_lo(), ForLifetimeSpanType::TypeEmpty)
};
self.missing_named_lifetime_spots
.push(MissingLifetimeSpot::HigherRanked { span, span_type });
let (lifetimes, binders): (FxHashMap<hir::ParamName, Region>, Vec<_>) = c
.generic_params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => Some(param),
_ => None,
})
.enumerate()
.map(|(late_bound_idx, param)| {
let pair = Region::late(late_bound_idx as u32, &self.tcx.hir(), param);
let r = late_region_as_bound_region(self.tcx, &pair.1);
(pair, r)
})
.unzip();
self.map.late_bound_vars.insert(ty.hir_id, binders);
let scope = Scope::Binder {
hir_id: ty.hir_id,
lifetimes,
s: self.scope,
next_early_index,
track_lifetime_uses: true,
opaque_type_parent: false,
scope_type: BinderScopeType::Normal,
};
self.with(scope, |old_scope, this| {
// a bare fn has no bounds, so everything
// contained within is scoped within its binder.
this.check_lifetime_params(old_scope, &c.generic_params);
intravisit::walk_ty(this, ty);
});
self.missing_named_lifetime_spots.pop();
self.is_in_fn_syntax = was_in_fn_syntax;
}
hir::TyKind::TraitObject(bounds, ref lifetime, _) => {
debug!(?bounds, ?lifetime, "TraitObject");
let scope = Scope::TraitRefBoundary { s: self.scope };
self.with(scope, |_, this| {
for bound in bounds {
this.visit_poly_trait_ref(bound, hir::TraitBoundModifier::None);
}
});
match lifetime.name {
LifetimeName::Implicit => {
// For types like `dyn Foo`, we should
// generate a special form of elided.
span_bug!(ty.span, "object-lifetime-default expected, not implicit",);
}
LifetimeName::ImplicitObjectLifetimeDefault => {
// If the user does not write *anything*, we
// use the object lifetime defaulting
// rules. So e.g., `Box<dyn Debug>` becomes
// `Box<dyn Debug + 'static>`.
self.resolve_object_lifetime_default(lifetime)
}
LifetimeName::Underscore => {
// If the user writes `'_`, we use the *ordinary* elision
// rules. So the `'_` in e.g., `Box<dyn Debug + '_>` will be
// resolved the same as the `'_` in `&'_ Foo`.
//
// cc #48468
self.resolve_elided_lifetimes(&[lifetime])
}
LifetimeName::Param(_) | LifetimeName::Static => {
// If the user wrote an explicit name, use that.
self.visit_lifetime(lifetime);
}
LifetimeName::Error => {}
}
}
hir::TyKind::Rptr(ref lifetime_ref, ref mt) => {
self.visit_lifetime(lifetime_ref);
let scope = Scope::ObjectLifetimeDefault {
lifetime: self.map.defs.get(&lifetime_ref.hir_id).cloned(),
s: self.scope,
};
self.with(scope, |_, this| this.visit_ty(&mt.ty));
}
hir::TyKind::OpaqueDef(item_id, lifetimes) => {
// Resolve the lifetimes in the bounds to the lifetime defs in the generics.
// `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
// `type MyAnonTy<'b> = impl MyTrait<'b>;`
// ^ ^ this gets resolved in the scope of
// the opaque_ty generics
let opaque_ty = self.tcx.hir().item(item_id);
let (generics, bounds) = match opaque_ty.kind {
// Named opaque `impl Trait` types are reached via `TyKind::Path`.
// This arm is for `impl Trait` in the types of statics, constants and locals.
hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: None, .. }) => {
intravisit::walk_ty(self, ty);
// Elided lifetimes are not allowed in non-return
// position impl Trait
let scope = Scope::TraitRefBoundary { s: self.scope };
self.with(scope, |_, this| {
let scope = Scope::Elision { elide: Elide::Forbid, s: this.scope };
this.with(scope, |_, this| {
intravisit::walk_item(this, opaque_ty);
})
});
return;
}
// RPIT (return position impl trait)
hir::ItemKind::OpaqueTy(hir::OpaqueTy {
impl_trait_fn: Some(_),
ref generics,
bounds,
..
}) => (generics, bounds),
ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
};
// Resolve the lifetimes that are applied to the opaque type.
// These are resolved in the current scope.
// `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
// `fn foo<'a>() -> MyAnonTy<'a> { ... }`
// ^ ^this gets resolved in the current scope
for lifetime in lifetimes {
if let hir::GenericArg::Lifetime(lifetime) = lifetime {
self.visit_lifetime(lifetime);
// Check for predicates like `impl for<'a> Trait<impl OtherTrait<'a>>`
// and ban them. Type variables instantiated inside binders aren't
// well-supported at the moment, so this doesn't work.
// In the future, this should be fixed and this error should be removed.
let def = self.map.defs.get(&lifetime.hir_id).cloned();
if let Some(Region::LateBound(_, _, def_id, _)) = def {
if let Some(def_id) = def_id.as_local() {
let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
// Ensure that the parent of the def is an item, not HRTB
let parent_id = self.tcx.hir().get_parent_node(hir_id);
let parent_is_item = if let Some(parent_def_id) =
parent_id.as_owner()
{
let parent_item_id = hir::ItemId { def_id: parent_def_id };
let parent_impl_id = hir::ImplItemId { def_id: parent_def_id };
let parent_trait_id =
hir::TraitItemId { def_id: parent_def_id };
let parent_foreign_id =
hir::ForeignItemId { def_id: parent_def_id };
let krate = self.tcx.hir().krate();
krate.items.contains_key(&parent_item_id)
|| krate.impl_items.contains_key(&parent_impl_id)
|| krate.trait_items.contains_key(&parent_trait_id)
|| krate.foreign_items.contains_key(&parent_foreign_id)
} else {
false
};
if !parent_is_item {
if !self.trait_definition_only {
struct_span_err!(
self.tcx.sess,
lifetime.span,
E0657,
"`impl Trait` can only capture lifetimes \
bound at the fn or impl level"
)
.emit();
}
self.uninsert_lifetime_on_error(lifetime, def.unwrap());
}
}
}
}
}
// We want to start our early-bound indices at the end of the parent scope,
// not including any parent `impl Trait`s.
let mut index = self.next_early_index_for_opaque_type();
debug!(?index);
let mut elision = None;
let mut lifetimes = FxHashMap::default();
let mut non_lifetime_count = 0;
for param in generics.params {
match param.kind {
GenericParamKind::Lifetime { .. } => {
let (name, reg) = Region::early(&self.tcx.hir(), &mut index, &param);
let def_id = if let Region::EarlyBound(_, def_id, _) = reg {
def_id
} else {
bug!();
};
// We cannot predict what lifetimes are unused in opaque type.
self.lifetime_uses.insert(def_id, LifetimeUseSet::Many);
if let hir::ParamName::Plain(Ident {
name: kw::UnderscoreLifetime,
..
}) = name
{
// Pick the elided lifetime "definition" if one exists
// and use it to make an elision scope.
elision = Some(reg);
} else {
lifetimes.insert(name, reg);
}
}
GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
non_lifetime_count += 1;
}
}
}
let next_early_index = index + non_lifetime_count;
self.map.late_bound_vars.insert(ty.hir_id, vec![]);
if let Some(elision_region) = elision {
let scope =
Scope::Elision { elide: Elide::Exact(elision_region), s: self.scope };
self.with(scope, |_old_scope, this| {
let scope = Scope::Binder {
hir_id: ty.hir_id,
lifetimes,
next_early_index,
s: this.scope,
track_lifetime_uses: true,
opaque_type_parent: false,
scope_type: BinderScopeType::Normal,
};
this.with(scope, |_old_scope, this| {
this.visit_generics(generics);
let scope = Scope::TraitRefBoundary { s: this.scope };
this.with(scope, |_, this| {
for bound in bounds {
this.visit_param_bound(bound);
}
})
});
});
} else {
let scope = Scope::Binder {
hir_id: ty.hir_id,
lifetimes,
next_early_index,
s: self.scope,
track_lifetime_uses: true,
opaque_type_parent: false,
scope_type: BinderScopeType::Normal,
};
self.with(scope, |_old_scope, this| {
let scope = Scope::TraitRefBoundary { s: this.scope };
this.with(scope, |_, this| {
this.visit_generics(generics);
for bound in bounds {
this.visit_param_bound(bound);
}
})
});
}
}
_ => intravisit::walk_ty(self, ty),
}
}
fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
use self::hir::TraitItemKind::*;
match trait_item.kind {
Fn(ref sig, _) => {
self.missing_named_lifetime_spots.push((&trait_item.generics).into());
let tcx = self.tcx;
self.visit_early_late(
Some(tcx.hir().get_parent_item(trait_item.hir_id())),
trait_item.hir_id(),
&sig.decl,
&trait_item.generics,
|this| intravisit::walk_trait_item(this, trait_item),
);
self.missing_named_lifetime_spots.pop();
}
Type(bounds, ref ty) => {
self.missing_named_lifetime_spots.push((&trait_item.generics).into());
let generics = &trait_item.generics;
let mut index = self.next_early_index();
debug!("visit_ty: index = {}", index);
let mut non_lifetime_count = 0;
let lifetimes = generics
.params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
Some(Region::early(&self.tcx.hir(), &mut index, param))
}
GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
non_lifetime_count += 1;
None
}
})
.collect();
self.map.late_bound_vars.insert(trait_item.hir_id(), vec![]);
let scope = Scope::Binder {
hir_id: trait_item.hir_id(),
lifetimes,
next_early_index: index + non_lifetime_count,
s: self.scope,
track_lifetime_uses: true,
opaque_type_parent: true,
scope_type: BinderScopeType::Normal,
};
self.with(scope, |old_scope, this| {
this.check_lifetime_params(old_scope, &generics.params);
let scope = Scope::TraitRefBoundary { s: this.scope };
this.with(scope, |_, this| {
this.visit_generics(generics);
for bound in bounds {
this.visit_param_bound(bound);
}
if let Some(ty) = ty {
this.visit_ty(ty);
}
})
});
self.missing_named_lifetime_spots.pop();
}
Const(_, _) => {
// Only methods and types support generics.
