rust/src/libsyntax/ast.rs

1601 lines
43 KiB
Rust

// The Rust abstract syntax tree.
use std::serialization::{Serializable,
Deserializable,
Serializer,
Deserializer};
use codemap::{span, filename};
use parse::token;
#[auto_serialize]
#[auto_deserialize]
type spanned<T> = {node: T, span: span};
/* can't import macros yet, so this is copied from token.rs. See its comment
* there. */
macro_rules! interner_key (
() => (cast::transmute::<(uint, uint), &fn(+v: @@token::ident_interner)>(
(-3 as uint, 0u)))
)
// FIXME(#3534): Replace with the struct-based newtype when it's been
// implemented.
struct ident { repr: uint }
impl<S: Serializer> ident: Serializable<S> {
fn serialize(&self, s: &S) {
let intr = match unsafe {
task::local_data::local_data_get(interner_key!())
} {
None => fail ~"serialization: TLS interner not set up",
Some(intr) => intr
};
s.emit_owned_str(*(*intr).get(*self));
}
}
impl<D: Deserializer> ident: Deserializable<D> {
static fn deserialize(d: &D) -> ident {
let intr = match unsafe {
task::local_data::local_data_get(interner_key!())
} {
None => fail ~"deserialization: TLS interner not set up",
Some(intr) => intr
};
(*intr).intern(@d.read_owned_str())
}
}
impl ident: cmp::Eq {
pure fn eq(other: &ident) -> bool { self.repr == other.repr }
pure fn ne(other: &ident) -> bool { !self.eq(other) }
}
impl ident: to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
self.repr.iter_bytes(lsb0, f)
}
}
// Functions may or may not have names.
type fn_ident = Option<ident>;
#[auto_serialize]
#[auto_deserialize]
type path = {span: span,
global: bool,
idents: ~[ident],
rp: Option<@region>,
types: ~[@Ty]};
type crate_num = int;
type node_id = int;
#[auto_serialize]
#[auto_deserialize]
type def_id = {crate: crate_num, node: node_id};
impl def_id : cmp::Eq {
pure fn eq(other: &def_id) -> bool {
self.crate == (*other).crate && self.node == (*other).node
}
pure fn ne(other: &def_id) -> bool { !self.eq(other) }
}
const local_crate: crate_num = 0;
const crate_node_id: node_id = 0;
#[auto_serialize]
#[auto_deserialize]
// The AST represents all type param bounds as types.
// typeck::collect::compute_bounds matches these against
// the "special" built-in traits (see middle::lang_items) and
// detects Copy, Send, Owned, and Const.
enum ty_param_bound = @Ty;
#[auto_serialize]
#[auto_deserialize]
type ty_param = {ident: ident, id: node_id, bounds: @~[ty_param_bound]};
#[auto_serialize]
#[auto_deserialize]
enum def {
def_fn(def_id, purity),
def_static_method(/* method */ def_id,
/* trait */ Option<def_id>,
purity),
def_self(node_id),
def_mod(def_id),
def_foreign_mod(def_id),
def_const(def_id),
def_arg(node_id, mode),
def_local(node_id, bool /* is_mutbl */),
def_variant(def_id /* enum */, def_id /* variant */),
def_ty(def_id),
def_prim_ty(prim_ty),
def_ty_param(def_id, uint),
def_binding(node_id, binding_mode),
def_use(def_id),
def_upvar(node_id, // id of closed over var
@def, // closed over def
node_id, // expr node that creates the closure
node_id), // id for the block/body of the closure expr
def_class(def_id),
def_typaram_binder(node_id), /* class, impl or trait that has ty params */
def_region(node_id),
def_label(node_id)
}
impl def : cmp::Eq {
pure fn eq(other: &def) -> bool {
match self {
def_fn(e0a, e1a) => {
match (*other) {
def_fn(e0b, e1b) => e0a == e0b && e1a == e1b,
_ => false
}
}
def_static_method(e0a, e1a, e2a) => {
match (*other) {
def_static_method(e0b, e1b, e2b) =>
e0a == e0b && e1a == e1b && e2a == e2b,
_ => false
}
}
def_self(e0a) => {
match (*other) {
def_self(e0b) => e0a == e0b,
_ => false
}
}
def_mod(e0a) => {
match (*other) {
def_mod(e0b) => e0a == e0b,
_ => false
}
}
def_foreign_mod(e0a) => {
match (*other) {
def_foreign_mod(e0b) => e0a == e0b,
_ => false
}
}
def_const(e0a) => {
match (*other) {
def_const(e0b) => e0a == e0b,
_ => false
}
}
def_arg(e0a, e1a) => {
match (*other) {
def_arg(e0b, e1b) => e0a == e0b && e1a == e1b,
_ => false
}
}
def_local(e0a, e1a) => {
match (*other) {
def_local(e0b, e1b) => e0a == e0b && e1a == e1b,
_ => false
}
}
def_variant(e0a, e1a) => {
match (*other) {
def_variant(e0b, e1b) => e0a == e0b && e1a == e1b,
_ => false
}
}
def_ty(e0a) => {
match (*other) {
def_ty(e0b) => e0a == e0b,
_ => false
}
}
def_prim_ty(e0a) => {
match (*other) {
def_prim_ty(e0b) => e0a == e0b,
_ => false
}
}
def_ty_param(e0a, e1a) => {
match (*other) {
def_ty_param(e0b, e1b) => e0a == e0b && e1a == e1b,
_ => false
}
}
def_binding(e0a, e1a) => {
match (*other) {
def_binding(e0b, e1b) => e0a == e0b && e1a == e1b,
_ => false
}
}
def_use(e0a) => {
match (*other) {
def_use(e0b) => e0a == e0b,
_ => false
}
}
