rust/src/librustdoc/html/render.rs
Alex Crichton 1827241840 rustdoc: Put primitives in respective modules
The logical location for the documentation of a primitive is in the module that
declared it was a module for that primitive.
2014-06-03 18:49:14 -07:00

2085 lines
80 KiB
Rust

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Rustdoc's HTML Rendering module
//!
//! This modules contains the bulk of the logic necessary for rendering a
//! rustdoc `clean::Crate` instance to a set of static HTML pages. This
//! rendering process is largely driven by the `format!` syntax extension to
//! perform all I/O into files and streams.
//!
//! The rendering process is largely driven by the `Context` and `Cache`
//! structures. The cache is pre-populated by crawling the crate in question,
//! and then it is shared among the various rendering tasks. The cache is meant
//! to be a fairly large structure not implementing `Clone` (because it's shared
//! among tasks). The context, however, should be a lightweight structure. This
//! is cloned per-task and contains information about what is currently being
//! rendered.
//!
//! In order to speed up rendering (mostly because of markdown rendering), the
//! rendering process has been parallelized. This parallelization is only
//! exposed through the `crate` method on the context, and then also from the
//! fact that the shared cache is stored in TLS (and must be accessed as such).
//!
//! In addition to rendering the crate itself, this module is also responsible
//! for creating the corresponding search index and source file renderings.
//! These tasks are not parallelized (they haven't been a bottleneck yet), and
//! both occur before the crate is rendered.
use collections::{HashMap, HashSet};
use std::fmt;
use std::io::{fs, File, BufferedWriter, MemWriter, BufferedReader};
use std::io;
use std::str;
use std::string::String;
use sync::Arc;
use serialize::json::ToJson;
use syntax::ast;
use syntax::ast_util;
use syntax::attr;
use syntax::parse::token::InternedString;
use rustc::util::nodemap::NodeSet;
use clean;
use doctree;
use fold::DocFolder;
use html::format::{VisSpace, Method, FnStyleSpace};
use html::highlight;
use html::item_type::{ItemType, shortty};
use html::item_type;
use html::layout;
use html::markdown::Markdown;
use html::markdown;
/// Major driving force in all rustdoc rendering. This contains information
/// about where in the tree-like hierarchy rendering is occurring and controls
/// how the current page is being rendered.
///
/// It is intended that this context is a lightweight object which can be fairly
/// easily cloned because it is cloned per work-job (about once per item in the
/// rustdoc tree).
#[deriving(Clone)]
pub struct Context {
/// Current hierarchy of components leading down to what's currently being
/// rendered
pub current: Vec<String>,
/// String representation of how to get back to the root path of the 'doc/'
/// folder in terms of a relative URL.
pub root_path: String,
/// The current destination folder of where HTML artifacts should be placed.
/// This changes as the context descends into the module hierarchy.
pub dst: Path,
/// This describes the layout of each page, and is not modified after
/// creation of the context (contains info like the favicon)
pub layout: layout::Layout,
/// This map is a list of what should be displayed on the sidebar of the
/// current page. The key is the section header (traits, modules,
/// functions), and the value is the list of containers belonging to this
/// header. This map will change depending on the surrounding context of the
/// page.
pub sidebar: HashMap<String, Vec<String>>,
/// This flag indicates whether [src] links should be generated or not. If
/// the source files are present in the html rendering, then this will be
/// `true`.
pub include_sources: bool,
/// A flag, which when turned off, will render pages which redirect to the
/// real location of an item. This is used to allow external links to
/// publicly reused items to redirect to the right location.
pub render_redirect_pages: bool,
}
/// Indicates where an external crate can be found.
pub enum ExternalLocation {
/// Remote URL root of the external crate
Remote(String),
/// This external crate can be found in the local doc/ folder
Local,
/// The external crate could not be found.
Unknown,
}
/// Metadata about an implementor of a trait.
pub struct Implementor {
def_id: ast::DefId,
generics: clean::Generics,
trait_: clean::Type,
for_: clean::Type,
}
/// This cache is used to store information about the `clean::Crate` being
/// rendered in order to provide more useful documentation. This contains
/// information like all implementors of a trait, all traits a type implements,
/// documentation for all known traits, etc.
///
/// This structure purposefully does not implement `Clone` because it's intended
/// to be a fairly large and expensive structure to clone. Instead this adheres
/// to `Send` so it may be stored in a `Arc` instance and shared among the various
/// rendering tasks.
pub struct Cache {
/// Mapping of typaram ids to the name of the type parameter. This is used
/// when pretty-printing a type (so pretty printing doesn't have to
/// painfully maintain a context like this)
pub typarams: HashMap<ast::DefId, String>,
/// Maps a type id to all known implementations for that type. This is only
/// recognized for intra-crate `ResolvedPath` types, and is used to print
/// out extra documentation on the page of an enum/struct.
///
/// The values of the map are a list of implementations and documentation
/// found on that implementation.
pub impls: HashMap<ast::DefId, Vec<(clean::Impl, Option<String>)>>,
/// Maintains a mapping of local crate node ids to the fully qualified name
/// and "short type description" of that node. This is used when generating
/// URLs when a type is being linked to. External paths are not located in
/// this map because the `External` type itself has all the information
/// necessary.
pub paths: HashMap<ast::DefId, (Vec<String>, ItemType)>,
/// Similar to `paths`, but only holds external paths. This is only used for
/// generating explicit hyperlinks to other crates.
pub external_paths: HashMap<ast::DefId, Vec<String>>,
/// This map contains information about all known traits of this crate.
/// Implementations of a crate should inherit the documentation of the
/// parent trait if no extra documentation is specified, and default methods
/// should show up in documentation about trait implementations.
pub traits: HashMap<ast::DefId, clean::Trait>,
/// When rendering traits, it's often useful to be able to list all
/// implementors of the trait, and this mapping is exactly, that: a mapping
/// of trait ids to the list of known implementors of the trait
pub implementors: HashMap<ast::DefId, Vec<Implementor>>,
/// Cache of where external crate documentation can be found.
pub extern_locations: HashMap<ast::CrateNum, ExternalLocation>,
/// Cache of where documentation for primitives can be found.
pub primitive_locations: HashMap<clean::Primitive, ast::CrateNum>,
/// Set of definitions which have been inlined from external crates.
pub inlined: HashSet<ast::DefId>,
// Private fields only used when initially crawling a crate to build a cache
stack: Vec<String>,
parent_stack: Vec<ast::DefId>,
search_index: Vec<IndexItem>,
privmod: bool,
public_items: NodeSet,
// In rare case where a structure is defined in one module but implemented
// in another, if the implementing module is parsed before defining module,
// then the fully qualified name of the structure isn't presented in `paths`
// yet when its implementation methods are being indexed. Caches such methods
// and their parent id here and indexes them at the end of crate parsing.
orphan_methods: Vec<(ast::NodeId, clean::Item)>,
}
/// Helper struct to render all source code to HTML pages
struct SourceCollector<'a> {
cx: &'a mut Context,
/// Processed source-file paths
seen: HashSet<String>,
/// Root destination to place all HTML output into
dst: Path,
}
/// Wrapper struct to render the source code of a file. This will do things like
/// adding line numbers to the left-hand side.
struct Source<'a>(&'a str);
// Helper structs for rendering items/sidebars and carrying along contextual
// information
struct Item<'a> { cx: &'a Context, item: &'a clean::Item, }
struct Sidebar<'a> { cx: &'a Context, item: &'a clean::Item, }
/// Struct representing one entry in the JS search index. These are all emitted
/// by hand to a large JS file at the end of cache-creation.
struct IndexItem {
ty: ItemType,
name: String,
path: String,
desc: String,
parent: Option<ast::DefId>,
}
// TLS keys used to carry information around during rendering.