assert!(trait_item.generics.params.is_empty());
self.missing_named_lifetime_spots.push(MissingLifetimeSpot::Static);
intravisit::walk_trait_item(self, trait_item);
self.missing_named_lifetime_spots.pop();
}
}
}
fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
use self::hir::ImplItemKind::*;
match impl_item.kind {
Fn(ref sig, _) => {
self.missing_named_lifetime_spots.push((&impl_item.generics).into());
let tcx = self.tcx;
self.visit_early_late(
Some(tcx.hir().get_parent_item(impl_item.hir_id())),
impl_item.hir_id(),
&sig.decl,
&impl_item.generics,
|this| intravisit::walk_impl_item(this, impl_item),
);
self.missing_named_lifetime_spots.pop();
}
TyAlias(ref ty) => {
let generics = &impl_item.generics;
self.missing_named_lifetime_spots.push(generics.into());
let mut index = self.next_early_index();
let mut non_lifetime_count = 0;
debug!("visit_ty: index = {}", index);
let lifetimes: FxHashMap<hir::ParamName, Region> = generics
.params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
Some(Region::early(&self.tcx.hir(), &mut index, param))
}
GenericParamKind::Const { .. } | GenericParamKind::Type { .. } => {
non_lifetime_count += 1;
None
}
})
.collect();
self.map.late_bound_vars.insert(ty.hir_id, vec![]);
let scope = Scope::Binder {
hir_id: ty.hir_id,
lifetimes,
next_early_index: index + non_lifetime_count,
s: self.scope,
track_lifetime_uses: true,
opaque_type_parent: true,
scope_type: BinderScopeType::Normal,
};
self.with(scope, |old_scope, this| {
this.check_lifetime_params(old_scope, &generics.params);
let scope = Scope::TraitRefBoundary { s: this.scope };
this.with(scope, |_, this| {
this.visit_generics(generics);
this.visit_ty(ty);
})
});
self.missing_named_lifetime_spots.pop();
}
Const(_, _) => {
// Only methods and types support generics.
assert!(impl_item.generics.params.is_empty());
self.missing_named_lifetime_spots.push(MissingLifetimeSpot::Static);
intravisit::walk_impl_item(self, impl_item);
self.missing_named_lifetime_spots.pop();
}
}
}
#[tracing::instrument(level = "debug", skip(self))]
fn visit_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
if lifetime_ref.is_elided() {
self.resolve_elided_lifetimes(&[lifetime_ref]);
return;
}
if lifetime_ref.is_static() {
self.insert_lifetime(lifetime_ref, Region::Static);
return;
}
if self.is_in_const_generic && lifetime_ref.name != LifetimeName::Error {
self.emit_non_static_lt_in_const_generic_error(lifetime_ref);
return;
}
self.resolve_lifetime_ref(lifetime_ref);
}
fn visit_path(&mut self, path: &'tcx hir::Path<'tcx>, _: hir::HirId) {
for (i, segment) in path.segments.iter().enumerate() {
let depth = path.segments.len() - i - 1;
if let Some(ref args) = segment.args {
self.visit_segment_args(path.res, depth, args);
}
}
}
fn visit_fn_decl(&mut self, fd: &'tcx hir::FnDecl<'tcx>) {
let output = match fd.output {
hir::FnRetTy::DefaultReturn(_) => None,
hir::FnRetTy::Return(ref ty) => Some(&**ty),
};
self.visit_fn_like_elision(&fd.inputs, output);
}
fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
if !self.trait_definition_only {
check_mixed_explicit_and_in_band_defs(self.tcx, &generics.params);
}
let scope = Scope::TraitRefBoundary { s: self.scope };
self.with(scope, |_, this| {
for param in generics.params {
match param.kind {
GenericParamKind::Lifetime { .. } => {}
GenericParamKind::Type { ref default, .. } => {
walk_list!(this, visit_param_bound, param.bounds);
if let Some(ref ty) = default {
this.visit_ty(&ty);
}
}
GenericParamKind::Const { ref ty, .. } => {
let was_in_const_generic = this.is_in_const_generic;
this.is_in_const_generic = true;
walk_list!(this, visit_param_bound, param.bounds);
this.visit_ty(&ty);
this.is_in_const_generic = was_in_const_generic;
}
}
}
for predicate in generics.where_clause.predicates {
match predicate {
&hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
ref bounded_ty,
bounds,
ref bound_generic_params,
..
}) => {
let (lifetimes, binders): (FxHashMap<hir::ParamName, Region>, Vec<_>) =
bound_generic_params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => Some(param),
_ => None,
})
.enumerate()
.map(|(late_bound_idx, param)| {
let pair =
Region::late(late_bound_idx as u32, &this.tcx.hir(), param);
let r = late_region_as_bound_region(this.tcx, &pair.1);
(pair, r)
})
.unzip();
this.map.late_bound_vars.insert(bounded_ty.hir_id, binders.clone());
let next_early_index = this.next_early_index();
// Even if there are no lifetimes defined here, we still wrap it in a binder
// scope. If there happens to be a nested poly trait ref (an error), that
// will be `Concatenating` anyways, so we don't have to worry about the depth
// being wrong.
let scope = Scope::Binder {
hir_id: bounded_ty.hir_id,
lifetimes,
s: this.scope,
next_early_index,
track_lifetime_uses: true,
opaque_type_parent: false,
scope_type: BinderScopeType::Normal,
};
this.with(scope, |old_scope, this| {
this.check_lifetime_params(old_scope, &bound_generic_params);
this.visit_ty(&bounded_ty);
walk_list!(this, visit_param_bound, bounds);
})
}
&hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate {
ref lifetime,
bounds,
..
}) => {
this.visit_lifetime(lifetime);
walk_list!(this, visit_param_bound, bounds);
}
&hir::WherePredicate::EqPredicate(hir::WhereEqPredicate {
ref lhs_ty,
ref rhs_ty,
..
}) => {
this.visit_ty(lhs_ty);
this.visit_ty(rhs_ty);
}
}
}
})
}
fn visit_param_bound(&mut self, bound: &'tcx hir::GenericBound<'tcx>) {
match bound {
hir::GenericBound::LangItemTrait(_, _, hir_id, _) => {
// FIXME(jackh726): This is pretty weird. `LangItemTrait` doesn't go
// through the regular poly trait ref code, so we don't get another
// chance to introduce a binder. For now, I'm keeping the existing logic
// of "if there isn't a Binder scope above us, add one", but I
// imagine there's a better way to go about this.
let (binders, scope_type) = self.poly_trait_ref_binder_info();
self.map.late_bound_vars.insert(*hir_id, binders);
let scope = Scope::Binder {
hir_id: *hir_id,
lifetimes: FxHashMap::default(),
s: self.scope,
next_early_index: self.next_early_index(),
track_lifetime_uses: true,
opaque_type_parent: false,
scope_type,
};
self.with(scope, |_, this| {
intravisit::walk_param_bound(this, bound);
});
}
_ => intravisit::walk_param_bound(self, bound),
}
}
fn visit_poly_trait_ref(
&mut self,
trait_ref: &'tcx hir::PolyTraitRef<'tcx>,
_modifier: hir::TraitBoundModifier,
) {
debug!("visit_poly_trait_ref(trait_ref={:?})", trait_ref);
let should_pop_missing_lt = self.is_trait_ref_fn_scope(trait_ref);
let next_early_index = self.next_early_index();
let (mut binders, scope_type) = self.poly_trait_ref_binder_info();
let initial_bound_vars = binders.len() as u32;
let mut lifetimes: FxHashMap<hir::ParamName, Region> = FxHashMap::default();
let binders_iter = trait_ref
.bound_generic_params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => Some(param),
_ => None,
})
.enumerate()
.map(|(late_bound_idx, param)| {
let pair = Region::late(
initial_bound_vars + late_bound_idx as u32,
&self.tcx.hir(),
param,
);
let r = late_region_as_bound_region(self.tcx, &pair.1);
lifetimes.insert(pair.0, pair.1);
r
});
binders.extend(binders_iter);
debug!(?binders);
self.map.late_bound_vars.insert(trait_ref.trait_ref.hir_ref_id, binders);
// Always introduce a scope here, even if this is in a where clause and
// we introduced the binders around the bounded Ty. In that case, we
// just reuse the concatenation functionality also present in nested trait
// refs.
let scope = Scope::Binder {
hir_id: trait_ref.trait_ref.hir_ref_id,
lifetimes,
s: self.scope,
next_early_index,
track_lifetime_uses: true,
opaque_type_parent: false,
scope_type,
};
self.with(scope, |old_scope, this| {
this.check_lifetime_params(old_scope, &trait_ref.bound_generic_params);
walk_list!(this, visit_generic_param, trait_ref.bound_generic_params);
this.visit_trait_ref(&trait_ref.trait_ref);
});
if should_pop_missing_lt {
self.missing_named_lifetime_spots.pop();
}
}
}
#[derive(Copy, Clone, PartialEq)]
enum ShadowKind {
Label,
Lifetime,
}
struct Original {
kind: ShadowKind,
span: Span,
}
struct Shadower {
kind: ShadowKind,
span: Span,
}
fn original_label(span: Span) -> Original {
Original { kind: ShadowKind::Label, span }
}
fn shadower_label(span: Span) -> Shadower {
Shadower { kind: ShadowKind::Label, span }
}
fn original_lifetime(span: Span) -> Original {
Original { kind: ShadowKind::Lifetime, span }
}
fn shadower_lifetime(param: &hir::GenericParam<'_>) -> Shadower {
Shadower { kind: ShadowKind::Lifetime, span: param.span }
}
impl ShadowKind {
fn desc(&self) -> &'static str {
match *self {
ShadowKind::Label => "label",
ShadowKind::Lifetime => "lifetime",
}
}
}
fn check_mixed_explicit_and_in_band_defs(tcx: TyCtxt<'_>, params: &[hir::GenericParam<'_>]) {
let lifetime_params: Vec<_> = params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { kind, .. } => Some((kind, param.span)),
_ => None,
})
.collect();
let explicit = lifetime_params.iter().find(|(kind, _)| *kind == LifetimeParamKind::Explicit);
let in_band = lifetime_params.iter().find(|(kind, _)| *kind == LifetimeParamKind::InBand);
if let (Some((_, explicit_span)), Some((_, in_band_span))) = (explicit, in_band) {
struct_span_err!(
tcx.sess,
*in_band_span,
E0688,
"cannot mix in-band and explicit lifetime definitions"
)
.span_label(*in_band_span, "in-band lifetime definition here")
.span_label(*explicit_span, "explicit lifetime definition here")
.emit();
}
}
fn signal_shadowing_problem(tcx: TyCtxt<'_>, name: Symbol, orig: Original, shadower: Shadower) {
let mut err = if let (ShadowKind::Lifetime, ShadowKind::Lifetime) = (orig.kind, shadower.kind) {
// lifetime/lifetime shadowing is an error
struct_span_err!(
tcx.sess,
shadower.span,
E0496,
"{} name `{}` shadows a \
{} name that is already in scope",
shadower.kind.desc(),
name,
orig.kind.desc()
)
} else {
// shadowing involving a label is only a warning, due to issues with
// labels and lifetimes not being macro-hygienic.