def_upvar(e0a, e1a, e2a, e3a) => {
match (*other) {
def_upvar(e0b, e1b, e2b, e3b) =>
e0a == e0b && e1a == e1b && e2a == e2b && e3a == e3b,
_ => false
}
}
def_class(e0a) => {
match (*other) {
def_class(e0b) => e0a == e0b,
_ => false
}
}
def_typaram_binder(e0a) => {
match (*other) {
def_typaram_binder(e1a) => e0a == e1a,
_ => false
}
}
def_region(e0a) => {
match (*other) {
def_region(e0b) => e0a == e0b,
_ => false
}
}
def_label(e0a) => {
match (*other) {
def_label(e0b) => e0a == e0b,
_ => false
}
}
}
}
pure fn ne(other: &def) -> bool { !self.eq(other) }
}
// The set of meta_items that define the compilation environment of the crate,
// used to drive conditional compilation
type crate_cfg = ~[@meta_item];
type crate = spanned<crate_>;
type crate_ =
{directives: ~[@crate_directive],
module: _mod,
attrs: ~[attribute],
config: crate_cfg};
enum crate_directive_ {
cdir_src_mod(visibility, ident, ~[attribute]),
cdir_dir_mod(visibility, ident, ~[@crate_directive], ~[attribute]),
// NB: cdir_view_item is *not* processed by the rest of the compiler, the
// attached view_items are sunk into the crate's module during parsing,
// and processed (resolved, imported, etc.) there. This enum-variant
// exists only to preserve the view items in order in case we decide to
// pretty-print crates in the future.
cdir_view_item(@view_item),
cdir_syntax(@path),
}
type crate_directive = spanned<crate_directive_>;
type meta_item = spanned<meta_item_>;
#[auto_serialize]
#[auto_deserialize]
enum meta_item_ {
meta_word(~str),
meta_list(~str, ~[@meta_item]),
meta_name_value(~str, lit),
}
type blk = spanned<blk_>;
#[auto_serialize]
#[auto_deserialize]
type blk_ = {view_items: ~[@view_item],
stmts: ~[@stmt],
expr: Option<@expr>,
id: node_id,
rules: blk_check_mode};
#[auto_serialize]
#[auto_deserialize]
type pat = {id: node_id, node: pat_, span: span};
#[auto_serialize]
#[auto_deserialize]
type field_pat = {ident: ident, pat: @pat};
#[auto_serialize]
#[auto_deserialize]
enum binding_mode {
bind_by_value,
bind_by_move,
bind_by_ref(ast::mutability),
bind_by_implicit_ref
}
impl binding_mode : to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
match self {
bind_by_value => 0u8.iter_bytes(lsb0, f),
bind_by_move => 1u8.iter_bytes(lsb0, f),
bind_by_ref(ref m) =>
to_bytes::iter_bytes_2(&2u8, m, lsb0, f),
bind_by_implicit_ref =>
3u8.iter_bytes(lsb0, f),
}
}
}
impl binding_mode : cmp::Eq {
pure fn eq(other: &binding_mode) -> bool {
match self {
bind_by_value => {
match (*other) {
bind_by_value => true,
_ => false
}
}
bind_by_move => {
match (*other) {
bind_by_move => true,
_ => false
}
}
bind_by_ref(e0a) => {
match (*other) {
bind_by_ref(e0b) => e0a == e0b,
_ => false
}
}
bind_by_implicit_ref => {
match (*other) {
bind_by_implicit_ref => true,
_ => false
}
}
}
}
pure fn ne(other: &binding_mode) -> bool { !self.eq(other) }
}
#[auto_serialize]
#[auto_deserialize]
enum pat_ {
pat_wild,
// A pat_ident may either be a new bound variable,
// or a nullary enum (in which case the second field
// is None).
// In the nullary enum case, the parser can't determine
// which it is. The resolver determines this, and
// records this pattern's node_id in an auxiliary
// set (of "pat_idents that refer to nullary enums")
pat_ident(binding_mode, @path, Option<@pat>),
pat_enum(@path, Option<~[@pat]>), // "none" means a * pattern where
// we don't bind the fields to names
pat_rec(~[field_pat], bool),
pat_struct(@path, ~[field_pat], bool),
pat_tup(~[@pat]),
pat_box(@pat),
pat_uniq(@pat),
pat_region(@pat), // borrowed pointer pattern
pat_lit(@expr),
pat_range(@expr, @expr),
}
#[auto_serialize]
#[auto_deserialize]
enum mutability { m_mutbl, m_imm, m_const, }
impl mutability : to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
(self as u8).iter_bytes(lsb0, f)
}
}
impl mutability : cmp::Eq {
pure fn eq(other: &mutability) -> bool {
(self as uint) == ((*other) as uint)
}
pure fn ne(other: &mutability) -> bool { !self.eq(other) }
}
#[auto_serialize]
#[auto_deserialize]
pub enum Proto {
ProtoBare, // bare functions (deprecated)
ProtoUniq, // ~fn
ProtoBox, // @fn
ProtoBorrowed, // &fn
}
impl Proto : cmp::Eq {
pure fn eq(other: &Proto) -> bool {
(self as uint) == ((*other) as uint)
}
pure fn ne(other: &Proto) -> bool { !self.eq(other) }
}
impl Proto : to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
(self as uint).iter_bytes(lsb0, f);
}
}
#[auto_serialize]
#[auto_deserialize]
enum vstore {
// FIXME (#3469): Change uint to @expr (actually only constant exprs)
vstore_fixed(Option<uint>), // [1,2,3,4]
vstore_uniq, // ~[1,2,3,4]
vstore_box, // @[1,2,3,4]
vstore_slice(@region) // &[1,2,3,4](foo)?