local_data_key!(pub cache_key: Arc<Cache>)
local_data_key!(pub current_location_key: Vec<String> )
/// Generates the documentation for `crate` into the directory `dst`
pub fn run(mut krate: clean::Crate, dst: Path) -> io::IoResult<()> {
let mut cx = Context {
dst: dst,
current: Vec::new(),
root_path: String::new(),
sidebar: HashMap::new(),
layout: layout::Layout {
logo: "".to_string(),
favicon: "".to_string(),
krate: krate.name.clone(),
},
include_sources: true,
render_redirect_pages: false,
};
try!(mkdir(&cx.dst));
// Crawl the crate attributes looking for attributes which control how we're
// going to emit HTML
match krate.module.as_ref().map(|m| m.doc_list().unwrap_or(&[])) {
Some(attrs) => {
for attr in attrs.iter() {
match *attr {
clean::NameValue(ref x, ref s)
if "html_favicon_url" == x.as_slice() => {
cx.layout.favicon = s.to_string();
}
clean::NameValue(ref x, ref s)
if "html_logo_url" == x.as_slice() => {
cx.layout.logo = s.to_string();
}
clean::Word(ref x)
if "html_no_source" == x.as_slice() => {
cx.include_sources = false;
}
_ => {}
}
}
}
None => {}
}
// Crawl the crate to build various caches used for the output
let analysis = ::analysiskey.get();
let public_items = analysis.as_ref().map(|a| a.public_items.clone());
let public_items = public_items.unwrap_or(NodeSet::new());
let paths: HashMap<ast::DefId, (Vec<String>, ItemType)> =
analysis.as_ref().map(|a| {
let paths = a.external_paths.borrow_mut().take_unwrap();
paths.move_iter().map(|(k, (v, t))| {
(k, (v, match t {
clean::TypeStruct => item_type::Struct,
clean::TypeEnum => item_type::Enum,
clean::TypeFunction => item_type::Function,
clean::TypeTrait => item_type::Trait,
clean::TypeModule => item_type::Module,
clean::TypeStatic => item_type::Static,
clean::TypeVariant => item_type::Variant,
}))
}).collect()
}).unwrap_or(HashMap::new());
let mut cache = Cache {
impls: HashMap::new(),
external_paths: paths.iter().map(|(&k, &(ref v, _))| (k, v.clone()))
.collect(),
paths: paths,
implementors: HashMap::new(),
stack: Vec::new(),
parent_stack: Vec::new(),
search_index: Vec::new(),
extern_locations: HashMap::new(),
primitive_locations: HashMap::new(),
privmod: false,
public_items: public_items,
orphan_methods: Vec::new(),
traits: analysis.as_ref().map(|a| {
a.external_traits.borrow_mut().take_unwrap()
}).unwrap_or(HashMap::new()),
typarams: analysis.as_ref().map(|a| {
a.external_typarams.borrow_mut().take_unwrap()
}).unwrap_or(HashMap::new()),
inlined: analysis.as_ref().map(|a| {
a.inlined.borrow_mut().take_unwrap()
}).unwrap_or(HashSet::new()),
};
cache.stack.push(krate.name.clone());
krate = cache.fold_crate(krate);
// Cache where all our extern crates are located
for &(n, ref e) in krate.externs.iter() {
cache.extern_locations.insert(n, extern_location(e, &cx.dst));
let did = ast::DefId { krate: n, node: ast::CRATE_NODE_ID };
cache.paths.insert(did, (vec![e.name.to_string()], item_type::Module));
}
// Cache where all known primitives have their documentation located.
//
// Favor linking to as local extern as possible, so iterate all crates in
// reverse topological order.
for &(n, ref e) in krate.externs.iter().rev() {
for &prim in e.primitives.iter() {
cache.primitive_locations.insert(prim, n);
}
}
for &prim in krate.primitives.iter() {
cache.primitive_locations.insert(prim, ast::LOCAL_CRATE);
}
// Build our search index
let index = try!(build_index(&krate, &mut cache));
// Freeze the cache now that the index has been built. Put an Arc into TLS
// for future parallelization opportunities
let cache = Arc::new(cache);
cache_key.replace(Some(cache.clone()));
current_location_key.replace(Some(Vec::new()));
try!(write_shared(&cx, &krate, &*cache, index));
let krate = try!(render_sources(&mut cx, krate));
// And finally render the whole crate's documentation
cx.krate(krate)
}
fn build_index(krate: &clean::Crate, cache: &mut Cache) -> io::IoResult<String> {
// Build the search index from the collected metadata
let mut nodeid_to_pathid = HashMap::new();
let mut pathid_to_nodeid = Vec::new();
{
let Cache { ref mut search_index,
ref orphan_methods,
ref mut paths, .. } = *cache;
// Attach all orphan methods to the type's definition if the type
// has since been learned.
for &(pid, ref item) in orphan_methods.iter() {
let did = ast_util::local_def(pid);
match paths.find(&did) {
Some(&(ref fqp, _)) => {
search_index.push(IndexItem {
ty: shortty(item),
name: item.name.clone().unwrap(),
path: fqp.slice_to(fqp.len() - 1).connect("::")
.to_string(),
desc: shorter(item.doc_value()).to_string(),
parent: Some(did),
});
},
None => {}
}
};
// Reduce `NodeId` in paths into smaller sequential numbers,
// and prune the paths that do not appear in the index.
for item in search_index.iter() {
match item.parent {
Some(nodeid) => {
if !nodeid_to_pathid.contains_key(&nodeid) {
let pathid = pathid_to_nodeid.len();
nodeid_to_pathid.insert(nodeid, pathid);
pathid_to_nodeid.push(nodeid);
}
}
None => {}
}
}
assert_eq!(nodeid_to_pathid.len(), pathid_to_nodeid.len());
}
// Collect the index into a string
let mut w = MemWriter::new();
try!(write!(&mut w, r#"searchIndex['{}'] = \{"items":["#, krate.name));
let mut lastpath = "".to_string();
for (i, item) in cache.search_index.iter().enumerate() {
// Omit the path if it is same to that of the prior item.
let path;
if lastpath.as_slice() == item.path.as_slice() {
path = "";
} else {
lastpath = item.path.to_string();
path = item.path.as_slice();
};
if i > 0 {
try!(write!(&mut w, ","));
}
try!(write!(&mut w, r#"[{:u},"{}","{}",{}"#,
item.ty, item.name, path,
item.desc.to_json().to_str()));
match item.parent {
Some(nodeid) => {
let pathid = *nodeid_to_pathid.find(&nodeid).unwrap();
try!(write!(&mut w, ",{}", pathid));
}
None => {}
}
try!(write!(&mut w, "]"));
}
try!(write!(&mut w, r#"],"paths":["#));
for (i, &did) in pathid_to_nodeid.iter().enumerate() {
let &(ref fqp, short) = cache.paths.find(&did).unwrap();
if i > 0 {
try!(write!(&mut w, ","));
}
try!(write!(&mut w, r#"[{:u},"{}"]"#,
short, *fqp.last().unwrap()));
}
try!(write!(&mut w, r"]\};"));
Ok(str::from_utf8(w.unwrap().as_slice()).unwrap().to_string())
}
fn write_shared(cx: &Context,
krate: &clean::Crate,
cache: &Cache,
search_index: String) -> io::IoResult<()> {
// Write out the shared files. Note that these are shared among all rustdoc
// docs placed in the output directory, so this needs to be a synchronized
// operation with respect to all other rustdocs running around.
try!(mkdir(&cx.dst));
let _lock = ::flock::Lock::new(&cx.dst.join(".lock"));
// Add all the static files. These may already exist, but we just
// overwrite them anyway to make sure that they're fresh and up-to-date.