tcx.sess.struct_span_warn(
shadower.span,
&format!(
"{} name `{}` shadows a \
{} name that is already in scope",
shadower.kind.desc(),
name,
orig.kind.desc()
),
)
};
err.span_label(orig.span, "first declared here");
err.span_label(shadower.span, format!("{} `{}` already in scope", orig.kind.desc(), name));
err.emit();
}
// Adds all labels in `b` to `ctxt.labels_in_fn`, signalling a warning
// if one of the label shadows a lifetime or another label.
fn extract_labels(ctxt: &mut LifetimeContext<'_, '_>, body: &hir::Body<'_>) {
struct GatherLabels<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
scope: ScopeRef<'a>,
labels_in_fn: &'a mut Vec<Ident>,
}
let mut gather =
GatherLabels { tcx: ctxt.tcx, scope: ctxt.scope, labels_in_fn: &mut ctxt.labels_in_fn };
gather.visit_body(body);
impl<'v, 'a, 'tcx> Visitor<'v> for GatherLabels<'a, 'tcx> {
type Map = intravisit::ErasedMap<'v>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_expr(&mut self, ex: &hir::Expr<'_>) {
if let Some(label) = expression_label(ex) {
for prior_label in &self.labels_in_fn[..] {
// FIXME (#24278): non-hygienic comparison
if label.name == prior_label.name {
signal_shadowing_problem(
self.tcx,
label.name,
original_label(prior_label.span),
shadower_label(label.span),
);
}
}
check_if_label_shadows_lifetime(self.tcx, self.scope, label);
self.labels_in_fn.push(label);
}
intravisit::walk_expr(self, ex)
}
}
fn expression_label(ex: &hir::Expr<'_>) -> Option<Ident> {
if let hir::ExprKind::Loop(_, Some(label), ..) = ex.kind { Some(label.ident) } else { None }
}
fn check_if_label_shadows_lifetime(tcx: TyCtxt<'_>, mut scope: ScopeRef<'_>, label: Ident) {
loop {
match *scope {
Scope::Body { s, .. }
| Scope::Elision { s, .. }
| Scope::ObjectLifetimeDefault { s, .. }
| Scope::Supertrait { s, .. }
| Scope::TraitRefBoundary { s, .. } => {
scope = s;
}
Scope::Root => {
return;
}
Scope::Binder { ref lifetimes, s, .. } => {
// FIXME (#24278): non-hygienic comparison
if let Some(def) =
lifetimes.get(&hir::ParamName::Plain(label.normalize_to_macros_2_0()))
{
let hir_id =
tcx.hir().local_def_id_to_hir_id(def.id().unwrap().expect_local());
signal_shadowing_problem(
tcx,
label.name,
original_lifetime(tcx.hir().span(hir_id)),
shadower_label(label.span),
);
return;
}
scope = s;
}
}
}
}
}
fn compute_object_lifetime_defaults(
tcx: TyCtxt<'_>,
item: &hir::Item<'_>,
) -> Option<Vec<ObjectLifetimeDefault>> {
match item.kind {
hir::ItemKind::Struct(_, ref generics)
| hir::ItemKind::Union(_, ref generics)
| hir::ItemKind::Enum(_, ref generics)
| hir::ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, impl_trait_fn: None, .. })
| hir::ItemKind::TyAlias(_, ref generics)
| hir::ItemKind::Trait(_, _, ref generics, ..) => {
let result = object_lifetime_defaults_for_item(tcx, generics);
// Debugging aid.
let attrs = tcx.hir().attrs(item.hir_id());
if tcx.sess.contains_name(attrs, sym::rustc_object_lifetime_default) {
let object_lifetime_default_reprs: String = result
.iter()
.map(|set| match *set {
Set1::Empty => "BaseDefault".into(),
Set1::One(Region::Static) => "'static".into(),
Set1::One(Region::EarlyBound(mut i, _, _)) => generics
.params
.iter()
.find_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
if i == 0 {
return Some(param.name.ident().to_string().into());
}
i -= 1;
None
}
_ => None,
})
.unwrap(),
Set1::One(_) => bug!(),
Set1::Many => "Ambiguous".into(),
})
.collect::<Vec<Cow<'static, str>>>()
.join(",");
tcx.sess.span_err(item.span, &object_lifetime_default_reprs);
}
Some(result)
}
_ => None,
}
}
/// Scan the bounds and where-clauses on parameters to extract bounds
/// of the form `T:'a` so as to determine the `ObjectLifetimeDefault`
/// for each type parameter.
fn object_lifetime_defaults_for_item(
tcx: TyCtxt<'_>,
generics: &hir::Generics<'_>,
) -> Vec<ObjectLifetimeDefault> {
fn add_bounds(set: &mut Set1<hir::LifetimeName>, bounds: &[hir::GenericBound<'_>]) {
for bound in bounds {
if let hir::GenericBound::Outlives(ref lifetime) = *bound {
set.insert(lifetime.name.normalize_to_macros_2_0());
}
}
}
generics
.params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => None,
GenericParamKind::Type { .. } => {
let mut set = Set1::Empty;
add_bounds(&mut set, &param.bounds);
let param_def_id = tcx.hir().local_def_id(param.hir_id);
for predicate in generics.where_clause.predicates {
// Look for `type: ...` where clauses.
let data = match *predicate {
hir::WherePredicate::BoundPredicate(ref data) => data,
_ => continue,
};
// Ignore `for<'a> type: ...` as they can change what
// lifetimes mean (although we could "just" handle it).
if !data.bound_generic_params.is_empty() {
continue;
}
let res = match data.bounded_ty.kind {
hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => path.res,
_ => continue,
};
if res == Res::Def(DefKind::TyParam, param_def_id.to_def_id()) {
add_bounds(&mut set, &data.bounds);
}
}
Some(match set {
Set1::Empty => Set1::Empty,
Set1::One(name) => {
if name == hir::LifetimeName::Static {
Set1::One(Region::Static)
} else {
generics
.params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => Some((
param.hir_id,
hir::LifetimeName::Param(param.name),
LifetimeDefOrigin::from_param(param),
)),
_ => None,
})
.enumerate()
.find(|&(_, (_, lt_name, _))| lt_name == name)
.map_or(Set1::Many, |(i, (id, _, origin))| {
let def_id = tcx.hir().local_def_id(id);
Set1::One(Region::EarlyBound(
i as u32,
def_id.to_def_id(),
origin,
))
})
}
}
Set1::Many => Set1::Many,
})
}
GenericParamKind::Const { .. } => {
// Generic consts don't impose any constraints.
//
// We still store a dummy value here to allow generic parameters
// in an arbitrary order.