}
#[auto_serialize]
#[auto_deserialize]
enum expr_vstore {
// FIXME (#3469): Change uint to @expr (actually only constant exprs)
expr_vstore_fixed(Option<uint>), // [1,2,3,4]
expr_vstore_uniq, // ~[1,2,3,4]
expr_vstore_box, // @[1,2,3,4]
expr_vstore_slice // &[1,2,3,4]
}
pure fn is_blockish(p: ast::Proto) -> bool {
match p {
ProtoBorrowed => true,
ProtoBare | ProtoUniq | ProtoBox => false
}
}
#[auto_serialize]
#[auto_deserialize]
enum binop {
add,
subtract,
mul,
div,
rem,
and,
or,
bitxor,
bitand,
bitor,
shl,
shr,
eq,
lt,
le,
ne,
ge,
gt,
}
impl binop : cmp::Eq {
pure fn eq(other: &binop) -> bool {
(self as uint) == ((*other) as uint)
}
pure fn ne(other: &binop) -> bool { !self.eq(other) }
}
#[auto_serialize]
#[auto_deserialize]
enum unop {
box(mutability),
uniq(mutability),
deref,
not,
neg
}
impl unop : cmp::Eq {
pure fn eq(other: &unop) -> bool {
match self {
box(e0a) => {
match (*other) {
box(e0b) => e0a == e0b,
_ => false
}
}
uniq(e0a) => {
match (*other) {
uniq(e0b) => e0a == e0b,
_ => false
}
}
deref => {
match (*other) {
deref => true,
_ => false
}
}
not => {
match (*other) {
not => true,
_ => false
}
}
neg => {
match (*other) {
neg => true,
_ => false
}
}
}
}
pure fn ne(other: &unop) -> bool {
!self.eq(other)
}
}
// Generally, after typeck you can get the inferred value
// using ty::resolved_T(...).
#[auto_serialize]
#[auto_deserialize]
enum inferable<T> {
expl(T),
infer(node_id)
}
impl<T: to_bytes::IterBytes> inferable<T> : to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
match self {
expl(ref t) =>
to_bytes::iter_bytes_2(&0u8, t, lsb0, f),
infer(ref n) =>
to_bytes::iter_bytes_2(&1u8, n, lsb0, f),
}
}
}
impl<T:cmp::Eq> inferable<T> : cmp::Eq {
pure fn eq(other: &inferable<T>) -> bool {
match self {
expl(e0a) => {
match (*other) {
expl(e0b) => e0a == e0b,
_ => false
}
}
infer(e0a) => {
match (*other) {
infer(e0b) => e0a == e0b,
_ => false
}
}
}
}
pure fn ne(other: &inferable<T>) -> bool { !self.eq(other) }
}
// "resolved" mode: the real modes.
#[auto_serialize]
#[auto_deserialize]
enum rmode { by_ref, by_val, by_move, by_copy }
impl rmode : to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
(self as u8).iter_bytes(lsb0, f)
}
}
impl rmode : cmp::Eq {
pure fn eq(other: &rmode) -> bool {
(self as uint) == ((*other) as uint)
}
pure fn ne(other: &rmode) -> bool { !self.eq(other) }
}
// inferable mode.
type mode = inferable<rmode>;
type stmt = spanned<stmt_>;
#[auto_serialize]
#[auto_deserialize]
enum stmt_ {
stmt_decl(@decl, node_id),
// expr without trailing semi-colon (must have unit type):
stmt_expr(@expr, node_id),
// expr with trailing semi-colon (may have any type):
stmt_semi(@expr, node_id),
}
// FIXME (pending discussion of #1697, #2178...): local should really be
// a refinement on pat.