try!(write(cx.dst.join("jquery.js"),
include_bin!("static/jquery-2.1.0.min.js")));
try!(write(cx.dst.join("main.js"), include_bin!("static/main.js")));
try!(write(cx.dst.join("main.css"), include_bin!("static/main.css")));
try!(write(cx.dst.join("normalize.css"),
include_bin!("static/normalize.css")));
try!(write(cx.dst.join("FiraSans-Regular.woff"),
include_bin!("static/FiraSans-Regular.woff")));
try!(write(cx.dst.join("FiraSans-Medium.woff"),
include_bin!("static/FiraSans-Medium.woff")));
try!(write(cx.dst.join("Heuristica-Regular.woff"),
include_bin!("static/Heuristica-Regular.woff")));
try!(write(cx.dst.join("Heuristica-Italic.woff"),
include_bin!("static/Heuristica-Italic.woff")));
try!(write(cx.dst.join("Heuristica-Bold.woff"),
include_bin!("static/Heuristica-Bold.woff")));
fn collect(path: &Path, krate: &str,
key: &str) -> io::IoResult<Vec<String>> {
let mut ret = Vec::new();
if path.exists() {
for line in BufferedReader::new(File::open(path)).lines() {
let line = try!(line);
if !line.as_slice().starts_with(key) {
continue
}
if line.as_slice().starts_with(
format!("{}['{}']", key, krate).as_slice()) {
continue
}
ret.push(line.to_string());
}
}
return Ok(ret);
}
// Update the search index
let dst = cx.dst.join("search-index.js");
let all_indexes = try!(collect(&dst, krate.name.as_slice(),
"searchIndex"));
let mut w = try!(File::create(&dst));
try!(writeln!(&mut w, r"var searchIndex = \{\};"));
try!(writeln!(&mut w, "{}", search_index));
for index in all_indexes.iter() {
try!(writeln!(&mut w, "{}", *index));
}
try!(writeln!(&mut w, "initSearch(searchIndex);"));
// Update the list of all implementors for traits
let dst = cx.dst.join("implementors");
try!(mkdir(&dst));
for (&did, imps) in cache.implementors.iter() {
// Private modules can leak through to this phase of rustdoc, which
// could contain implementations for otherwise private types. In some
// rare cases we could find an implementation for an item which wasn't
// indexed, so we just skip this step in that case.
//
// FIXME: this is a vague explanation for why this can't be a `get`, in
// theory it should be...
let &(ref remote_path, remote_item_type) = match cache.paths.find(&did) {
Some(p) => p,
None => continue,
};
let mut mydst = dst.clone();
for part in remote_path.slice_to(remote_path.len() - 1).iter() {
mydst.push(part.as_slice());
try!(mkdir(&mydst));
}
mydst.push(format!("{}.{}.js",
remote_item_type.to_static_str(),
*remote_path.get(remote_path.len() - 1)));
let all_implementors = try!(collect(&mydst, krate.name.as_slice(),
"implementors"));
try!(mkdir(&mydst.dir_path()));
let mut f = BufferedWriter::new(try!(File::create(&mydst)));
try!(writeln!(&mut f, r"(function() \{var implementors = \{\};"));
for implementor in all_implementors.iter() {
try!(write!(&mut f, "{}", *implementor));
}
try!(write!(&mut f, r"implementors['{}'] = [", krate.name));
for imp in imps.iter() {
// If the trait and implementation are in the same crate, then
// there's no need to emit information about it (there's inlining
// going on). If they're in different crates then the crate defining
// the trait will be interested in our implementation.
if imp.def_id.krate == did.krate { continue }
try!(write!(&mut f, r#""impl{} {} for {}","#,
imp.generics, imp.trait_, imp.for_));
}
try!(writeln!(&mut f, r"];"));
try!(writeln!(&mut f, "{}", r"
if (window.register_implementors) {
window.register_implementors(implementors);
} else {
window.pending_implementors = implementors;
}
"));
try!(writeln!(&mut f, r"\})()"));
}
Ok(())
}
fn render_sources(cx: &mut Context,
krate: clean::Crate) -> io::IoResult<clean::Crate> {
info!("emitting source files");
let dst = cx.dst.join("src");
try!(mkdir(&dst));
let dst = dst.join(krate.name.as_slice());
try!(mkdir(&dst));
let mut folder = SourceCollector {
dst: dst,
seen: HashSet::new(),
cx: cx,
};
// skip all invalid spans
folder.seen.insert("".to_string());
Ok(folder.fold_crate(krate))
}
/// Writes the entire contents of a string to a destination, not attempting to
/// catch any errors.
fn write(dst: Path, contents: &[u8]) -> io::IoResult<()> {
File::create(&dst).write(contents)
}
/// Makes a directory on the filesystem, failing the task if an error occurs and
/// skipping if the directory already exists.
fn mkdir(path: &Path) -> io::IoResult<()> {
if !path.exists() {
fs::mkdir(path, io::UserRWX)
} else {
Ok(())
}
}
/// Takes a path to a source file and cleans the path to it. This canonicalizes
/// things like ".." to components which preserve the "top down" hierarchy of a
/// static HTML tree.
// FIXME (#9639): The closure should deal with &[u8] instead of &str
fn clean_srcpath(src: &[u8], f: |&str|) {
let p = Path::new(src);
if p.as_vec() != bytes!(".") {
for c in p.str_components().map(|x|x.unwrap()) {
if ".." == c {
f("up");
} else {
f(c.as_slice())
}
}
}
}
/// Attempts to find where an external crate is located, given that we're
/// rendering in to the specified source destination.
fn extern_location(e: &clean::ExternalCrate, dst: &Path) -> ExternalLocation {
// See if there's documentation generated into the local directory
let local_location = dst.join(e.name.as_slice());
if local_location.is_dir() {
return Local;
}
// Failing that, see if there's an attribute specifying where to find this
// external crate
for attr in e.attrs.iter() {
match *attr {
clean::List(ref x, ref list) if "doc" == x.as_slice() => {
for attr in list.iter() {
match *attr {
clean::NameValue(ref x, ref s)
if "html_root_url" == x.as_slice() => {
if s.as_slice().ends_with("/") {
return Remote(s.to_string());
}
return Remote(format!("{}/", s));
}
_ => {}
}
}
}
_ => {}
}
}
// Well, at least we tried.
return Unknown;
}
impl<'a> DocFolder for SourceCollector<'a> {
fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> {
// If we're including source files, and we haven't seen this file yet,
// then we need to render it out to the filesystem
if self.cx.include_sources && !self.seen.contains(&item.source.filename) {
// If it turns out that we couldn't read this file, then we probably
// can't read any of the files (generating html output from json or
// something like that), so just don't include sources for the
// entire crate. The other option is maintaining this mapping on a
// per-file basis, but that's probably not worth it...
self.cx
.include_sources = match self.emit_source(item.source
.filename
.as_slice()) {
Ok(()) => true,
Err(e) => {
println!("warning: source code was requested to be rendered, \
but processing `{}` had an error: {}",
item.source.filename, e);
println!(" skipping rendering of source code");
false
}
};
self.seen.insert(item.source.filename.clone());
}
self.fold_item_recur(item)
}
}
impl<'a> SourceCollector<'a> {
/// Renders the given filename into its corresponding HTML source file.
fn emit_source(&mut self, filename: &str) -> io::IoResult<()> {
let p = Path::new(filename);
// If we couldn't open this file, then just returns because it
// probably means that it's some standard library macro thing and we
// can't have the source to it anyway.
let contents = match File::open(&p).read_to_end() {
Ok(r) => r,
// macros from other libraries get special filenames which we can
// safely ignore
Err(..) if filename.starts_with("<") &&
filename.ends_with("macros>") => return Ok(()),
Err(e) => return Err(e)
};
let contents = str::from_utf8(contents.as_slice()).unwrap();
// Remove the utf-8 BOM if any
let contents = if contents.starts_with("\ufeff") {
contents.as_slice().slice_from(3)
} else {
contents.as_slice()
};
// Create the intermediate directories
let mut cur = self.dst.clone();
let mut root_path = String::from_str("../../");
clean_srcpath(p.dirname(), |component| {
cur.push(component);
mkdir(&cur).unwrap();
root_path.push_str("../");
});
cur.push(Vec::from_slice(p.filename().expect("source has no filename"))
.append(bytes!(".html")));
let mut w = BufferedWriter::new(try!(File::create(&cur)));
let title = format!("{} -- source", cur.filename_display());
let page = layout::Page {
title: title.as_slice(),
ty: "source",
root_path: root_path.as_slice(),
};
try!(layout::render(&mut w as &mut Writer, &self.cx.layout,
&page, &(""), &Source(contents)));
try!(w.flush());
return Ok(());
}
}
impl DocFolder for Cache {
fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> {
// If this is a private module, we don't want it in the search index.