Some(Set1::Empty)
}
})
.collect()
}
impl<'a, 'tcx> LifetimeContext<'a, 'tcx> {
// FIXME(#37666) this works around a limitation in the region inferencer
fn hack<F>(&mut self, f: F)
where
F: for<'b> FnOnce(&mut LifetimeContext<'b, 'tcx>),
{
f(self)
}
fn with<F>(&mut self, wrap_scope: Scope<'_>, f: F)
where
F: for<'b> FnOnce(ScopeRef<'_>, &mut LifetimeContext<'b, 'tcx>),
{
let LifetimeContext { tcx, map, lifetime_uses, .. } = self;
let labels_in_fn = take(&mut self.labels_in_fn);
let xcrate_object_lifetime_defaults = take(&mut self.xcrate_object_lifetime_defaults);
let missing_named_lifetime_spots = take(&mut self.missing_named_lifetime_spots);
let mut this = LifetimeContext {
tcx: *tcx,
map,
scope: &wrap_scope,
is_in_fn_syntax: self.is_in_fn_syntax,
is_in_const_generic: self.is_in_const_generic,
trait_definition_only: self.trait_definition_only,
labels_in_fn,
xcrate_object_lifetime_defaults,
lifetime_uses,
missing_named_lifetime_spots,
};
let span = tracing::debug_span!("scope", scope = ?TruncatedScopeDebug(&this.scope));
{
let _enter = span.enter();
f(self.scope, &mut this);
if !self.trait_definition_only {
this.check_uses_for_lifetimes_defined_by_scope();
}
}
self.labels_in_fn = this.labels_in_fn;
self.xcrate_object_lifetime_defaults = this.xcrate_object_lifetime_defaults;
self.missing_named_lifetime_spots = this.missing_named_lifetime_spots;
}
/// helper method to determine the span to remove when suggesting the
/// deletion of a lifetime
fn lifetime_deletion_span(&self, name: Ident, generics: &hir::Generics<'_>) -> Option<Span> {
generics.params.iter().enumerate().find_map(|(i, param)| {
if param.name.ident() == name {
let in_band = matches!(
param.kind,
hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::InBand }
);
if in_band {
Some(param.span)
} else if generics.params.len() == 1 {
// if sole lifetime, remove the entire `<>` brackets
Some(generics.span)
} else {
// if removing within `<>` brackets, we also want to
// delete a leading or trailing comma as appropriate
if i >= generics.params.len() - 1 {
Some(generics.params[i - 1].span.shrink_to_hi().to(param.span))
} else {
Some(param.span.to(generics.params[i + 1].span.shrink_to_lo()))
}
}
} else {
None
}
})
}
// helper method to issue suggestions from `fn rah<'a>(&'a T)` to `fn rah(&T)`
// or from `fn rah<'a>(T<'a>)` to `fn rah(T<'_>)`
fn suggest_eliding_single_use_lifetime(
&self,
err: &mut DiagnosticBuilder<'_>,
def_id: DefId,
lifetime: &hir::Lifetime,
) {
let name = lifetime.name.ident();
let remove_decl = self
.tcx
.parent(def_id)
.and_then(|parent_def_id| self.tcx.hir().get_generics(parent_def_id))
.and_then(|generics| self.lifetime_deletion_span(name, generics));
let mut remove_use = None;
let mut elide_use = None;
let mut find_arg_use_span = |inputs: &[hir::Ty<'_>]| {
for input in inputs {
match input.kind {
hir::TyKind::Rptr(lt, _) => {
if lt.name.ident() == name {
// include the trailing whitespace between the lifetime and type names
let lt_through_ty_span = lifetime.span.to(input.span.shrink_to_hi());
remove_use = Some(
self.tcx
.sess
.source_map()
.span_until_non_whitespace(lt_through_ty_span),
);
break;
}
}
hir::TyKind::Path(ref qpath) => {
if let QPath::Resolved(_, path) = qpath {
let last_segment = &path.segments[path.segments.len() - 1];
let generics = last_segment.args();
for arg in generics.args.iter() {
if let GenericArg::Lifetime(lt) = arg {
if lt.name.ident() == name {
elide_use = Some(lt.span);
break;
}
}
}
break;
}
}
_ => {}
}
}
};
if let Node::Lifetime(hir_lifetime) = self.tcx.hir().get(lifetime.hir_id) {
if let Some(parent) =
self.tcx.hir().find(self.tcx.hir().get_parent_item(hir_lifetime.hir_id))
{
match parent {
Node::Item(item) => {
if let hir::ItemKind::Fn(sig, _, _) = &item.kind {
find_arg_use_span(sig.decl.inputs);
}
}
Node::ImplItem(impl_item) => {
if let hir::ImplItemKind::Fn(sig, _) = &impl_item.kind {
find_arg_use_span(sig.decl.inputs);
}
}
_ => {}
}
}
}
let msg = "elide the single-use lifetime";
match (remove_decl, remove_use, elide_use) {
(Some(decl_span), Some(use_span), None) => {
// if both declaration and use deletion spans start at the same
// place ("start at" because the latter includes trailing
// whitespace), then this is an in-band lifetime
if decl_span.shrink_to_lo() == use_span.shrink_to_lo() {
err.span_suggestion(
use_span,
msg,
String::new(),
Applicability::MachineApplicable,
);
} else {
err.multipart_suggestion(
msg,
vec![(decl_span, String::new()), (use_span, String::new())],
Applicability::MachineApplicable,
);
}
}
(Some(decl_span), None, Some(use_span)) => {
err.multipart_suggestion(
msg,
vec![(decl_span, String::new()), (use_span, "'_".to_owned())],
Applicability::MachineApplicable,
);
}
_ => {}
}
}
fn check_uses_for_lifetimes_defined_by_scope(&mut self) {
let defined_by = match self.scope {
Scope::Binder { lifetimes, .. } => lifetimes,
_ => {
debug!("check_uses_for_lifetimes_defined_by_scope: not in a binder scope");
return;
}
};
let mut def_ids: Vec<_> = defined_by
.values()
.flat_map(|region| match region {
Region::EarlyBound(_, def_id, _)
| Region::LateBound(_, _, def_id, _)
| Region::Free(_, def_id) => Some(*def_id),
Region::LateBoundAnon(..) | Region::Static => None,
})
.collect();
// ensure that we issue lints in a repeatable order
def_ids.sort_by_cached_key(|&def_id| self.tcx.def_path_hash(def_id));
for def_id in def_ids {
debug!("check_uses_for_lifetimes_defined_by_scope: def_id = {:?}", def_id);
let lifetimeuseset = self.lifetime_uses.remove(&def_id);
debug!(
"check_uses_for_lifetimes_defined_by_scope: lifetimeuseset = {:?}",
lifetimeuseset
);
match lifetimeuseset {
Some(LifetimeUseSet::One(lifetime)) => {
let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
debug!("hir id first={:?}", hir_id);
if let Some((id, span, name)) = match self.tcx.hir().get(hir_id) {
Node::Lifetime(hir_lifetime) => Some((
hir_lifetime.hir_id,
hir_lifetime.span,
hir_lifetime.name.ident(),
)),
Node::GenericParam(param) => {
Some((param.hir_id, param.span, param.name.ident()))
}
_ => None,
} {
debug!("id = {:?} span = {:?} name = {:?}", id, span, name);
if name.name == kw::UnderscoreLifetime {
continue;
}
if let Some(parent_def_id) = self.tcx.parent(def_id) {
if let Some(def_id) = parent_def_id.as_local() {
let parent_hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
// lifetimes in `derive` expansions don't count (Issue #53738)
if self.tcx.hir().attrs(parent_hir_id).iter().any(|attr| {
self.tcx.sess.check_name(attr, sym::automatically_derived)
}) {
continue;
}
}
}
self.tcx.struct_span_lint_hir(
lint::builtin::SINGLE_USE_LIFETIMES,
id,
span,
|lint| {
let mut err = lint.build(&format!(
"lifetime parameter `{}` only used once",
name
));
if span == lifetime.span {
// spans are the same for in-band lifetime declarations
err.span_label(span, "this lifetime is only used here");
} else {
err.span_label(span, "this lifetime...");
err.span_label(lifetime.span, "...is used only here");
}
self.suggest_eliding_single_use_lifetime(
&mut err, def_id, lifetime,
);
err.emit();
},
);
}
}
Some(LifetimeUseSet::Many) => {
debug!("not one use lifetime");
}
None => {
let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
if let Some((id, span, name)) = match self.tcx.hir().get(hir_id) {
Node::Lifetime(hir_lifetime) => Some((
hir_lifetime.hir_id,
hir_lifetime.span,
hir_lifetime.name.ident(),
)),
Node::GenericParam(param) => {
Some((param.hir_id, param.span, param.name.ident()))
}
_ => None,
} {
debug!("id ={:?} span = {:?} name = {:?}", id, span, name);
self.tcx.struct_span_lint_hir(
lint::builtin::UNUSED_LIFETIMES,
id,
span,
|lint| {
let mut err = lint
.build(&format!("lifetime parameter `{}` never used", name));
if let Some(parent_def_id) = self.tcx.parent(def_id) {
if let Some(generics) =
self.tcx.hir().get_generics(parent_def_id)
{
let unused_lt_span =
self.lifetime_deletion_span(name, generics);
if let Some(span) = unused_lt_span {
err.span_suggestion(
span,
"elide the unused lifetime",
String::new(),
Applicability::MachineApplicable,
);
}
}
}
err.emit();
},
);
}
}
}
}
}
/// Visits self by adding a scope and handling recursive walk over the contents with `walk`.
///
/// Handles visiting fns and methods. These are a bit complicated because we must distinguish
/// early- vs late-bound lifetime parameters. We do this by checking which lifetimes appear
/// within type bounds; those are early bound lifetimes, and the rest are late bound.
///
/// For example:
///
/// fn foo<'a,'b,'c,T:Trait<'b>>(...)
///
/// Here `'a` and `'c` are late bound but `'b` is early bound. Note that early- and late-bound
/// lifetimes may be interspersed together.
///
/// If early bound lifetimes are present, we separate them into their own list (and likewise
/// for late bound). They will be numbered sequentially, starting from the lowest index that is
/// already in scope (for a fn item, that will be 0, but for a method it might not be). Late
/// bound lifetimes are resolved by name and associated with a binder ID (`binder_id`), so the
/// ordering is not important there.
fn visit_early_late<F>(
&mut self,
parent_id: Option<hir::HirId>,
hir_id: hir::HirId,
decl: &'tcx hir::FnDecl<'tcx>,
generics: &'tcx hir::Generics<'tcx>,
walk: F,
) where
F: for<'b, 'c> FnOnce(&'b mut LifetimeContext<'c, 'tcx>),
{
insert_late_bound_lifetimes(self.map, decl, generics);
// Find the start of nested early scopes, e.g., in methods.
let mut next_early_index = 0;
if let Some(parent_id) = parent_id {
let parent = self.tcx.hir().expect_item(parent_id);
if sub_items_have_self_param(&parent.kind) {
next_early_index += 1; // Self comes before lifetimes
}
match parent.kind {
hir::ItemKind::Trait(_, _, ref generics, ..)