#[auto_serialize]
#[auto_deserialize]
type local_ = {is_mutbl: bool, ty: @Ty, pat: @pat,
init: Option<@expr>, id: node_id};
type local = spanned<local_>;
type decl = spanned<decl_>;
#[auto_serialize]
#[auto_deserialize]
enum decl_ { decl_local(~[@local]), decl_item(@item), }
#[auto_serialize]
#[auto_deserialize]
type arm = {pats: ~[@pat], guard: Option<@expr>, body: blk};
#[auto_serialize]
#[auto_deserialize]
type field_ = {mutbl: mutability, ident: ident, expr: @expr};
type field = spanned<field_>;
#[auto_serialize]
#[auto_deserialize]
enum blk_check_mode { default_blk, unsafe_blk, }
impl blk_check_mode : cmp::Eq {
pure fn eq(other: &blk_check_mode) -> bool {
match (self, (*other)) {
(default_blk, default_blk) => true,
(unsafe_blk, unsafe_blk) => true,
(default_blk, _) => false,
(unsafe_blk, _) => false,
}
}
pure fn ne(other: &blk_check_mode) -> bool { !self.eq(other) }
}
#[auto_serialize]
#[auto_deserialize]
type expr = {id: node_id, callee_id: node_id, node: expr_, span: span};
// Extra node ID is only used for index, assign_op, unary, binary
#[auto_serialize]
#[auto_deserialize]
enum log_level { error, debug, log_other }
// 0 = error, 1 = debug, 2 = log_other
#[auto_serialize]
#[auto_deserialize]
enum expr_ {
expr_vstore(@expr, expr_vstore),
expr_vec(~[@expr], mutability),
expr_rec(~[field], Option<@expr>),
expr_call(@expr, ~[@expr], bool), // True iff last argument is a block
expr_tup(~[@expr]),
expr_binary(binop, @expr, @expr),
expr_unary(unop, @expr),
expr_lit(@lit),
expr_cast(@expr, @Ty),
expr_if(@expr, blk, Option<@expr>),
expr_while(@expr, blk),
/* Conditionless loop (can be exited with break, cont, ret, or fail)
Same semantics as while(true) { body }, but typestate knows that the
(implicit) condition is always true. */
expr_loop(blk, Option<ident>),
expr_match(@expr, ~[arm]),
expr_fn(Proto, fn_decl, blk, capture_clause),
expr_fn_block(fn_decl, blk, capture_clause),
// Inner expr is always an expr_fn_block. We need the wrapping node to
// easily type this (a function returning nil on the inside but bool on
// the outside).
expr_loop_body(@expr),
// Like expr_loop_body but for 'do' blocks
expr_do_body(@expr),
expr_block(blk),
expr_copy(@expr),
expr_unary_move(@expr),
expr_assign(@expr, @expr),
expr_swap(@expr, @expr),
expr_assign_op(binop, @expr, @expr),
expr_field(@expr, ident, ~[@Ty]),
expr_index(@expr, @expr),
expr_path(@path),
expr_addr_of(mutability, @expr),
expr_fail(Option<@expr>),
expr_break(Option<ident>),
expr_again(Option<ident>),
expr_ret(Option<@expr>),
expr_log(log_level, @expr, @expr),
/* just an assert */
expr_assert(@expr),
expr_mac(mac),
// A struct literal expression.
expr_struct(@path, ~[field], Option<@expr>),
// A vector literal constructed from one repeated element.
expr_repeat(@expr /* element */, @expr /* count */, mutability),
// No-op: used solely so we can pretty-print faithfully
expr_paren(@expr)
}
#[auto_serialize]
#[auto_deserialize]
type capture_item_ = {
id: int,
is_move: bool,
name: ident, // Currently, can only capture a local var.
span: span
};
type capture_item = @capture_item_;
type capture_clause = @~[capture_item];
//
// When the main rust parser encounters a syntax-extension invocation, it
// parses the arguments to the invocation as a token-tree. This is a very
// loose structure, such that all sorts of different AST-fragments can
// be passed to syntax extensions using a uniform type.
//
// If the syntax extension is an MBE macro, it will attempt to match its
// LHS "matchers" against the provided token tree, and if it finds a
// match, will transcribe the RHS token tree, splicing in any captured
// macro_parser::matched_nonterminals into the tt_nonterminals it finds.
//
// The RHS of an MBE macro is the only place a tt_nonterminal or tt_seq
// makes any real sense. You could write them elsewhere but nothing
// else knows what to do with them, so you'll probably get a syntax
// error.
//
#[auto_serialize]
#[auto_deserialize]
#[doc="For macro invocations; parsing is delegated to the macro"]
enum token_tree {
tt_tok(span, token::Token),
tt_delim(~[token_tree]),
// These only make sense for right-hand-sides of MBE macros
tt_seq(span, ~[token_tree], Option<token::Token>, bool),
tt_nonterminal(span, ident)
}
//
// Matchers are nodes defined-by and recognized-by the main rust parser and
// language, but they're only ever found inside syntax-extension invocations;
// indeed, the only thing that ever _activates_ the rules in the rust parser
// for parsing a matcher is a matcher looking for the 'matchers' nonterminal
// itself. Matchers represent a small sub-language for pattern-matching
// token-trees, and are thus primarily used by the macro-defining extension
// itself.
//
// match_tok
// ---------
//
// A matcher that matches a single token, denoted by the token itself. So
// long as there's no $ involved.
//
//
// match_seq
// ---------
//
// A matcher that matches a sequence of sub-matchers, denoted various
// possible ways:
//
// $(M)* zero or more Ms
// $(M)+ one or more Ms
// $(M),+ one or more comma-separated Ms
// $(A B C);* zero or more semi-separated 'A B C' seqs
//
//
// match_nonterminal
// -----------------
//
// A matcher that matches one of a few interesting named rust
// nonterminals, such as types, expressions, items, or raw token-trees. A
// black-box matcher on expr, for example, binds an expr to a given ident,
// and that ident can re-occur as an interpolation in the RHS of a
// macro-by-example rule. For example:
//
// $foo:expr => 1 + $foo // interpolate an expr
// $foo:tt => $foo // interpolate a token-tree
// $foo:tt => bar! $foo // only other valid interpolation
// // is in arg position for another
// // macro
//
// As a final, horrifying aside, note that macro-by-example's input is
// also matched by one of these matchers. Holy self-referential! It is matched
// by an match_seq, specifically this one:
//
// $( $lhs:matchers => $rhs:tt );+
//
// If you understand that, you have closed to loop and understand the whole
// macro system. Congratulations.