let orig_privmod = match item.inner {
clean::ModuleItem(..) => {
let prev = self.privmod;
self.privmod = prev || item.visibility != Some(ast::Public);
prev
}
_ => self.privmod,
};
// Register any generics to their corresponding string. This is used
// when pretty-printing types
match item.inner {
clean::StructItem(ref s) => self.generics(&s.generics),
clean::EnumItem(ref e) => self.generics(&e.generics),
clean::FunctionItem(ref f) => self.generics(&f.generics),
clean::TypedefItem(ref t) => self.generics(&t.generics),
clean::TraitItem(ref t) => self.generics(&t.generics),
clean::ImplItem(ref i) => self.generics(&i.generics),
clean::TyMethodItem(ref i) => self.generics(&i.generics),
clean::MethodItem(ref i) => self.generics(&i.generics),
clean::ForeignFunctionItem(ref f) => self.generics(&f.generics),
_ => {}
}
// Propagate a trait methods' documentation to all implementors of the
// trait
match item.inner {
clean::TraitItem(ref t) => {
self.traits.insert(item.def_id, t.clone());
}
_ => {}
}
// Collect all the implementors of traits.
match item.inner {
clean::ImplItem(ref i) => {
match i.trait_ {
Some(clean::ResolvedPath{ did, .. }) => {
let v = self.implementors.find_or_insert_with(did, |_| {
Vec::new()
});
v.push(Implementor {
def_id: item.def_id,
generics: i.generics.clone(),
trait_: i.trait_.get_ref().clone(),
for_: i.for_.clone(),
});
}
Some(..) | None => {}
}
}
_ => {}
}
// Index this method for searching later on
match item.name {
Some(ref s) => {
let parent = match item.inner {
clean::TyMethodItem(..) |
clean::StructFieldItem(..) |
clean::VariantItem(..) => {
(Some(*self.parent_stack.last().unwrap()),
Some(self.stack.slice_to(self.stack.len() - 1)))
}
clean::MethodItem(..) => {
if self.parent_stack.len() == 0 {
(None, None)
} else {
let last = self.parent_stack.last().unwrap();
let did = *last;
let path = match self.paths.find(&did) {
Some(&(_, item_type::Trait)) =>
Some(self.stack.slice_to(self.stack.len() - 1)),
// The current stack not necessarily has correlation for
// where the type was defined. On the other hand,
// `paths` always has the right information if present.
Some(&(ref fqp, item_type::Struct)) |
Some(&(ref fqp, item_type::Enum)) =>
Some(fqp.slice_to(fqp.len() - 1)),
Some(..) => Some(self.stack.as_slice()),
None => None
};
(Some(*last), path)
}
}
_ => (None, Some(self.stack.as_slice()))
};
match parent {
(parent, Some(path)) if !self.privmod => {
self.search_index.push(IndexItem {
ty: shortty(&item),
name: s.to_string(),
path: path.connect("::").to_string(),
desc: shorter(item.doc_value()).to_string(),
parent: parent,
});
}
(Some(parent), None) if !self.privmod => {
if ast_util::is_local(parent) {
// We have a parent, but we don't know where they're
// defined yet. Wait for later to index this item.
self.orphan_methods.push((parent.node, item.clone()))
}
}
_ => {}
}
}
None => {}
}
// Keep track of the fully qualified path for this item.
let pushed = if item.name.is_some() {
let n = item.name.get_ref();
if n.len() > 0 {
self.stack.push(n.to_string());
true
} else { false }
} else { false };
match item.inner {
clean::StructItem(..) | clean::EnumItem(..) |
clean::TypedefItem(..) | clean::TraitItem(..) |
clean::FunctionItem(..) | clean::ModuleItem(..) |
clean::ForeignFunctionItem(..) if !self.privmod => {
// Reexported items mean that the same id can show up twice
// in the rustdoc ast that we're looking at. We know,
// however, that a reexported item doesn't show up in the
// `public_items` map, so we can skip inserting into the
// paths map if there was already an entry present and we're
// not a public item.
let id = item.def_id.node;
if !self.paths.contains_key(&item.def_id) ||
!ast_util::is_local(item.def_id) ||
self.public_items.contains(&id) {
self.paths.insert(item.def_id,
(self.stack.clone(), shortty(&item)));
}
}
// link variants to their parent enum because pages aren't emitted
// for each variant
clean::VariantItem(..) if !self.privmod => {
let mut stack = self.stack.clone();
stack.pop();
self.paths.insert(item.def_id, (stack, item_type::Enum));
}
clean::PrimitiveItem(..) if item.visibility.is_some() => {
self.paths.insert(item.def_id, (self.stack.clone(),
shortty(&item)));
}
_ => {}
}
// Maintain the parent stack
let parent_pushed = match item.inner {
clean::TraitItem(..) | clean::EnumItem(..) | clean::StructItem(..) => {
self.parent_stack.push(item.def_id);
true
}
clean::ImplItem(ref i) => {
match i.for_ {
clean::ResolvedPath{ did, .. } => {
self.parent_stack.push(did);
true
}
_ => false
}
}
_ => false
};
// Once we've recursively found all the generics, then hoard off all the
// implementations elsewhere
let ret = match self.fold_item_recur(item) {
Some(item) => {
match item {
clean::Item{ attrs, inner: clean::ImplItem(i), .. } => {
use clean::{Primitive, Vector, ResolvedPath, BorrowedRef};
use clean::{FixedVector, Slice, Tuple, PrimitiveTuple};
// extract relevant documentation for this impl
let dox = match attrs.move_iter().find(|a| {
match *a {
clean::NameValue(ref x, _)
if "doc" == x.as_slice() => {
true
}
_ => false
}
}) {
Some(clean::NameValue(_, dox)) => Some(dox),
Some(..) | None => None,
};
// Figure out the id of this impl. This may map to a
// primitive rather than always to a struct/enum.
let did = match i.for_ {
ResolvedPath { did, .. } => Some(did),
// References to primitives are picked up as well to
// recognize implementations for &str, this may not
// be necessary in a DST world.
Primitive(p) |
BorrowedRef { type_: box Primitive(p), ..} =>
{
Some(ast_util::local_def(p.to_node_id()))
}
// In a DST world, we may only need
// Vector/FixedVector, but for now we also pick up
// borrowed references
Vector(..) | FixedVector(..) |
BorrowedRef{ type_: box Vector(..), .. } |
BorrowedRef{ type_: box FixedVector(..), .. } =>
{
Some(ast_util::local_def(Slice.to_node_id()))
}
Tuple(..) => {
let id = PrimitiveTuple.to_node_id();
Some(ast_util::local_def(id))
}
_ => None,
};
match did {
Some(did) => {
let v = self.impls.find_or_insert_with(did, |_| {
Vec::new()
});
v.push((i, dox));
}
None => {}
}
None
}
i => Some(i),
}
}
i => i,
};
if pushed { self.stack.pop().unwrap(); }
if parent_pushed { self.parent_stack.pop().unwrap(); }
self.privmod = orig_privmod;
return ret;
}
}
impl<'a> Cache {
fn generics(&mut self, generics: &clean::Generics) {
for typ in generics.type_params.iter() {
self.typarams.insert(typ.did, typ.name.clone());
}
}
}
impl Context {
/// Recurse in the directory structure and change the "root path" to make
/// sure it always points to the top (relatively)
fn recurse<T>(&mut self, s: String, f: |&mut Context| -> T) -> T {
if s.len() == 0 {
fail!("what {:?}", self);
}
let prev = self.dst.clone();
self.dst.push(s.as_slice());
self.root_path.push_str("../");
self.current.push(s);
info!("Recursing into {}", self.dst.display());
mkdir(&self.dst).unwrap();
let ret = f(self);
info!("Recursed; leaving {}", self.dst.display());
// Go back to where we were at
self.dst = prev;
let len = self.root_path.len();
self.root_path.truncate(len - 3);
self.current.pop().unwrap();
return ret;
}
/// Main method for rendering a crate.
///
/// This currently isn't parallelized, but it'd be pretty easy to add
/// parallelization to this function.
fn krate(self, mut krate: clean::Crate) -> io::IoResult<()> {
let mut item = match krate.module.take() {
Some(i) => i,
None => return Ok(())
};
item.name = Some(krate.name);
let mut work = vec!((self, item));
loop {
match work.pop() {
Some((mut cx, item)) => try!(cx.item(item, |cx, item| {
work.push((cx.clone(), item));
})),
None => break,
}
}
Ok(())
}
/// Non-parellelized version of rendering an item. This will take the input
/// item, render its contents, and then invoke the specified closure with
/// all sub-items which need to be rendered.