| hir::ItemKind::Impl(hir::Impl { ref generics, .. }) => {
next_early_index += generics.params.len() as u32;
}
_ => {}
}
}
let mut non_lifetime_count = 0;
let mut named_late_bound_vars = 0;
let lifetimes: FxHashMap<hir::ParamName, Region> = generics
.params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
if self.map.late_bound.contains(&param.hir_id) {
let late_bound_idx = named_late_bound_vars;
named_late_bound_vars += 1;
Some(Region::late(late_bound_idx, &self.tcx.hir(), param))
} else {
Some(Region::early(&self.tcx.hir(), &mut next_early_index, param))
}
}
GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
non_lifetime_count += 1;
None
}
})
.collect();
let next_early_index = next_early_index + non_lifetime_count;
let binders: Vec<_> = generics
.params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. }
if self.map.late_bound.contains(&param.hir_id) =>
{
Some(param)
}
_ => None,
})
.enumerate()
.map(|(late_bound_idx, param)| {
let pair = Region::late(late_bound_idx as u32, &self.tcx.hir(), param);
let r = late_region_as_bound_region(self.tcx, &pair.1);
r
})
.collect();
self.map.late_bound_vars.insert(hir_id, binders);
let scope = Scope::Binder {
hir_id,
lifetimes,
next_early_index,
s: self.scope,
opaque_type_parent: true,
track_lifetime_uses: false,
scope_type: BinderScopeType::Normal,
};
self.with(scope, move |old_scope, this| {
this.check_lifetime_params(old_scope, &generics.params);
this.hack(walk); // FIXME(#37666) workaround in place of `walk(this)`
});
}
fn next_early_index_helper(&self, only_opaque_type_parent: bool) -> u32 {
let mut scope = self.scope;
loop {
match *scope {
Scope::Root => return 0,
Scope::Binder { next_early_index, opaque_type_parent, .. }
if (!only_opaque_type_parent || opaque_type_parent) =>
{
return next_early_index;
}
Scope::Binder { s, .. }
| Scope::Body { s, .. }
| Scope::Elision { s, .. }
| Scope::ObjectLifetimeDefault { s, .. }
| Scope::Supertrait { s, .. }
| Scope::TraitRefBoundary { s, .. } => scope = s,
}
}
}
/// Returns the next index one would use for an early-bound-region
/// if extending the current scope.
fn next_early_index(&self) -> u32 {
self.next_early_index_helper(true)
}
/// Returns the next index one would use for an `impl Trait` that
/// is being converted into an opaque type alias `impl Trait`. This will be the
/// next early index from the enclosing item, for the most
/// part. See the `opaque_type_parent` field for more info.
fn next_early_index_for_opaque_type(&self) -> u32 {
self.next_early_index_helper(false)
}
fn resolve_lifetime_ref(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
debug!("resolve_lifetime_ref(lifetime_ref={:?})", lifetime_ref);
// If we've already reported an error, just ignore `lifetime_ref`.
if let LifetimeName::Error = lifetime_ref.name {
return;
}
// Walk up the scope chain, tracking the number of fn scopes
// that we pass through, until we find a lifetime with the
// given name or we run out of scopes.
// search.
let mut late_depth = 0;
let mut scope = self.scope;
let mut outermost_body = None;
let result = loop {
match *scope {
Scope::Body { id, s } => {
// Non-static lifetimes are prohibited in anonymous constants without
// `const_generics`.
self.maybe_emit_forbidden_non_static_lifetime_error(id, lifetime_ref);
outermost_body = Some(id);
scope = s;
}
Scope::Root => {
break None;
}
Scope::Binder { ref lifetimes, scope_type, s, .. } => {
match lifetime_ref.name {
LifetimeName::Param(param_name) => {
if let Some(&def) = lifetimes.get(&param_name.normalize_to_macros_2_0())
{
break Some(def.shifted(late_depth));
}
}
_ => bug!("expected LifetimeName::Param"),
}
match scope_type {
BinderScopeType::Normal => late_depth += 1,
BinderScopeType::Concatenating => {}
}
scope = s;
}
Scope::Elision { s, .. }
| Scope::ObjectLifetimeDefault { s, .. }
| Scope::Supertrait { s, .. }
| Scope::TraitRefBoundary { s, .. } => {
scope = s;
}
}
};
if let Some(mut def) = result {
if let Region::EarlyBound(..) = def {
// Do not free early-bound regions, only late-bound ones.
} else if let Some(body_id) = outermost_body {
let fn_id = self.tcx.hir().body_owner(body_id);
match self.tcx.hir().get(fn_id) {
Node::Item(&hir::Item { kind: hir::ItemKind::Fn(..), .. })
| Node::TraitItem(&hir::TraitItem {
kind: hir::TraitItemKind::Fn(..), ..
})
| Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) => {
let scope = self.tcx.hir().local_def_id(fn_id);
def = Region::Free(scope.to_def_id(), def.id().unwrap());
}
_ => {}
}
}
// Check for fn-syntax conflicts with in-band lifetime definitions
if !self.trait_definition_only && self.is_in_fn_syntax {
match def {
Region::EarlyBound(_, _, LifetimeDefOrigin::InBand)
| Region::LateBound(_, _, _, LifetimeDefOrigin::InBand) => {
struct_span_err!(
self.tcx.sess,
lifetime_ref.span,
E0687,
"lifetimes used in `fn` or `Fn` syntax must be \
explicitly declared using `<...>` binders"
)
.span_label(lifetime_ref.span, "in-band lifetime definition")
.emit();
}
Region::Static
| Region::EarlyBound(
_,
_,
LifetimeDefOrigin::ExplicitOrElided | LifetimeDefOrigin::Error,
)
| Region::LateBound(
_,
_,
_,
LifetimeDefOrigin::ExplicitOrElided | LifetimeDefOrigin::Error,
)
| Region::LateBoundAnon(..)
| Region::Free(..) => {}
}
}
self.insert_lifetime(lifetime_ref, def);
} else {
self.emit_undeclared_lifetime_error(lifetime_ref);
}
}
fn visit_segment_args(
&mut self,
res: Res,
depth: usize,
generic_args: &'tcx hir::GenericArgs<'tcx>,
) {
debug!(
"visit_segment_args(res={:?}, depth={:?}, generic_args={:?})",
res, depth, generic_args,
);
if generic_args.parenthesized {
let was_in_fn_syntax = self.is_in_fn_syntax;
self.is_in_fn_syntax = true;
self.visit_fn_like_elision(generic_args.inputs(), Some(generic_args.bindings[0].ty()));
self.is_in_fn_syntax = was_in_fn_syntax;
return;
}
let mut elide_lifetimes = true;
let lifetimes: Vec<_> = generic_args
.args
.iter()
.filter_map(|arg| match arg {
hir::GenericArg::Lifetime(lt) => {
if !lt.is_elided() {
elide_lifetimes = false;
}
Some(lt)
}
_ => None,
})
.collect();
// We short-circuit here if all are elided in order to pluralize
// possible errors
if elide_lifetimes {
self.resolve_elided_lifetimes(&lifetimes);
} else {
lifetimes.iter().for_each(|lt| self.visit_lifetime(lt));
}
// Figure out if this is a type/trait segment,
// which requires object lifetime defaults.
let parent_def_id = |this: &mut Self, def_id: DefId| {
let def_key = this.tcx.def_key(def_id);
DefId { krate: def_id.krate, index: def_key.parent.expect("missing parent") }
};
let type_def_id = match res {
Res::Def(DefKind::AssocTy, def_id) if depth == 1 => Some(parent_def_id(self, def_id)),
Res::Def(DefKind::Variant, def_id) if depth == 0 => Some(parent_def_id(self, def_id)),
Res::Def(
DefKind::Struct
| DefKind::Union
| DefKind::Enum
| DefKind::TyAlias
| DefKind::Trait,
def_id,
) if depth == 0 => Some(def_id),
_ => None,
};
debug!("visit_segment_args: type_def_id={:?}", type_def_id);
// Compute a vector of defaults, one for each type parameter,
// per the rules given in RFCs 599 and 1156. Example:
//
// ```rust
// struct Foo<'a, T: 'a, U> { }
// ```
//
// If you have `Foo<'x, dyn Bar, dyn Baz>`, we want to default
// `dyn Bar` to `dyn Bar + 'x` (because of the `T: 'a` bound)
// and `dyn Baz` to `dyn Baz + 'static` (because there is no
// such bound).
//
// Therefore, we would compute `object_lifetime_defaults` to a
// vector like `['x, 'static]`. Note that the vector only
// includes type parameters.
let object_lifetime_defaults = type_def_id.map_or_else(Vec::new, |def_id| {
let in_body = {
let mut scope = self.scope;
loop {
match *scope {
Scope::Root => break false,
Scope::Body { .. } => break true,
Scope::Binder { s, .. }
| Scope::Elision { s, .. }
| Scope::ObjectLifetimeDefault { s, .. }
| Scope::Supertrait { s, .. }
| Scope::TraitRefBoundary { s, .. } => {
scope = s;
}
}
}
};
let map = &self.map;
let set_to_region = |set: &ObjectLifetimeDefault| match *set {
Set1::Empty => {
if in_body {
None
} else {
Some(Region::Static)
}
}
Set1::One(r) => {
let lifetimes = generic_args.args.iter().filter_map(|arg| match arg {
GenericArg::Lifetime(lt) => Some(lt),
_ => None,
});
r.subst(lifetimes, map)
}
Set1::Many => None,
};
if let Some(def_id) = def_id.as_local() {
let id = self.tcx.hir().local_def_id_to_hir_id(def_id);
self.tcx.object_lifetime_defaults(id).unwrap().iter().map(set_to_region).collect()
} else {
let tcx = self.tcx;
self.xcrate_object_lifetime_defaults
.entry(def_id)
.or_insert_with(|| {
tcx.generics_of(def_id)
.params
.iter()
.filter_map(|param| match param.kind {
GenericParamDefKind::Type { object_lifetime_default, .. } => {
Some(object_lifetime_default)
}
GenericParamDefKind::Lifetime
| GenericParamDefKind::Const { .. } => None,
})
.collect()
})
.iter()
.map(set_to_region)
.collect()
}
});
debug!("visit_segment_args: object_lifetime_defaults={:?}", object_lifetime_defaults);
let mut i = 0;
for arg in generic_args.args {
match arg {
GenericArg::Lifetime(_) => {}
GenericArg::Type(ty) => {
if let Some(&lt) = object_lifetime_defaults.get(i) {
let scope = Scope::ObjectLifetimeDefault { lifetime: lt, s: self.scope };
self.with(scope, |_, this| this.visit_ty(ty));
} else {
self.visit_ty(ty);
}
i += 1;
}
GenericArg::Const(ct) => {
self.visit_anon_const(&ct.value);
}
}
}
// Hack: when resolving the type `XX` in binding like `dyn
// Foo<'b, Item = XX>`, the current object-lifetime default
// would be to examine the trait `Foo` to check whether it has
// a lifetime bound declared on `Item`. e.g., if `Foo` is
// declared like so, then the default object lifetime bound in
// `XX` should be `'b`:
//
// ```rust
// trait Foo<'a> {
// type Item: 'a;
// }
// ```
//
// but if we just have `type Item;`, then it would be
// `'static`. However, we don't get all of this logic correct.