//
type matcher = spanned<matcher_>;
#[auto_serialize]
#[auto_deserialize]
enum matcher_ {
// match one token
match_tok(token::Token),
// match repetitions of a sequence: body, separator, zero ok?,
// lo, hi position-in-match-array used:
match_seq(~[matcher], Option<token::Token>, bool, uint, uint),
// parse a Rust NT: name to bind, name of NT, position in match array:
match_nonterminal(ident, ident, uint)
}
type mac = spanned<mac_>;
type mac_arg = Option<@expr>;
#[auto_serialize]
#[auto_deserialize]
type mac_body_ = {span: span};
type mac_body = Option<mac_body_>;
#[auto_serialize]
#[auto_deserialize]
enum mac_ {
mac_invoc(@path, mac_arg, mac_body), // old macro-invocation
mac_invoc_tt(@path,~[token_tree]), // new macro-invocation
mac_ellipsis, // old pattern-match (obsolete)
// the span is used by the quoter/anti-quoter ...
mac_aq(span /* span of quote */, @expr), // anti-quote
mac_var(uint)
}
type lit = spanned<lit_>;
#[auto_serialize]
#[auto_deserialize]
enum lit_ {
lit_str(@~str),
lit_int(i64, int_ty),
lit_uint(u64, uint_ty),
lit_int_unsuffixed(i64),
lit_float(@~str, float_ty),
lit_nil,
lit_bool(bool),
}
impl ast::lit_: cmp::Eq {
pure fn eq(other: &ast::lit_) -> bool {
match (self, *other) {
(lit_str(a), lit_str(b)) => a == b,
(lit_int(val_a, ty_a), lit_int(val_b, ty_b)) => {
val_a == val_b && ty_a == ty_b
}
(lit_uint(val_a, ty_a), lit_uint(val_b, ty_b)) => {
val_a == val_b && ty_a == ty_b
}
(lit_int_unsuffixed(a), lit_int_unsuffixed(b)) => a == b,
(lit_float(val_a, ty_a), lit_float(val_b, ty_b)) => {
val_a == val_b && ty_a == ty_b
}
(lit_nil, lit_nil) => true,
(lit_bool(a), lit_bool(b)) => a == b,
(lit_str(_), _) => false,
(lit_int(*), _) => false,
(lit_uint(*), _) => false,
(lit_int_unsuffixed(*), _) => false,
(lit_float(*), _) => false,
(lit_nil, _) => false,
(lit_bool(_), _) => false
}
}
pure fn ne(other: &ast::lit_) -> bool { !self.eq(other) }
}
// NB: If you change this, you'll probably want to change the corresponding
// type structure in middle/ty.rs as well.
#[auto_serialize]
#[auto_deserialize]
type mt = {ty: @Ty, mutbl: mutability};
#[auto_serialize]
#[auto_deserialize]
type ty_field_ = {ident: ident, mt: mt};
type ty_field = spanned<ty_field_>;
#[auto_serialize]
#[auto_deserialize]
type ty_method = {ident: ident, attrs: ~[attribute], purity: purity,
decl: fn_decl, tps: ~[ty_param], self_ty: self_ty,
id: node_id, span: span};
#[auto_serialize]
#[auto_deserialize]
// A trait method is either required (meaning it doesn't have an
// implementation, just a signature) or provided (meaning it has a default
// implementation).
enum trait_method {
required(ty_method),
provided(@method),
}
#[auto_serialize]
#[auto_deserialize]
enum int_ty { ty_i, ty_char, ty_i8, ty_i16, ty_i32, ty_i64, }
impl int_ty : to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
(self as u8).iter_bytes(lsb0, f)
}
}
impl int_ty : cmp::Eq {
pure fn eq(other: &int_ty) -> bool {
match (self, (*other)) {
(ty_i, ty_i) => true,
(ty_char, ty_char) => true,
(ty_i8, ty_i8) => true,
(ty_i16, ty_i16) => true,
(ty_i32, ty_i32) => true,
(ty_i64, ty_i64) => true,
(ty_i, _) => false,
(ty_char, _) => false,
(ty_i8, _) => false,
(ty_i16, _) => false,
(ty_i32, _) => false,
(ty_i64, _) => false,
}
}
pure fn ne(other: &int_ty) -> bool { !self.eq(other) }
}
#[auto_serialize]
#[auto_deserialize]
enum uint_ty { ty_u, ty_u8, ty_u16, ty_u32, ty_u64, }
impl uint_ty : to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
(self as u8).iter_bytes(lsb0, f)
}
}
impl uint_ty : cmp::Eq {
pure fn eq(other: &uint_ty) -> bool {
match (self, (*other)) {
(ty_u, ty_u) => true,
(ty_u8, ty_u8) => true,
(ty_u16, ty_u16) => true,
(ty_u32, ty_u32) => true,
(ty_u64, ty_u64) => true,
(ty_u, _) => false,
(ty_u8, _) => false,
(ty_u16, _) => false,
(ty_u32, _) => false,
(ty_u64, _) => false
}
}
pure fn ne(other: &uint_ty) -> bool { !self.eq(other) }
}
#[auto_serialize]
#[auto_deserialize]
enum float_ty { ty_f, ty_f32, ty_f64, }
impl float_ty : to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
(self as u8).iter_bytes(lsb0, f)
}
}
impl float_ty : cmp::Eq {
pure fn eq(other: &float_ty) -> bool {
match (self, (*other)) {
(ty_f, ty_f) | (ty_f32, ty_f32) | (ty_f64, ty_f64) => true,
(ty_f, _) | (ty_f32, _) | (ty_f64, _) => false
}
}
pure fn ne(other: &float_ty) -> bool { !self.eq(other) }
}
#[auto_serialize]
#[auto_deserialize]
type Ty = {id: node_id, node: ty_, span: span};
// Not represented directly in the AST, referred to by name through a ty_path.