///
/// The rendering driver uses this closure to queue up more work.
fn item(&mut self, item: clean::Item,
f: |&mut Context, clean::Item|) -> io::IoResult<()> {
fn render(w: io::File, cx: &Context, it: &clean::Item,
pushname: bool) -> io::IoResult<()> {
info!("Rendering an item to {}", w.path().display());
// A little unfortunate that this is done like this, but it sure
// does make formatting *a lot* nicer.
current_location_key.replace(Some(cx.current.clone()));
let mut title = cx.current.connect("::");
if pushname {
if title.len() > 0 {
title.push_str("::");
}
title.push_str(it.name.get_ref().as_slice());
}
title.push_str(" - Rust");
let page = layout::Page {
ty: shortty(it).to_static_str(),
root_path: cx.root_path.as_slice(),
title: title.as_slice(),
};
markdown::reset_headers();
// We have a huge number of calls to write, so try to alleviate some
// of the pain by using a buffered writer instead of invoking the
// write sycall all the time.
let mut writer = BufferedWriter::new(w);
if !cx.render_redirect_pages {
try!(layout::render(&mut writer, &cx.layout, &page,
&Sidebar{ cx: cx, item: it },
&Item{ cx: cx, item: it }));
} else {
let mut url = "../".repeat(cx.current.len());
match cache_key.get().unwrap().paths.find(&it.def_id) {
Some(&(ref names, _)) => {
for name in names.slice_to(names.len() - 1).iter() {
url.push_str(name.as_slice());
url.push_str("/");
}
url.push_str(item_path(it).as_slice());
try!(layout::redirect(&mut writer, url.as_slice()));
}
None => {}
}
}
writer.flush()
}
// Private modules may survive the strip-private pass if they
// contain impls for public types. These modules can also
// contain items such as publicly reexported structures.
//
// External crates will provide links to these structures, so
// these modules are recursed into, but not rendered normally (a
// flag on the context).
if !self.render_redirect_pages {
self.render_redirect_pages = ignore_private_item(&item);
}
match item.inner {
// modules are special because they add a namespace. We also need to
// recurse into the items of the module as well.
clean::ModuleItem(..) => {
let name = item.name.get_ref().to_string();
let mut item = Some(item);
self.recurse(name, |this| {
let item = item.take_unwrap();
let dst = this.dst.join("index.html");
let dst = try!(File::create(&dst));
try!(render(dst, this, &item, false));
let m = match item.inner {
clean::ModuleItem(m) => m,
_ => unreachable!()
};
this.sidebar = build_sidebar(&m);
for item in m.items.move_iter() {
f(this,item);
}
Ok(())
})
}
// Things which don't have names (like impls) don't get special
// pages dedicated to them.
_ if item.name.is_some() => {
let dst = self.dst.join(item_path(&item));
let dst = try!(File::create(&dst));
render(dst, self, &item, true)
}
_ => Ok(())
}
}
}
impl<'a> Item<'a> {
fn ismodule(&self) -> bool {
match self.item.inner {
clean::ModuleItem(..) => true, _ => false
}
}
/// Generate a url appropriate for an `href` attribute back to the source of
/// this item.
///
/// The url generated, when clicked, will redirect the browser back to the
/// original source code.
///
/// If `None` is returned, then a source link couldn't be generated. This
/// may happen, for example, with externally inlined items where the source
/// of their crate documentation isn't known.
fn href(&self) -> Option<String> {
// If this item is part of the local crate, then we're guaranteed to
// know the span, so we plow forward and generate a proper url. The url
// has anchors for the line numbers that we're linking to.
if ast_util::is_local(self.item.def_id) {
let mut path = Vec::new();
clean_srcpath(self.item.source.filename.as_bytes(), |component| {
path.push(component.to_string());
});
let href = if self.item.source.loline == self.item.source.hiline {
format!("{}", self.item.source.loline)
} else {
format!("{}-{}",
self.item.source.loline,
self.item.source.hiline)
};
Some(format!("{root}src/{krate}/{path}.html\\#{href}",
root = self.cx.root_path,
krate = self.cx.layout.krate,
path = path.connect("/"),
href = href))
// If this item is not part of the local crate, then things get a little
// trickier. We don't actually know the span of the external item, but
// we know that the documentation on the other end knows the span!
//
// In this case, we generate a link to the *documentation* for this type
// in the original crate. There's an extra URL parameter which says that
// we want to go somewhere else, and the JS on the destination page will
// pick it up and instantly redirect the browser to the source code.
//
// If we don't know where the external documentation for this crate is
// located, then we return `None`.
} else {
let cache = cache_key.get().unwrap();
let path = cache.external_paths.get(&self.item.def_id);
let root = match *cache.extern_locations.get(&self.item.def_id.krate) {
Remote(ref s) => s.to_string(),
Local => self.cx.root_path.clone(),
Unknown => return None,
};
Some(format!("{root}{path}/{file}?gotosrc={goto}",
root = root,
path = path.slice_to(path.len() - 1).connect("/"),
file = item_path(self.item),
goto = self.item.def_id.node))
}
}
}
impl<'a> fmt::Show for Item<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
// Write the breadcrumb trail header for the top
try!(write!(fmt, "\n<h1 class='fqn'>"));
match self.item.inner {
clean::ModuleItem(ref m) => if m.is_crate {
try!(write!(fmt, "Crate "));
} else {
try!(write!(fmt, "Module "));
},
clean::FunctionItem(..) => try!(write!(fmt, "Function ")),
clean::TraitItem(..) => try!(write!(fmt, "Trait ")),
clean::StructItem(..) => try!(write!(fmt, "Struct ")),
clean::EnumItem(..) => try!(write!(fmt, "Enum ")),
clean::PrimitiveItem(..) => try!(write!(fmt, "Primitive Type ")),
_ => {}
}
let is_primitive = match self.item.inner {
clean::PrimitiveItem(..) => true,
_ => false,
};
if !is_primitive {
let cur = self.cx.current.as_slice();
let amt = if self.ismodule() { cur.len() - 1 } else { cur.len() };
for (i, component) in cur.iter().enumerate().take(amt) {
try!(write!(fmt, "<a href='{}index.html'>{}</a>::",
"../".repeat(cur.len() - i - 1),
component.as_slice()));
}
}
try!(write!(fmt, "<a class='{}' href=''>{}</a>",
shortty(self.item), self.item.name.get_ref().as_slice()));
// Write stability attributes
match attr::find_stability_generic(self.item.attrs.iter()) {
Some((ref stability, _)) => {
try!(write!(fmt,
"<a class='stability {lvl}' title='{reason}'>{lvl}</a>",
lvl = stability.level.to_str(),
reason = match stability.text {
Some(ref s) => (*s).clone(),
None => InternedString::new(""),
}));
}
None => {}
}
// Write `src` tag
//
// When this item is part of a `pub use` in a downstream crate, the
// [src] link in the downstream documentation will actually come back to
// this page, and this link will be auto-clicked. The `id` attribute is
// used to find the link to auto-click.