//
// Instead, we do something hacky: if there are no lifetime parameters
// to the trait, then we simply use a default object lifetime
// bound of `'static`, because there is no other possibility. On the other hand,
// if there ARE lifetime parameters, then we require the user to give an
// explicit bound for now.
//
// This is intended to leave room for us to implement the
// correct behavior in the future.
let has_lifetime_parameter =
generic_args.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)));
// Resolve lifetimes found in the bindings, so either in the type `XX` in `Item = XX` or
// in the trait ref `YY<...>` in `Item: YY<...>`.
for binding in generic_args.bindings {
let scope = Scope::ObjectLifetimeDefault {
lifetime: if has_lifetime_parameter { None } else { Some(Region::Static) },
s: self.scope,
};
if let Some(type_def_id) = type_def_id {
let lifetimes = LifetimeContext::supertrait_hrtb_lifetimes(
self.tcx,
type_def_id,
binding.ident,
);
self.with(scope, |_, this| {
let scope =
Scope::Supertrait { lifetimes: lifetimes.unwrap_or(vec![]), s: this.scope };
this.with(scope, |_, this| this.visit_assoc_type_binding(binding));
});
} else {
self.with(scope, |_, this| this.visit_assoc_type_binding(binding));
}
}
}
/// Returns all the late-bound vars that come into scope from supertrait HRTBs, based on the
/// associated type name and starting trait.
/// For example, imagine we have
/// ```rust
/// trait Foo<'a, 'b> {
/// type As;
/// }
/// trait Bar<'b>: for<'a> Foo<'a, 'b> {}
/// trait Bar: for<'b> Bar<'b> {}
/// ```
/// In this case, if we wanted to the supertrait HRTB lifetimes for `As` on
/// the starting trait `Bar`, we would return `Some(['b, 'a])`.
fn supertrait_hrtb_lifetimes(
tcx: TyCtxt<'tcx>,
def_id: DefId,
assoc_name: Ident,
) -> Option<Vec<ty::BoundVariableKind>> {
let trait_defines_associated_type_named = |trait_def_id: DefId| {
tcx.associated_items(trait_def_id)
.find_by_name_and_kind(tcx, assoc_name, ty::AssocKind::Type, trait_def_id)
.is_some()
};
use smallvec::{smallvec, SmallVec};
let mut stack: SmallVec<[(DefId, SmallVec<[ty::BoundVariableKind; 8]>); 8]> =
smallvec![(def_id, smallvec![])];
let mut visited: FxHashSet<DefId> = FxHashSet::default();
loop {
let (def_id, bound_vars) = match stack.pop() {
Some(next) => next,
None => break None,
};
// See issue #83753. If someone writes an associated type on a non-trait, just treat it as
// there being no supertrait HRTBs.
match tcx.def_kind(def_id) {
DefKind::Trait | DefKind::TraitAlias | DefKind::Impl => {}
_ => break None,
}
if trait_defines_associated_type_named(def_id) {
break Some(bound_vars.into_iter().collect());
}
let predicates =
tcx.super_predicates_that_define_assoc_type((def_id, Some(assoc_name)));
let obligations = predicates.predicates.iter().filter_map(|&(pred, _)| {
let bound_predicate = pred.kind();
match bound_predicate.skip_binder() {
ty::PredicateKind::Trait(data, _) => {
// The order here needs to match what we would get from `subst_supertrait`
let pred_bound_vars = bound_predicate.bound_vars();
let mut all_bound_vars = bound_vars.clone();
all_bound_vars.extend(pred_bound_vars.iter());
let super_def_id = data.trait_ref.def_id;
Some((super_def_id, all_bound_vars))
}
_ => None,
}
});
let obligations = obligations.filter(|o| visited.insert(o.0));
stack.extend(obligations);
}
}
#[tracing::instrument(level = "debug", skip(self))]
fn visit_fn_like_elision(
&mut self,
inputs: &'tcx [hir::Ty<'tcx>],
output: Option<&'tcx hir::Ty<'tcx>>,
) {
debug!("visit_fn_like_elision: enter");
let mut scope = &*self.scope;
let hir_id = loop {
match scope {
Scope::Binder { hir_id, .. } => {
break *hir_id;
}
Scope::Body { id, .. } => break id.hir_id,
Scope::ObjectLifetimeDefault { ref s, .. }
| Scope::Elision { ref s, .. }
| Scope::Supertrait { ref s, .. }
| Scope::TraitRefBoundary { ref s, .. } => {
scope = *s;
}
Scope::Root => {
// See issue #83907. Just bail out from looking inside.
self.tcx.sess.delay_span_bug(
rustc_span::DUMMY_SP,
"In fn_like_elision without appropriate scope above",
);
return;
}
}
};
// While not strictly necessary, we gather anon lifetimes *before* actually
// visiting the argument types.
let mut gather = GatherAnonLifetimes { anon_count: 0 };
for input in inputs {
gather.visit_ty(input);
}
let late_bound_vars = self.map.late_bound_vars.entry(hir_id).or_default();
let named_late_bound_vars = late_bound_vars.len() as u32;
late_bound_vars.extend(
(0..gather.anon_count).map(|var| ty::BoundVariableKind::Region(ty::BrAnon(var))),
);
let arg_scope = Scope::Elision {
elide: Elide::FreshLateAnon(named_late_bound_vars, Cell::new(0)),
s: self.scope,
};
self.with(arg_scope, |_, this| {
for input in inputs {
this.visit_ty(input);
}
});
let output = match output {
Some(ty) => ty,
None => return,
};
debug!("determine output");
// Figure out if there's a body we can get argument names from,
// and whether there's a `self` argument (treated specially).
let mut assoc_item_kind = None;
let mut impl_self = None;
let parent = self.tcx.hir().get_parent_node(output.hir_id);
let body = match self.tcx.hir().get(parent) {
// `fn` definitions and methods.
Node::Item(&hir::Item { kind: hir::ItemKind::Fn(.., body), .. }) => Some(body),
Node::TraitItem(&hir::TraitItem { kind: hir::TraitItemKind::Fn(_, ref m), .. }) => {
if let hir::ItemKind::Trait(.., ref trait_items) =
self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(parent)).kind
{
assoc_item_kind =
trait_items.iter().find(|ti| ti.id.hir_id() == parent).map(|ti| ti.kind);
}
match *m {
hir::TraitFn::Required(_) => None,
hir::TraitFn::Provided(body) => Some(body),
}
}
Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(_, body), .. }) => {
if let hir::ItemKind::Impl(hir::Impl { ref self_ty, ref items, .. }) =
self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(parent)).kind
{
impl_self = Some(self_ty);
assoc_item_kind =
items.iter().find(|ii| ii.id.hir_id() == parent).map(|ii| ii.kind);
}
Some(body)
}
// Foreign functions, `fn(...) -> R` and `Trait(...) -> R` (both types and bounds).
Node::ForeignItem(_) | Node::Ty(_) | Node::TraitRef(_) => None,
// Everything else (only closures?) doesn't
// actually enjoy elision in return types.
_ => {
self.visit_ty(output);
return;
}
};
let has_self = match assoc_item_kind {
Some(hir::AssocItemKind::Fn { has_self }) => has_self,
_ => false,
};
// In accordance with the rules for lifetime elision, we can determine
// what region to use for elision in the output type in two ways.
// First (determined here), if `self` is by-reference, then the
// implied output region is the region of the self parameter.
if has_self {
struct SelfVisitor<'a> {
map: &'a NamedRegionMap,
impl_self: Option<&'a hir::TyKind<'a>>,
lifetime: Set1<Region>,
}
impl SelfVisitor<'_> {
// Look for `self: &'a Self` - also desugared from `&'a self`,
// and if that matches, use it for elision and return early.
fn is_self_ty(&self, res: Res) -> bool {
if let Res::SelfTy(..) = res {
return true;
}
// Can't always rely on literal (or implied) `Self` due
// to the way elision rules were originally specified.
if let Some(&hir::TyKind::Path(hir::QPath::Resolved(None, ref path))) =
self.impl_self
{
match path.res {
// Permit the types that unambiguously always
// result in the same type constructor being used
// (it can't differ between `Self` and `self`).
Res::Def(DefKind::Struct | DefKind::Union | DefKind::Enum, _)
| Res::PrimTy(_) => return res == path.res,
_ => {}
}
}
false
}
}
impl<'a> Visitor<'a> for SelfVisitor<'a> {
type Map = intravisit::ErasedMap<'a>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_ty(&mut self, ty: &'a hir::Ty<'a>) {
if let hir::TyKind::Rptr(lifetime_ref, ref mt) = ty.kind {
if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = mt.ty.kind
{
if self.is_self_ty(path.res) {
if let Some(lifetime) = self.map.defs.get(&lifetime_ref.hir_id) {
self.lifetime.insert(*lifetime);
}
}
}
}
intravisit::walk_ty(self, ty)
}
}
let mut visitor = SelfVisitor {
map: self.map,
impl_self: impl_self.map(|ty| &ty.kind),
lifetime: Set1::Empty,
};
visitor.visit_ty(&inputs[0]);
if let Set1::One(lifetime) = visitor.lifetime {
let scope = Scope::Elision { elide: Elide::Exact(lifetime), s: self.scope };
self.with(scope, |_, this| this.visit_ty(output));
return;
}
}
// Second, if there was exactly one lifetime (either a substitution or a
// reference) in the arguments, then any anonymous regions in the output
// have that lifetime.
let mut possible_implied_output_region = None;
let mut lifetime_count = 0;
let arg_lifetimes = inputs
.iter()
.enumerate()
.skip(has_self as usize)
.map(|(i, input)| {
let mut gather = GatherLifetimes {
map: self.map,
outer_index: ty::INNERMOST,
have_bound_regions: false,
lifetimes: Default::default(),
};
gather.visit_ty(input);
lifetime_count += gather.lifetimes.len();
if lifetime_count == 1 && gather.lifetimes.len() == 1 {
// there's a chance that the unique lifetime of this
// iteration will be the appropriate lifetime for output
// parameters, so lets store it.