#[auto_serialize]
#[auto_deserialize]
enum prim_ty {
ty_int(int_ty),
ty_uint(uint_ty),
ty_float(float_ty),
ty_str,
ty_bool,
}
impl prim_ty : cmp::Eq {
pure fn eq(other: &prim_ty) -> bool {
match self {
ty_int(e0a) => {
match (*other) {
ty_int(e0b) => e0a == e0b,
_ => false
}
}
ty_uint(e0a) => {
match (*other) {
ty_uint(e0b) => e0a == e0b,
_ => false
}
}
ty_float(e0a) => {
match (*other) {
ty_float(e0b) => e0a == e0b,
_ => false
}
}
ty_str => {
match (*other) {
ty_str => true,
_ => false
}
}
ty_bool => {
match (*other) {
ty_bool => true,
_ => false
}
}
}
}
pure fn ne(other: &prim_ty) -> bool { !self.eq(other) }
}
#[auto_serialize]
#[auto_deserialize]
type region = {id: node_id, node: region_};
#[auto_serialize]
#[auto_deserialize]
enum region_ {
re_anon,
re_static,
re_self,
re_named(ident)
}
#[auto_serialize]
#[auto_deserialize]
enum Onceness {
Once,
Many
}
impl Onceness : cmp::Eq {
pure fn eq(other: &Onceness) -> bool {
match (self, *other) {
(Once, Once) | (Many, Many) => true,
_ => false
}
}
pure fn ne(other: &Onceness) -> bool {
!self.eq(other)
}
}
#[auto_serialize]
#[auto_deserialize]
struct TyFn {
proto: Proto,
region: Option<@region>,
purity: purity,
onceness: Onceness,
bounds: @~[ty_param_bound],
decl: fn_decl
}
#[auto_serialize]
#[auto_deserialize]
enum ty_ {
ty_nil,
ty_bot, /* bottom type */
ty_box(mt),
ty_uniq(mt),
ty_vec(mt),
ty_fixed_length_vec(mt, uint),
ty_ptr(mt),
ty_rptr(@region, mt),
ty_rec(~[ty_field]),
ty_fn(@TyFn),
ty_tup(~[@Ty]),
ty_path(@path, node_id),
ty_mac(mac),
// ty_infer means the type should be inferred instead of it having been
// specified. This should only appear at the "top level" of a type and not
// nested in one.
ty_infer,
}
// Equality and byte-iter (hashing) can be quite approximate for AST types.
// since we only care about this for normalizing them to "real" types.
impl Ty : cmp::Eq {
pure fn eq(other: &Ty) -> bool {
ptr::addr_of(&self) == ptr::addr_of(&(*other))
}
pure fn ne(other: &Ty) -> bool {
ptr::addr_of(&self) != ptr::addr_of(&(*other))
}
}
impl Ty : to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
to_bytes::iter_bytes_2(&self.span.lo, &self.span.hi, lsb0, f);
}
}
#[auto_serialize]
#[auto_deserialize]
type arg = {mode: mode, ty: @Ty, pat: @pat, id: node_id};
#[auto_serialize]
#[auto_deserialize]
type fn_decl =
{inputs: ~[arg],
output: @Ty,
cf: ret_style};
#[auto_serialize]
#[auto_deserialize]
enum purity {
pure_fn, // declared with "pure fn"
unsafe_fn, // declared with "unsafe fn"
impure_fn, // declared with "fn"
extern_fn, // declared with "extern fn"
}
impl purity : to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
(self as u8).iter_bytes(lsb0, f)
}
}
impl purity : cmp::Eq {
pure fn eq(other: &purity) -> bool {
(self as uint) == ((*other) as uint)
}
pure fn ne(other: &purity) -> bool { !self.eq(other) }
}
#[auto_serialize]
#[auto_deserialize]
enum ret_style {
noreturn, // functions with return type _|_ that always
// raise an error or exit (i.e. never return to the caller)
return_val, // everything else
}
impl ret_style : to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
(self as u8).iter_bytes(lsb0, f)
}
}
impl ret_style : cmp::Eq {
pure fn eq(other: &ret_style) -> bool {
match (self, (*other)) {
(noreturn, noreturn) => true,
(return_val, return_val) => true,
(noreturn, _) => false,
(return_val, _) => false,
}
}
pure fn ne(other: &ret_style) -> bool { !self.eq(other) }
}
#[auto_serialize]
#[auto_deserialize]
enum self_ty_ {
sty_static, // no self: static method
sty_by_ref, // old by-reference self: ``
sty_value, // by-value self: `self`
sty_region(mutability), // by-region self: `&self`
sty_box(mutability), // by-managed-pointer self: `@self`
sty_uniq(mutability) // by-unique-pointer self: `~self`
}
impl self_ty_ : cmp::Eq {
pure fn eq(other: &self_ty_) -> bool {