if self.cx.include_sources && !is_primitive {
match self.href() {
Some(l) => {
try!(write!(fmt,
"<a class='source' id='src-{}' \
href='{}'>[src]</a>",
self.item.def_id.node, l));
}
None => {}
}
}
try!(write!(fmt, "</h1>\n"));
match self.item.inner {
clean::ModuleItem(ref m) => {
item_module(fmt, self.cx, self.item, m.items.as_slice())
}
clean::FunctionItem(ref f) | clean::ForeignFunctionItem(ref f) =>
item_function(fmt, self.item, f),
clean::TraitItem(ref t) => item_trait(fmt, self.cx, self.item, t),
clean::StructItem(ref s) => item_struct(fmt, self.item, s),
clean::EnumItem(ref e) => item_enum(fmt, self.item, e),
clean::TypedefItem(ref t) => item_typedef(fmt, self.item, t),
clean::MacroItem(ref m) => item_macro(fmt, self.item, m),
clean::PrimitiveItem(ref p) => item_primitive(fmt, self.item, p),
_ => Ok(())
}
}
}
fn item_path(item: &clean::Item) -> String {
match item.inner {
clean::ModuleItem(..) => {
format!("{}/index.html", item.name.get_ref())
}
_ => {
format!("{}.{}.html",
shortty(item).to_static_str(),
*item.name.get_ref())
}
}
}
fn full_path(cx: &Context, item: &clean::Item) -> String {
let mut s = cx.current.connect("::");
s.push_str("::");
s.push_str(item.name.get_ref().as_slice());
return s
}
fn blank<'a>(s: Option<&'a str>) -> &'a str {
match s {
Some(s) => s,
None => ""
}
}
fn shorter<'a>(s: Option<&'a str>) -> &'a str {
match s {
Some(s) => match s.find_str("\n\n") {
Some(pos) => s.slice_to(pos),
None => s,
},
None => ""
}
}
fn document(w: &mut fmt::Formatter, item: &clean::Item) -> fmt::Result {
match item.doc_value() {
Some(s) => {
try!(write!(w, "<div class='docblock'>{}</div>", Markdown(s)));
}
None => {}
}
Ok(())
}
fn item_module(w: &mut fmt::Formatter, cx: &Context,
item: &clean::Item, items: &[clean::Item]) -> fmt::Result {
try!(document(w, item));
let mut indices = range(0, items.len()).filter(|i| {
!ignore_private_item(&items[*i])
}).collect::<Vec<uint>>();
fn cmp(i1: &clean::Item, i2: &clean::Item, idx1: uint, idx2: uint) -> Ordering {
if shortty(i1) == shortty(i2) {
return i1.name.cmp(&i2.name);
}
match (&i1.inner, &i2.inner) {
(&clean::ViewItemItem(ref a), &clean::ViewItemItem(ref b)) => {
match (&a.inner, &b.inner) {
(&clean::ExternCrate(..), _) => Less,
(_, &clean::ExternCrate(..)) => Greater,
_ => idx1.cmp(&idx2),
}
}
(&clean::ViewItemItem(..), _) => Less,
(_, &clean::ViewItemItem(..)) => Greater,
(&clean::PrimitiveItem(..), _) => Less,
(_, &clean::PrimitiveItem(..)) => Greater,
(&clean::ModuleItem(..), _) => Less,
(_, &clean::ModuleItem(..)) => Greater,
(&clean::MacroItem(..), _) => Less,
(_, &clean::MacroItem(..)) => Greater,
(&clean::StructItem(..), _) => Less,
(_, &clean::StructItem(..)) => Greater,
(&clean::EnumItem(..), _) => Less,
(_, &clean::EnumItem(..)) => Greater,
(&clean::StaticItem(..), _) => Less,
(_, &clean::StaticItem(..)) => Greater,
(&clean::ForeignFunctionItem(..), _) => Less,
(_, &clean::ForeignFunctionItem(..)) => Greater,
(&clean::ForeignStaticItem(..), _) => Less,
(_, &clean::ForeignStaticItem(..)) => Greater,
(&clean::TraitItem(..), _) => Less,
(_, &clean::TraitItem(..)) => Greater,
(&clean::FunctionItem(..), _) => Less,
(_, &clean::FunctionItem(..)) => Greater,
(&clean::TypedefItem(..), _) => Less,
(_, &clean::TypedefItem(..)) => Greater,
_ => idx1.cmp(&idx2),
}
}
indices.sort_by(|&i1, &i2| cmp(&items[i1], &items[i2], i1, i2));
debug!("{:?}", indices);
let mut curty = None;
for &idx in indices.iter() {
let myitem = &items[idx];
let myty = Some(shortty(myitem));
if myty != curty {
if curty.is_some() {
try!(write!(w, "</table>"));
}
curty = myty;
let (short, name) = match myitem.inner {
clean::ModuleItem(..) => ("modules", "Modules"),
clean::StructItem(..) => ("structs", "Structs"),
clean::EnumItem(..) => ("enums", "Enums"),
clean::FunctionItem(..) => ("functions", "Functions"),
clean::TypedefItem(..) => ("types", "Type Definitions"),
clean::StaticItem(..) => ("statics", "Statics"),
clean::TraitItem(..) => ("traits", "Traits"),
clean::ImplItem(..) => ("impls", "Implementations"),
clean::ViewItemItem(..) => ("reexports", "Reexports"),
clean::TyMethodItem(..) => ("tymethods", "Type Methods"),
clean::MethodItem(..) => ("methods", "Methods"),
clean::StructFieldItem(..) => ("fields", "Struct Fields"),
clean::VariantItem(..) => ("variants", "Variants"),
clean::ForeignFunctionItem(..) => ("ffi-fns", "Foreign Functions"),
clean::ForeignStaticItem(..) => ("ffi-statics", "Foreign Statics"),
clean::MacroItem(..) => ("macros", "Macros"),
clean::PrimitiveItem(..) => ("primitives", "Primitive Types"),
};
try!(write!(w,
"<h2 id='{id}' class='section-header'>\
<a href=\"\\#{id}\">{name}</a></h2>\n<table>",
id = short, name = name));
}
match myitem.inner {
clean::StaticItem(ref s) | clean::ForeignStaticItem(ref s) => {
struct Initializer<'a>(&'a str, Item<'a>);
impl<'a> fmt::Show for Initializer<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let Initializer(s, item) = *self;
if s.len() == 0 { return Ok(()); }
try!(write!(f, "<code> = </code>"));
if s.contains("\n") {
match item.href() {
Some(url) => {
write!(f, "<a href='{}'>[definition]</a>",
url)
}
None => Ok(()),
}
} else {
write!(f, "<code>{}</code>", s.as_slice())
}
}
}
try!(write!(w, "
<tr>
<td><code>{}static {}: {}</code>{}</td>
<td class='docblock'>{}&nbsp;</td>
</tr>
",
VisSpace(myitem.visibility),
*myitem.name.get_ref(),
s.type_,
Initializer(s.expr.as_slice(), Item { cx: cx, item: myitem }),
Markdown(blank(myitem.doc_value()))));
}
clean::ViewItemItem(ref item) => {
match item.inner {
clean::ExternCrate(ref name, ref src, _) => {
try!(write!(w, "<tr><td><code>extern crate {}",
name.as_slice()));
match *src {
Some(ref src) => try!(write!(w, " = \"{}\"",
src.as_slice())),
None => {}
}
try!(write!(w, ";</code></td></tr>"));
}
clean::Import(ref import) => {
try!(write!(w, "<tr><td><code>{}{}</code></td></tr>",
VisSpace(myitem.visibility),
*import));
}
}
}
_ => {
if myitem.name.is_none() { continue }
try!(write!(w, "
<tr>
<td><a class='{class}' href='{href}'
title='{title}'>{}</a></td>
<td class='docblock short'>{}</td>
</tr>
",
*myitem.name.get_ref(),
Markdown(shorter(myitem.doc_value())),
class = shortty(myitem),
href = item_path(myitem),
title = full_path(cx, myitem)));
}
}
}
write!(w, "</table>")
}
fn item_function(w: &mut fmt::Formatter, it: &clean::Item,
f: &clean::Function) -> fmt::Result {
try!(write!(w, "<pre class='rust fn'>{vis}{fn_style}fn \
{name}{generics}{decl}</pre>",
vis = VisSpace(it.visibility),
fn_style = FnStyleSpace(f.fn_style),
name = it.name.get_ref().as_slice(),
generics = f.generics,
decl = f.decl));
document(w, it)
}
fn item_trait(w: &mut fmt::Formatter, cx: &Context, it: &clean::Item,
t: &clean::Trait) -> fmt::Result {
let mut parents = String::new();
if t.parents.len() > 0 {