possible_implied_output_region = gather.lifetimes.iter().cloned().next();
}
ElisionFailureInfo {
parent: body,
index: i,
lifetime_count: gather.lifetimes.len(),
have_bound_regions: gather.have_bound_regions,
span: input.span,
}
})
.collect();
let elide = if lifetime_count == 1 {
Elide::Exact(possible_implied_output_region.unwrap())
} else {
Elide::Error(arg_lifetimes)
};
debug!(?elide);
let scope = Scope::Elision { elide, s: self.scope };
self.with(scope, |_, this| this.visit_ty(output));
struct GatherLifetimes<'a> {
map: &'a NamedRegionMap,
outer_index: ty::DebruijnIndex,
have_bound_regions: bool,
lifetimes: FxHashSet<Region>,
}
impl<'v, 'a> Visitor<'v> for GatherLifetimes<'a> {
type Map = intravisit::ErasedMap<'v>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
if let hir::TyKind::BareFn(_) = ty.kind {
self.outer_index.shift_in(1);
}
match ty.kind {
hir::TyKind::TraitObject(bounds, ref lifetime, _) => {
for bound in bounds {
self.visit_poly_trait_ref(bound, hir::TraitBoundModifier::None);
}
// Stay on the safe side and don't include the object
// lifetime default (which may not end up being used).
if !lifetime.is_elided() {
self.visit_lifetime(lifetime);
}
}
_ => {
intravisit::walk_ty(self, ty);
}
}
if let hir::TyKind::BareFn(_) = ty.kind {
self.outer_index.shift_out(1);
}
}
fn visit_generic_param(&mut self, param: &hir::GenericParam<'_>) {
if let hir::GenericParamKind::Lifetime { .. } = param.kind {
// FIXME(eddyb) Do we want this? It only makes a difference
// if this `for<'a>` lifetime parameter is never used.
self.have_bound_regions = true;
}
intravisit::walk_generic_param(self, param);
}
fn visit_poly_trait_ref(
&mut self,
trait_ref: &hir::PolyTraitRef<'_>,
modifier: hir::TraitBoundModifier,
) {
self.outer_index.shift_in(1);
intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
self.outer_index.shift_out(1);
}
fn visit_param_bound(&mut self, bound: &hir::GenericBound<'_>) {
if let hir::GenericBound::LangItemTrait { .. } = bound {
self.outer_index.shift_in(1);
intravisit::walk_param_bound(self, bound);
self.outer_index.shift_out(1);
} else {
intravisit::walk_param_bound(self, bound);
}
}
fn visit_lifetime(&mut self, lifetime_ref: &hir::Lifetime) {
if let Some(&lifetime) = self.map.defs.get(&lifetime_ref.hir_id) {
match lifetime {
Region::LateBound(debruijn, _, _, _)
| Region::LateBoundAnon(debruijn, _, _)
if debruijn < self.outer_index =>
{
self.have_bound_regions = true;
}
_ => {
// FIXME(jackh726): nested trait refs?
self.lifetimes.insert(lifetime.shifted_out_to_binder(self.outer_index));
}
}
}
}
}
struct GatherAnonLifetimes {
anon_count: u32,
}
impl<'v> Visitor<'v> for GatherAnonLifetimes {
type Map = intravisit::ErasedMap<'v>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
// If we enter a `BareFn`, then we enter a *new* binding scope
if let hir::TyKind::BareFn(_) = ty.kind {
return;
}
intravisit::walk_ty(self, ty);
}
fn visit_generic_args(
&mut self,
path_span: Span,
generic_args: &'v hir::GenericArgs<'v>,
) {
// parenthesized args enter a new elison scope
if generic_args.parenthesized {
return;
}
intravisit::walk_generic_args(self, path_span, generic_args)
}
fn visit_lifetime(&mut self, lifetime_ref: &hir::Lifetime) {
if lifetime_ref.is_elided() {
self.anon_count += 1;
}
}
}
}
fn resolve_elided_lifetimes(&mut self, lifetime_refs: &[&'tcx hir::Lifetime]) {
debug!("resolve_elided_lifetimes(lifetime_refs={:?})", lifetime_refs);
if lifetime_refs.is_empty() {
return;
}
let span = lifetime_refs[0].span;
let mut late_depth = 0;
let mut scope = self.scope;
let mut lifetime_names = FxHashSet::default();
let mut lifetime_spans = vec![];
let error = loop {
match *scope {
// Do not assign any resolution, it will be inferred.
Scope::Body { .. } => return,
Scope::Root => break None,
Scope::Binder { s, ref lifetimes, scope_type, .. } => {
// collect named lifetimes for suggestions
for name in lifetimes.keys() {
if let hir::ParamName::Plain(name) = name {
lifetime_names.insert(name.name);
lifetime_spans.push(name.span);
}
}
match scope_type {
BinderScopeType::Normal => late_depth += 1,
BinderScopeType::Concatenating => {}
}
scope = s;
}
Scope::Elision { ref elide, ref s, .. } => {
let lifetime = match *elide {
Elide::FreshLateAnon(named_late_bound_vars, ref counter) => {
for lifetime_ref in lifetime_refs {
let lifetime = Region::late_anon(named_late_bound_vars, counter)
.shifted(late_depth);
self.insert_lifetime(lifetime_ref, lifetime);
}
return;
}
Elide::Exact(l) => l.shifted(late_depth),
Elide::Error(ref e) => {
let mut scope = s;
loop {
match scope {
Scope::Binder { ref lifetimes, s, .. } => {
// Collect named lifetimes for suggestions.
for name in lifetimes.keys() {
if let hir::ParamName::Plain(name) = name {
lifetime_names.insert(name.name);
lifetime_spans.push(name.span);
}
}
scope = s;
}
Scope::ObjectLifetimeDefault { ref s, .. }
| Scope::Elision { ref s, .. }
| Scope::TraitRefBoundary { ref s, .. } => {
scope = s;
}
_ => break,
}
}
break Some(&e[..]);
}
Elide::Forbid => break None,
};
for lifetime_ref in lifetime_refs {
self.insert_lifetime(lifetime_ref, lifetime);
}
return;
}
Scope::ObjectLifetimeDefault { s, .. }
| Scope::Supertrait { s, .. }
| Scope::TraitRefBoundary { s, .. } => {
scope = s;
}
}
};
let mut err = self.report_missing_lifetime_specifiers(span, lifetime_refs.len());
if let Some(params) = error {
// If there's no lifetime available, suggest `'static`.
if self.report_elision_failure(&mut err, params) && lifetime_names.is_empty() {
lifetime_names.insert(kw::StaticLifetime);
}
}
self.add_missing_lifetime_specifiers_label(
&mut err,
span,
lifetime_refs.len(),
&lifetime_names,
lifetime_spans,
error.unwrap_or(&[]),
);
err.emit();
}
fn report_elision_failure(
&mut self,
db: &mut DiagnosticBuilder<'_>,
params: &[ElisionFailureInfo],
) -> bool /* add `'static` lifetime to lifetime list */ {
let mut m = String::new();
let len = params.len();
let elided_params: Vec<_> =
params.iter().cloned().filter(|info| info.lifetime_count > 0).collect();
let elided_len = elided_params.len();
for (i, info) in elided_params.into_iter().enumerate() {
let ElisionFailureInfo { parent, index, lifetime_count: n, have_bound_regions, span } =
info;
db.span_label(span, "");
let help_name = if let Some(ident) =
parent.and_then(|body| self.tcx.hir().body(body).params[index].pat.simple_ident())
{
format!("`{}`", ident)
} else {
format!("argument {}", index + 1)
};
m.push_str(
&(if n == 1 {
help_name
} else {
format!(
"one of {}'s {} {}lifetimes",
help_name,
n,
if have_bound_regions { "free " } else { "" }
)
})[..],
);
if elided_len == 2 && i == 0 {
m.push_str(" or ");
} else if i + 2 == elided_len {
m.push_str(", or ");
} else if i != elided_len - 1 {
m.push_str(", ");
}
}
if len == 0 {
db.help(
"this function's return type contains a borrowed value, \
but there is no value for it to be borrowed from",
);
true
} else if elided_len == 0 {
db.help(
"this function's return type contains a borrowed value with \
an elided lifetime, but the lifetime cannot be derived from \
the arguments",
);
true
} else if elided_len == 1 {
db.help(&format!(
"this function's return type contains a borrowed value, \
but the signature does not say which {} it is borrowed from",
m
));
false
} else {
db.help(&format!(
"this function's return type contains a borrowed value, \
but the signature does not say whether it is borrowed from {}",
m
));
false
}
}
fn resolve_object_lifetime_default(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
debug!("resolve_object_lifetime_default(lifetime_ref={:?})", lifetime_ref);
let mut late_depth = 0;
let mut scope = self.scope;
let lifetime = loop {
match *scope {
Scope::Binder { s, scope_type, .. } => {
match scope_type {
BinderScopeType::Normal => late_depth += 1,
BinderScopeType::Concatenating => {}
}
scope = s;
}
Scope::Root | Scope::Elision { .. } => break Region::Static,
Scope::Body { .. } | Scope::ObjectLifetimeDefault { lifetime: None, .. } => return,
Scope::ObjectLifetimeDefault { lifetime: Some(l), .. } => break l,
Scope::Supertrait { s, .. } | Scope::TraitRefBoundary { s, .. } => {
scope = s;
}
}
};
self.insert_lifetime(lifetime_ref, lifetime.shifted(late_depth));
}
fn check_lifetime_params(
&mut self,
old_scope: ScopeRef<'_>,
params: &'tcx [hir::GenericParam<'tcx>],
) {
let lifetimes: Vec<_> = params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
Some((param, param.name.normalize_to_macros_2_0()))
}
_ => None,
})
.collect();
for (i, (lifetime_i, lifetime_i_name)) in lifetimes.iter().enumerate() {
if let hir::ParamName::Plain(_) = lifetime_i_name {
let name = lifetime_i_name.ident().name;
if name == kw::UnderscoreLifetime || name == kw::StaticLifetime {
let mut err = struct_span_err!(
self.tcx.sess,
lifetime_i.span,
E0262,
"invalid lifetime parameter name: `{}`",
lifetime_i.name.ident(),
);
err.span_label(
lifetime_i.span,
format!("{} is a reserved lifetime name", name),
);
err.emit();
}
}
// It is a hard error to shadow a lifetime within the same scope.