match self {
sty_static => {
match (*other) {
sty_static => true,
_ => false
}
}
sty_by_ref => {
match (*other) {
sty_by_ref => true,
_ => false
}
}
sty_value => {
match (*other) {
sty_value => true,
_ => false
}
}
sty_region(e0a) => {
match (*other) {
sty_region(e0b) => e0a == e0b,
_ => false
}
}
sty_box(e0a) => {
match (*other) {
sty_box(e0b) => e0a == e0b,
_ => false
}
}
sty_uniq(e0a) => {
match (*other) {
sty_uniq(e0b) => e0a == e0b,
_ => false
}
}
}
}
pure fn ne(other: &self_ty_) -> bool { !self.eq(other) }
}
type self_ty = spanned<self_ty_>;
#[auto_serialize]
#[auto_deserialize]
type method = {ident: ident, attrs: ~[attribute],
tps: ~[ty_param], self_ty: self_ty,
purity: purity, decl: fn_decl, body: blk,
id: node_id, span: span, self_id: node_id,
vis: visibility};
#[auto_serialize]
#[auto_deserialize]
type _mod = {view_items: ~[@view_item], items: ~[@item]};
#[auto_serialize]
#[auto_deserialize]
enum foreign_abi {
foreign_abi_rust_intrinsic,
foreign_abi_cdecl,
foreign_abi_stdcall,
}
// Foreign mods can be named or anonymous
#[auto_serialize]
#[auto_deserialize]
enum foreign_mod_sort { named, anonymous }
impl foreign_mod_sort : cmp::Eq {
pure fn eq(other: &foreign_mod_sort) -> bool {
(self as uint) == ((*other) as uint)
}
pure fn ne(other: &foreign_mod_sort) -> bool { !self.eq(other) }
}
impl foreign_abi : cmp::Eq {
pure fn eq(other: &foreign_abi) -> bool {
match (self, (*other)) {
(foreign_abi_rust_intrinsic, foreign_abi_rust_intrinsic) => true,
(foreign_abi_cdecl, foreign_abi_cdecl) => true,
(foreign_abi_stdcall, foreign_abi_stdcall) => true,
(foreign_abi_rust_intrinsic, _) => false,
(foreign_abi_cdecl, _) => false,
(foreign_abi_stdcall, _) => false,
}
}
pure fn ne(other: &foreign_abi) -> bool { !self.eq(other) }
}
#[auto_serialize]
#[auto_deserialize]
type foreign_mod =
{sort: foreign_mod_sort,
view_items: ~[@view_item],
items: ~[@foreign_item]};
#[auto_serialize]
#[auto_deserialize]
type variant_arg = {ty: @Ty, id: node_id};
#[auto_serialize]
#[auto_deserialize]
enum variant_kind {
tuple_variant_kind(~[variant_arg]),
struct_variant_kind(@struct_def),
enum_variant_kind(enum_def)
}
#[auto_serialize]
#[auto_deserialize]
type enum_def_ = { variants: ~[variant], common: Option<@struct_def> };
#[auto_serialize]
#[auto_deserialize]
enum enum_def = enum_def_;
#[auto_serialize]
#[auto_deserialize]
type variant_ = {name: ident, attrs: ~[attribute], kind: variant_kind,
id: node_id, disr_expr: Option<@expr>, vis: visibility};
type variant = spanned<variant_>;
#[auto_serialize]
#[auto_deserialize]
type path_list_ident_ = {name: ident, id: node_id};
type path_list_ident = spanned<path_list_ident_>;
#[auto_serialize]
#[auto_deserialize]
enum namespace { module_ns, type_value_ns }
impl namespace : cmp::Eq {
pure fn eq(other: &namespace) -> bool {
(self as uint) == ((*other) as uint)
}
pure fn ne(other: &namespace) -> bool { !self.eq(other) }
}
type view_path = spanned<view_path_>;
#[auto_serialize]
#[auto_deserialize]
enum view_path_ {
// quux = foo::bar::baz
//
// or just
//
// foo::bar::baz (with 'baz =' implicitly on the left)
view_path_simple(ident, @path, namespace, node_id),
// foo::bar::*
view_path_glob(@path, node_id),
// foo::bar::{a,b,c}
view_path_list(@path, ~[path_list_ident], node_id)
}
#[auto_serialize]
#[auto_deserialize]
type view_item = {node: view_item_, attrs: ~[attribute],
vis: visibility, span: span};
#[auto_serialize]
#[auto_deserialize]
enum view_item_ {
view_item_use(ident, ~[@meta_item], node_id),
view_item_import(~[@view_path]),
view_item_export(~[@view_path])
}
// Meta-data associated with an item
type attribute = spanned<attribute_>;
// Distinguishes between attributes that decorate items and attributes that
// are contained as statements within items. These two cases need to be
// distinguished for pretty-printing.