parents.push_str(": ");
for (i, p) in t.parents.iter().enumerate() {
if i > 0 { parents.push_str(" + "); }
parents.push_str(format!("{}", *p).as_slice());
}
}
// Output the trait definition
try!(write!(w, "<pre class='rust trait'>{}trait {}{}{} ",
VisSpace(it.visibility),
it.name.get_ref().as_slice(),
t.generics,
parents));
let required = t.methods.iter().filter(|m| m.is_req()).collect::<Vec<&clean::TraitMethod>>();
let provided = t.methods.iter().filter(|m| !m.is_req()).collect::<Vec<&clean::TraitMethod>>();
if t.methods.len() == 0 {
try!(write!(w, "\\{ \\}"));
} else {
try!(write!(w, "\\{\n"));
for m in required.iter() {
try!(write!(w, " "));
try!(render_method(w, m.item()));
try!(write!(w, ";\n"));
}
if required.len() > 0 && provided.len() > 0 {
try!(w.write("\n".as_bytes()));
}
for m in provided.iter() {
try!(write!(w, " "));
try!(render_method(w, m.item()));
try!(write!(w, " \\{ ... \\}\n"));
}
try!(write!(w, "\\}"));
}
try!(write!(w, "</pre>"));
// Trait documentation
try!(document(w, it));
fn meth(w: &mut fmt::Formatter, m: &clean::TraitMethod) -> fmt::Result {
try!(write!(w, "<h3 id='{}.{}' class='method'><code>",
shortty(m.item()),
*m.item().name.get_ref()));
try!(render_method(w, m.item()));
try!(write!(w, "</code></h3>"));
try!(document(w, m.item()));
Ok(())
}
// Output the documentation for each function individually
if required.len() > 0 {
try!(write!(w, "
<h2 id='required-methods'>Required Methods</h2>
<div class='methods'>
"));
for m in required.iter() {
try!(meth(w, *m));
}
try!(write!(w, "</div>"));
}
if provided.len() > 0 {
try!(write!(w, "
<h2 id='provided-methods'>Provided Methods</h2>
<div class='methods'>
"));
for m in provided.iter() {
try!(meth(w, *m));
}
try!(write!(w, "</div>"));
}
let cache = cache_key.get().unwrap();
try!(write!(w, "
<h2 id='implementors'>Implementors</h2>
<ul class='item-list' id='implementors-list'>
"));
match cache.implementors.find(&it.def_id) {
Some(implementors) => {
for i in implementors.iter() {
try!(writeln!(w, "<li><code>impl{} {} for {}</code></li>",
i.generics, i.trait_, i.for_));
}
}
None => {}
}
try!(write!(w, "</ul>"));
try!(write!(w, r#"<script type="text/javascript" async
src="{root_path}/implementors/{path}/{ty}.{name}.js">
</script>"#,
root_path = Vec::from_elem(cx.current.len(), "..").connect("/"),
path = if ast_util::is_local(it.def_id) {
cx.current.connect("/")
} else {
let path = cache.external_paths.get(&it.def_id);
path.slice_to(path.len() - 1).connect("/")
},
ty = shortty(it).to_static_str(),
name = *it.name.get_ref()));
Ok(())
}
fn render_method(w: &mut fmt::Formatter, meth: &clean::Item) -> fmt::Result {
fn fun(w: &mut fmt::Formatter, it: &clean::Item, fn_style: ast::FnStyle,
g: &clean::Generics, selfty: &clean::SelfTy,
d: &clean::FnDecl) -> fmt::Result {
write!(w, "{}fn <a href='\\#{ty}.{name}' class='fnname'>{name}</a>\
{generics}{decl}",
match fn_style {
ast::UnsafeFn => "unsafe ",
_ => "",
},
ty = shortty(it),
name = it.name.get_ref().as_slice(),
generics = *g,
decl = Method(selfty, d))
}
match meth.inner {
clean::TyMethodItem(ref m) => {
fun(w, meth, m.fn_style, &m.generics, &m.self_, &m.decl)
}
clean::MethodItem(ref m) => {
fun(w, meth, m.fn_style, &m.generics, &m.self_, &m.decl)
}
_ => unreachable!()
}
}
fn item_struct(w: &mut fmt::Formatter, it: &clean::Item,
s: &clean::Struct) -> fmt::Result {
try!(write!(w, "<pre class='rust struct'>"));
try!(render_struct(w,
it,
Some(&s.generics),
s.struct_type,
s.fields.as_slice(),
"",
true));
try!(write!(w, "</pre>"));
try!(document(w, it));
let mut fields = s.fields.iter().filter(|f| {
match f.inner {
clean::StructFieldItem(clean::HiddenStructField) => false,
clean::StructFieldItem(clean::TypedStructField(..)) => true,
_ => false,
}
}).peekable();
match s.struct_type {
doctree::Plain if fields.peek().is_some() => {
try!(write!(w, "<h2 class='fields'>Fields</h2>\n<table>"));
for field in fields {
try!(write!(w, "<tr><td id='structfield.{name}'>\
<code>{name}</code></td><td>",
name = field.name.get_ref().as_slice()));
try!(document(w, field));
try!(write!(w, "</td></tr>"));
}
try!(write!(w, "</table>"));
}
_ => {}
}
render_methods(w, it)
}
fn item_enum(w: &mut fmt::Formatter, it: &clean::Item,
e: &clean::Enum) -> fmt::Result {
try!(write!(w, "<pre class='rust enum'>{}enum {}{}",
VisSpace(it.visibility),
it.name.get_ref().as_slice(),
e.generics));
if e.variants.len() == 0 && !e.variants_stripped {
try!(write!(w, " \\{\\}"));
} else {
try!(write!(w, " \\{\n"));
for v in e.variants.iter() {
try!(write!(w, " "));
let name = v.name.get_ref().as_slice();
match v.inner {
clean::VariantItem(ref var) => {
match var.kind {
clean::CLikeVariant => try!(write!(w, "{}", name)),
clean::TupleVariant(ref tys) => {
try!(write!(w, "{}(", name));
for (i, ty) in tys.iter().enumerate() {
if i > 0 {
try!(write!(w, ", "))
}
try!(write!(w, "{}", *ty));
}
try!(write!(w, ")"));
}
clean::StructVariant(ref s) => {
try!(render_struct(w,
v,
None,
s.struct_type,
s.fields.as_slice(),
" ",
false));
}
}
}
_ => unreachable!()
}
try!(write!(w, ",\n"));
}
if e.variants_stripped {
try!(write!(w, " // some variants omitted\n"));
}
try!(write!(w, "\\}"));
}
try!(write!(w, "</pre>"));
try!(document(w, it));
if e.variants.len() > 0 {
try!(write!(w, "<h2 class='variants'>Variants</h2>\n<table>"));
for variant in e.variants.iter() {
try!(write!(w, "<tr><td id='variant.{name}'><code>{name}</code></td><td>",
name = variant.name.get_ref().as_slice()));
try!(document(w, variant));
match variant.inner {
clean::VariantItem(ref var) => {
match var.kind {
clean::StructVariant(ref s) => {
let mut fields = s.fields.iter().filter(|f| {
match f.inner {
clean::StructFieldItem(ref t) => match *t {
clean::HiddenStructField => false,
clean::TypedStructField(..) => true,
},
_ => false,
}
});
try!(write!(w, "<h3 class='fields'>Fields</h3>\n
<table>"));
for field in fields {
try!(write!(w, "<tr><td \
id='variant.{v}.field.{f}'>\
<code>{f}</code></td><td>",
v = variant.name.get_ref().as_slice(),
f = field.name.get_ref().as_slice()));
try!(document(w, field));
try!(write!(w, "</td></tr>"));
}
try!(write!(w, "</table>"));
}
_ => ()
}
}
_ => ()
}
try!(write!(w, "</td></tr>"));
}
try!(write!(w, "</table>"));
}
try!(render_methods(w, it));
Ok(())
}
fn render_struct(w: &mut fmt::Formatter, it: &clean::Item,
g: Option<&clean::Generics>,
ty: doctree::StructType,
fields: &[clean::Item],
tab: &str,
structhead: bool) -> fmt::Result {
try!(write!(w, "{}{}{}",
VisSpace(it.visibility),
if structhead {"struct "} else {""},
it.name.get_ref().as_slice()));
match g {
Some(g) => try!(write!(w, "{}", *g)),
None => {}
}
match ty {
doctree::Plain => {
try!(write!(w, " \\{\n{}", tab));
let mut fields_stripped = false;
for field in fields.iter() {
match field.inner {