for (lifetime_j, lifetime_j_name) in lifetimes.iter().skip(i + 1) {
if lifetime_i_name == lifetime_j_name {
struct_span_err!(
self.tcx.sess,
lifetime_j.span,
E0263,
"lifetime name `{}` declared twice in the same scope",
lifetime_j.name.ident()
)
.span_label(lifetime_j.span, "declared twice")
.span_label(lifetime_i.span, "previous declaration here")
.emit();
}
}
// It is a soft error to shadow a lifetime within a parent scope.
self.check_lifetime_param_for_shadowing(old_scope, &lifetime_i);
for bound in lifetime_i.bounds {
match bound {
hir::GenericBound::Outlives(ref lt) => match lt.name {
hir::LifetimeName::Underscore => self.tcx.sess.delay_span_bug(
lt.span,
"use of `'_` in illegal place, but not caught by lowering",
),
hir::LifetimeName::Static => {
self.insert_lifetime(lt, Region::Static);
self.tcx
.sess
.struct_span_warn(
lifetime_i.span.to(lt.span),
&format!(
"unnecessary lifetime parameter `{}`",
lifetime_i.name.ident(),
),
)
.help(&format!(
"you can use the `'static` lifetime directly, in place of `{}`",
lifetime_i.name.ident(),
))
.emit();
}
hir::LifetimeName::Param(_) | hir::LifetimeName::Implicit => {
self.resolve_lifetime_ref(lt);
}
hir::LifetimeName::ImplicitObjectLifetimeDefault => {
self.tcx.sess.delay_span_bug(
lt.span,
"lowering generated `ImplicitObjectLifetimeDefault` \
outside of an object type",
)
}
hir::LifetimeName::Error => {
// No need to do anything, error already reported.
}
},
_ => bug!(),
}
}
}
}
fn check_lifetime_param_for_shadowing(
&self,
mut old_scope: ScopeRef<'_>,
param: &'tcx hir::GenericParam<'tcx>,
) {
for label in &self.labels_in_fn {
// FIXME (#24278): non-hygienic comparison
if param.name.ident().name == label.name {
signal_shadowing_problem(
self.tcx,
label.name,
original_label(label.span),
shadower_lifetime(&param),
);
return;
}
}
loop {
match *old_scope {
Scope::Body { s, .. }
| Scope::Elision { s, .. }
| Scope::ObjectLifetimeDefault { s, .. }
| Scope::Supertrait { s, .. }
| Scope::TraitRefBoundary { s, .. } => {
old_scope = s;
}
Scope::Root => {
return;
}
Scope::Binder { ref lifetimes, s, .. } => {
if let Some(&def) = lifetimes.get(&param.name.normalize_to_macros_2_0()) {
let hir_id =
self.tcx.hir().local_def_id_to_hir_id(def.id().unwrap().expect_local());
signal_shadowing_problem(
self.tcx,
param.name.ident().name,
original_lifetime(self.tcx.hir().span(hir_id)),
shadower_lifetime(&param),
);
return;
}
old_scope = s;
}
}
}
}
/// Returns `true` if, in the current scope, replacing `'_` would be
/// equivalent to a single-use lifetime.
fn track_lifetime_uses(&self) -> bool {
let mut scope = self.scope;
loop {
match *scope {
Scope::Root => break false,
// Inside of items, it depends on the kind of item.
Scope::Binder { track_lifetime_uses, .. } => break track_lifetime_uses,
// Inside a body, `'_` will use an inference variable,
// should be fine.
Scope::Body { .. } => break true,
// A lifetime only used in a fn argument could as well
// be replaced with `'_`, as that would generate a
// fresh name, too.
Scope::Elision { elide: Elide::FreshLateAnon(..), .. } => break true,
// In the return type or other such place, `'_` is not
// going to make a fresh name, so we cannot
// necessarily replace a single-use lifetime with
// `'_`.
Scope::Elision {
elide: Elide::Exact(_) | Elide::Error(_) | Elide::Forbid, ..
} => break false,
Scope::ObjectLifetimeDefault { s, .. }
| Scope::Supertrait { s, .. }
| Scope::TraitRefBoundary { s, .. } => scope = s,
}
}
}
#[tracing::instrument(level = "debug", skip(self))]
fn insert_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime, def: Region) {
debug!(
node = ?self.tcx.hir().node_to_string(lifetime_ref.hir_id),
span = ?self.tcx.sess.source_map().span_to_string(lifetime_ref.span)
);
self.map.defs.insert(lifetime_ref.hir_id, def);
match def {
Region::LateBoundAnon(..) | Region::Static => {
// These are anonymous lifetimes or lifetimes that are not declared.
}
Region::Free(_, def_id)
| Region::LateBound(_, _, def_id, _)
| Region::EarlyBound(_, def_id, _) => {
// A lifetime declared by the user.
let track_lifetime_uses = self.track_lifetime_uses();
debug!(?track_lifetime_uses);
if track_lifetime_uses && !self.lifetime_uses.contains_key(&def_id) {
debug!("first use of {:?}", def_id);
self.lifetime_uses.insert(def_id, LifetimeUseSet::One(lifetime_ref));
} else {
debug!("many uses of {:?}", def_id);
self.lifetime_uses.insert(def_id, LifetimeUseSet::Many);
}
}
}
}
/// Sometimes we resolve a lifetime, but later find that it is an
/// error (esp. around impl trait). In that case, we remove the
/// entry into `map.defs` so as not to confuse later code.
fn uninsert_lifetime_on_error(&mut self, lifetime_ref: &'tcx hir::Lifetime, bad_def: Region) {
let old_value = self.map.defs.remove(&lifetime_ref.hir_id);
assert_eq!(old_value, Some(bad_def));
}
}
/// Detects late-bound lifetimes and inserts them into
/// `map.late_bound`.
///
/// A region declared on a fn is **late-bound** if:
/// - it is constrained by an argument type;
/// - it does not appear in a where-clause.
///
/// "Constrained" basically means that it appears in any type but
/// not amongst the inputs to a projection. In other words, `<&'a
/// T as Trait<''b>>::Foo` does not constrain `'a` or `'b`.
#[tracing::instrument(level = "debug", skip(map))]
fn insert_late_bound_lifetimes(
map: &mut NamedRegionMap,
decl: &hir::FnDecl<'_>,
generics: &hir::Generics<'_>,
) {
let mut constrained_by_input = ConstrainedCollector::default();
for arg_ty in decl.inputs {
constrained_by_input.visit_ty(arg_ty);
}
let mut appears_in_output = AllCollector::default();
intravisit::walk_fn_ret_ty(&mut appears_in_output, &decl.output);
debug!(?constrained_by_input.regions);
// Walk the lifetimes that appear in where clauses.
//
// Subtle point: because we disallow nested bindings, we can just
// ignore binders here and scrape up all names we see.
let mut appears_in_where_clause = AllCollector::default();
appears_in_where_clause.visit_generics(generics);
for param in generics.params {
if let hir::GenericParamKind::Lifetime { .. } = param.kind {
if !param.bounds.is_empty() {
// `'a: 'b` means both `'a` and `'b` are referenced
appears_in_where_clause
.regions
.insert(hir::LifetimeName::Param(param.name.normalize_to_macros_2_0()));
}
}
}
debug!(?appears_in_where_clause.regions);
// Late bound regions are those that:
// - appear in the inputs
// - do not appear in the where-clauses
// - are not implicitly captured by `impl Trait`
for param in generics.params {
match param.kind {
hir::GenericParamKind::Lifetime { .. } => { /* fall through */ }
// Neither types nor consts are late-bound.
hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => continue,
}
let lt_name = hir::LifetimeName::Param(param.name.normalize_to_macros_2_0());
// appears in the where clauses? early-bound.
if appears_in_where_clause.regions.contains(&lt_name) {
continue;
}
// does not appear in the inputs, but appears in the return type? early-bound.
if !constrained_by_input.regions.contains(&lt_name)
&& appears_in_output.regions.contains(&lt_name)
{
continue;
}
debug!("lifetime {:?} with id {:?} is late-bound", param.name.ident(), param.hir_id);
let inserted = map.late_bound.insert(param.hir_id);
assert!(inserted, "visited lifetime {:?} twice", param.hir_id);
}
return;
#[derive(Default)]
struct ConstrainedCollector {
regions: FxHashSet<hir::LifetimeName>,
}
impl<'v> Visitor<'v> for ConstrainedCollector {
type Map = intravisit::ErasedMap<'v>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
match ty.kind {
hir::TyKind::Path(
hir::QPath::Resolved(Some(_), _) | hir::QPath::TypeRelative(..),
) => {
// ignore lifetimes appearing in associated type
// projections, as they are not *constrained*
// (defined above)
}
hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
// consider only the lifetimes on the final
// segment; I am not sure it's even currently
// valid to have them elsewhere, but even if it
// is, those would be potentially inputs to
// projections
if let Some(last_segment) = path.segments.last() {
self.visit_path_segment(path.span, last_segment);
}
}
_ => {
intravisit::walk_ty(self, ty);
}
}
}
fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
self.regions.insert(lifetime_ref.name.normalize_to_macros_2_0());
}
}
#[derive(Default)]
struct AllCollector {
regions: FxHashSet<hir::LifetimeName>,
}
impl<'v> Visitor<'v> for AllCollector {
type Map = intravisit::ErasedMap<'v>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
self.regions.insert(lifetime_ref.name.normalize_to_macros_2_0());
}
}
}