#[auto_serialize]
#[auto_deserialize]
enum attr_style { attr_outer, attr_inner, }
impl attr_style : cmp::Eq {
pure fn eq(other: &attr_style) -> bool {
(self as uint) == ((*other) as uint)
}
pure fn ne(other: &attr_style) -> bool { !self.eq(other) }
}
// doc-comments are promoted to attributes that have is_sugared_doc = true
#[auto_serialize]
#[auto_deserialize]
type attribute_ = {style: attr_style, value: meta_item, is_sugared_doc: bool};
/*
trait_refs appear in both impls and in classes that implement traits.
resolve maps each trait_ref's ref_id to its defining trait; that's all
that the ref_id is for. The impl_id maps to the "self type" of this impl.
If this impl is an item_impl, the impl_id is redundant (it could be the
same as the impl's node id). If this impl is actually an impl_class, then
conceptually, the impl_id stands in for the pair of (this class, this
trait)
*/
#[auto_serialize]
#[auto_deserialize]
type trait_ref = {path: @path, ref_id: node_id, impl_id: node_id};
#[auto_serialize]
#[auto_deserialize]
enum visibility { public, private, inherited }
impl visibility : cmp::Eq {
pure fn eq(other: &visibility) -> bool {
match (self, (*other)) {
(public, public) => true,
(private, private) => true,
(inherited, inherited) => true,
(public, _) => false,
(private, _) => false,
(inherited, _) => false,
}
}
pure fn ne(other: &visibility) -> bool { !self.eq(other) }
}
#[auto_serialize]
#[auto_deserialize]
type struct_field_ = {
kind: struct_field_kind,
id: node_id,
ty: @Ty
};
type struct_field = spanned<struct_field_>;
#[auto_serialize]
#[auto_deserialize]
enum struct_field_kind {
named_field(ident, class_mutability, visibility),
unnamed_field // element of a tuple-like struct
}
impl struct_field_kind : cmp::Eq {
pure fn eq(other: &struct_field_kind) -> bool {
match self {
named_field(ident_a, class_mutability_a, visibility_a) => {
match *other {
named_field(ident_b, class_mutability_b, visibility_b)
=> {
ident_a == ident_b &&
class_mutability_a == class_mutability_b &&
visibility_a == visibility_b
}
unnamed_field => false
}
}
unnamed_field => {
match *other {
named_field(*) => false,
unnamed_field => true
}
}
}
}
pure fn ne(other: &struct_field_kind) -> bool { !self.eq(other) }
}
#[auto_serialize]
#[auto_deserialize]
type struct_def = {
traits: ~[@trait_ref], /* traits this struct implements */
fields: ~[@struct_field], /* fields */
methods: ~[@method], /* methods */
/* (not including ctor or dtor) */
/* dtor is optional */
dtor: Option<class_dtor>,
/* ID of the constructor. This is only used for tuple- or enum-like
* structs. */
ctor_id: Option<node_id>
};
/*
FIXME (#3300): Should allow items to be anonymous. Right now
we just use dummy names for anon items.
*/
#[auto_serialize]
#[auto_deserialize]
type item = {ident: ident, attrs: ~[attribute],
id: node_id, node: item_,
vis: visibility, span: span};
#[auto_serialize]
#[auto_deserialize]
enum item_ {
item_const(@Ty, @expr),
item_fn(fn_decl, purity, ~[ty_param], blk),
item_mod(_mod),
item_foreign_mod(foreign_mod),
item_ty(@Ty, ~[ty_param]),
item_enum(enum_def, ~[ty_param]),
item_class(@struct_def, ~[ty_param]),
item_trait(~[ty_param], ~[@trait_ref], ~[trait_method]),
item_impl(~[ty_param],
Option<@trait_ref>, /* (optional) trait this impl implements */
@Ty, /* self */
Option<~[@method]>),
item_mac(mac),
}
#[auto_serialize]
#[auto_deserialize]
enum class_mutability { class_mutable, class_immutable }
impl class_mutability : to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
(self as u8).iter_bytes(lsb0, f)
}
}
impl class_mutability : cmp::Eq {
pure fn eq(other: &class_mutability) -> bool {
match (self, (*other)) {
(class_mutable, class_mutable) => true,
(class_immutable, class_immutable) => true,
(class_mutable, _) => false,
(class_immutable, _) => false,
}
}
pure fn ne(other: &class_mutability) -> bool { !self.eq(other) }
}
type class_ctor = spanned<class_ctor_>;
#[auto_serialize]
#[auto_deserialize]
type class_ctor_ = {id: node_id,
attrs: ~[attribute],
self_id: node_id,
dec: fn_decl,
body: blk};
type class_dtor = spanned<class_dtor_>;
#[auto_serialize]
#[auto_deserialize]
type class_dtor_ = {id: node_id,
attrs: ~[attribute],
self_id: node_id,
body: blk};
#[auto_serialize]
#[auto_deserialize]
type foreign_item =
{ident: ident,
attrs: ~[attribute],
node: foreign_item_,
id: node_id,
span: span,
vis: visibility};
#[auto_serialize]
#[auto_deserialize]
enum foreign_item_ {
foreign_item_fn(fn_decl, purity, ~[ty_param]),
foreign_item_const(@Ty)
}
// The data we save and restore about an inlined item or method. This is not
// part of the AST that we parse from a file, but it becomes part of the tree
// that we trans.
#[auto_serialize]
#[auto_deserialize]
enum inlined_item {
ii_item(@item),
ii_method(def_id /* impl id */, @method),
ii_foreign(@foreign_item),
ii_dtor(class_dtor, ident, ~[ty_param], def_id /* parent id */)
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End:
//