clean::StructFieldItem(clean::HiddenStructField) => {
fields_stripped = true;
}
clean::StructFieldItem(clean::TypedStructField(ref ty)) => {
try!(write!(w, " {}{}: {},\n{}",
VisSpace(field.visibility),
field.name.get_ref().as_slice(),
*ty,
tab));
}
_ => unreachable!(),
};
}
if fields_stripped {
try!(write!(w, " // some fields omitted\n{}", tab));
}
try!(write!(w, "\\}"));
}
doctree::Tuple | doctree::Newtype => {
try!(write!(w, "("));
for (i, field) in fields.iter().enumerate() {
if i > 0 {
try!(write!(w, ", "));
}
match field.inner {
clean::StructFieldItem(clean::HiddenStructField) => {
try!(write!(w, "_"))
}
clean::StructFieldItem(clean::TypedStructField(ref ty)) => {
try!(write!(w, "{}{}", VisSpace(field.visibility), *ty))
}
_ => unreachable!()
}
}
try!(write!(w, ");"));
}
doctree::Unit => {
try!(write!(w, ";"));
}
}
Ok(())
}
fn render_methods(w: &mut fmt::Formatter, it: &clean::Item) -> fmt::Result {
match cache_key.get().unwrap().impls.find(&it.def_id) {
Some(v) => {
let mut non_trait = v.iter().filter(|p| {
p.ref0().trait_.is_none()
});
let non_trait = non_trait.collect::<Vec<&(clean::Impl, Option<String>)>>();
let mut traits = v.iter().filter(|p| {
p.ref0().trait_.is_some()
});
let traits = traits.collect::<Vec<&(clean::Impl, Option<String>)>>();
if non_trait.len() > 0 {
try!(write!(w, "<h2 id='methods'>Methods</h2>"));
for &(ref i, ref dox) in non_trait.move_iter() {
try!(render_impl(w, i, dox));
}
}
if traits.len() > 0 {
try!(write!(w, "<h2 id='implementations'>Trait \
Implementations</h2>"));
let mut any_derived = false;
for & &(ref i, ref dox) in traits.iter() {
if !i.derived {
try!(render_impl(w, i, dox));
} else {
any_derived = true;
}
}
if any_derived {
try!(write!(w, "<h3 id='derived_implementations'>Derived Implementations \
</h3>"));
for &(ref i, ref dox) in traits.move_iter() {
if i.derived {
try!(render_impl(w, i, dox));
}
}
}
}
}
None => {}
}
Ok(())
}
fn render_impl(w: &mut fmt::Formatter, i: &clean::Impl,
dox: &Option<String>) -> fmt::Result {
try!(write!(w, "<h3 class='impl'><code>impl{} ", i.generics));
match i.trait_ {
Some(ref ty) => try!(write!(w, "{} for ", *ty)),
None => {}
}
try!(write!(w, "{}</code></h3>", i.for_));
match *dox {
Some(ref dox) => {
try!(write!(w, "<div class='docblock'>{}</div>",
Markdown(dox.as_slice())));
}
None => {}
}
fn docmeth(w: &mut fmt::Formatter, item: &clean::Item,
dox: bool) -> fmt::Result {
try!(write!(w, "<h4 id='method.{}' class='method'><code>",
*item.name.get_ref()));
try!(render_method(w, item));
try!(write!(w, "</code></h4>\n"));
match item.doc_value() {
Some(s) if dox => {
try!(write!(w, "<div class='docblock'>{}</div>", Markdown(s)));
Ok(())
}
Some(..) | None => Ok(())
}
}
try!(write!(w, "<div class='methods'>"));
for meth in i.methods.iter() {
try!(docmeth(w, meth, true));
}
fn render_default_methods(w: &mut fmt::Formatter,
t: &clean::Trait,
i: &clean::Impl) -> fmt::Result {
for method in t.methods.iter() {
let n = method.item().name.clone();
match i.methods.iter().find(|m| { m.name == n }) {
Some(..) => continue,
None => {}
}
try!(docmeth(w, method.item(), false));
}
Ok(())
}
// If we've implemented a trait, then also emit documentation for all
// default methods which weren't overridden in the implementation block.
match i.trait_ {
Some(clean::ResolvedPath { did, .. }) => {
try!({
match cache_key.get().unwrap().traits.find(&did) {
Some(t) => try!(render_default_methods(w, t, i)),
None => {}
}
Ok(())
})
}
Some(..) | None => {}
}
try!(write!(w, "</div>"));
Ok(())
}
fn item_typedef(w: &mut fmt::Formatter, it: &clean::Item,
t: &clean::Typedef) -> fmt::Result {
try!(write!(w, "<pre class='rust typedef'>type {}{} = {};</pre>",
it.name.get_ref().as_slice(),
t.generics,
t.type_));
document(w, it)
}
impl<'a> fmt::Show for Sidebar<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let cx = self.cx;
let it = self.item;
try!(write!(fmt, "<p class='location'>"));
let len = cx.current.len() - if it.is_mod() {1} else {0};
for (i, name) in cx.current.iter().take(len).enumerate() {
if i > 0 {
try!(write!(fmt, "&\\#8203;::"));
}
try!(write!(fmt, "<a href='{}index.html'>{}</a>",
cx.root_path
.as_slice()
.slice_to((cx.current.len() - i - 1) * 3),
*name));
}
try!(write!(fmt, "</p>"));
fn block(w: &mut fmt::Formatter, short: &str, longty: &str,
cur: &clean::Item, cx: &Context) -> fmt::Result {
let items = match cx.sidebar.find_equiv(&short) {
Some(items) => items.as_slice(),
None => return Ok(())
};
try!(write!(w, "<div class='block {}'><h2>{}</h2>", short, longty));
for item in items.iter() {
let curty = shortty(cur).to_static_str();
let class = if cur.name.get_ref() == item && short == curty {
"current"
} else {
""
};
try!(write!(w, "<a class='{ty} {class}' href='{curty, select,
mod{../}
other{}
}{tysel, select,
mod{{name}/index.html}
other{#.{name}.html}
}'>{name}</a><br/>",
ty = short,
tysel = short,
class = class,
curty = curty,
name = item.as_slice()));
}
try!(write!(w, "</div>"));
Ok(())
}
try!(block(fmt, "mod", "Modules", it, cx));
try!(block(fmt, "struct", "Structs", it, cx));
try!(block(fmt, "enum", "Enums", it, cx));
try!(block(fmt, "trait", "Traits", it, cx));
try!(block(fmt, "fn", "Functions", it, cx));
try!(block(fmt, "macro", "Macros", it, cx));
Ok(())
}
}
fn build_sidebar(m: &clean::Module) -> HashMap<String, Vec<String>> {
let mut map = HashMap::new();
for item in m.items.iter() {
if ignore_private_item(item) { continue }
let short = shortty(item).to_static_str();
let myname = match item.name {
None => continue,
Some(ref s) => s.to_string(),
};
let v = map.find_or_insert_with(short.to_string(), |_| Vec::new());
v.push(myname);
}
for (_, items) in map.mut_iter() {
items.as_mut_slice().sort();
}
return map;
}
impl<'a> fmt::Show for Source<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let Source(s) = *self;
let lines = s.lines().len();
let mut cols = 0;
let mut tmp = lines;
while tmp > 0 {
cols += 1;
tmp /= 10;
}
try!(write!(fmt, "<pre class='line-numbers'>"));
for i in range(1, lines + 1) {
try!(write!(fmt, "<span id='{0:u}'>{0:1$u}</span>\n", i, cols));
}
try!(write!(fmt, "</pre>"));
try!(write!(fmt, "{}", highlight::highlight(s.as_slice(), None)));
Ok(())
}
}
fn item_macro(w: &mut fmt::Formatter, it: &clean::Item,
t: &clean::Macro) -> fmt::Result {
try!(w.write(highlight::highlight(t.source.as_slice(), Some("macro")).as_bytes()));
document(w, it)
}
fn item_primitive(w: &mut fmt::Formatter,
it: &clean::Item,
_p: &clean::Primitive) -> fmt::Result {
try!(document(w, it));
render_methods(w, it)
}
fn ignore_private_item(it: &clean::Item) -> bool {
match it.inner {
clean::ModuleItem(ref m) => {
(m.items.len() == 0 && it.doc_value().is_none()) ||
it.visibility != Some(ast::Public)
}
clean::PrimitiveItem(..) => it.visibility != Some(ast::Public),
_ => false,
}
}