rust/src/librand/rand_impls.rs
Huon Wilson 6fa4bbeed4 std: Move rand to librand.
This functionality is not super-core and so doesn't need to be included
in std. It's possible that std may need rand (it does a little bit now,
for io::test) in which case the functionality required could be moved to
a secret hidden module and reexposed by librand.

Unfortunately, using #[deprecated] here is hard: there's too much to
mock to make it feasible, since we have to ensure that programs still
typecheck to reach the linting phase.
2014-03-12 11:31:05 +11:00

278 lines
7.3 KiB
Rust

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The implementations of `Rand` for the built-in types.
use std::char;
use std::int;
use std::uint;
use {Rand,Rng};
impl Rand for int {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> int {
if int::BITS == 32 {
rng.gen::<i32>() as int
} else {
rng.gen::<i64>() as int
}
}
}
impl Rand for i8 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> i8 {
rng.next_u32() as i8
}
}
impl Rand for i16 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> i16 {
rng.next_u32() as i16
}
}
impl Rand for i32 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> i32 {
rng.next_u32() as i32
}
}
impl Rand for i64 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> i64 {
rng.next_u64() as i64
}
}
impl Rand for uint {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> uint {
if uint::BITS == 32 {
rng.gen::<u32>() as uint
} else {
rng.gen::<u64>() as uint
}
}
}
impl Rand for u8 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> u8 {
rng.next_u32() as u8
}
}
impl Rand for u16 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> u16 {
rng.next_u32() as u16
}
}
impl Rand for u32 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> u32 {
rng.next_u32()
}
}
impl Rand for u64 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> u64 {
rng.next_u64()
}
}
macro_rules! float_impls {
($mod_name:ident, $ty:ty, $mantissa_bits:expr, $method_name:ident, $ignored_bits:expr) => {
mod $mod_name {
use {Rand, Rng, Open01, Closed01};
static SCALE: $ty = (1u64 << $mantissa_bits) as $ty;
impl Rand for $ty {
/// Generate a floating point number in the half-open
/// interval `[0,1)`.
///
/// See `Closed01` for the closed interval `[0,1]`,
/// and `Open01` for the open interval `(0,1)`.
#[inline]
fn rand<R: Rng>(rng: &mut R) -> $ty {
// using any more than `mantissa_bits` bits will
// cause (e.g.) 0xffff_ffff to correspond to 1
// exactly, so we need to drop some (8 for f32, 11
// for f64) to guarantee the open end.
(rng.$method_name() >> $ignored_bits) as $ty / SCALE
}
}
impl Rand for Open01<$ty> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Open01<$ty> {
// add a small amount (specifically 2 bits below
// the precision of f64/f32 at 1.0), so that small
// numbers are larger than 0, but large numbers
// aren't pushed to/above 1.
Open01(((rng.$method_name() >> $ignored_bits) as $ty + 0.25) / SCALE)
}
}
impl Rand for Closed01<$ty> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Closed01<$ty> {
// divide by the maximum value of the numerator to
// get a non-zero probability of getting exactly
// 1.0.
Closed01((rng.$method_name() >> $ignored_bits) as $ty / (SCALE - 1.0))
}
}
}
}
}
float_impls! { f64_rand_impls, f64, 53, next_u64, 11 }
float_impls! { f32_rand_impls, f32, 24, next_u32, 8 }
impl Rand for char {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> char {
// a char is 21 bits
static CHAR_MASK: u32 = 0x001f_ffff;
loop {
// Rejection sampling. About 0.2% of numbers with at most
// 21-bits are invalid codepoints (surrogates), so this
// will succeed first go almost every time.
match char::from_u32(rng.next_u32() & CHAR_MASK) {
Some(c) => return c,
None => {}
}
}
}
}
impl Rand for bool {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> bool {
rng.gen::<u8>() & 1 == 1
}
}
macro_rules! tuple_impl {
// use variables to indicate the arity of the tuple
($($tyvar:ident),* ) => {
// the trailing commas are for the 1 tuple
impl<
$( $tyvar : Rand ),*
> Rand for ( $( $tyvar ),* , ) {
#[inline]
fn rand<R: Rng>(_rng: &mut R) -> ( $( $tyvar ),* , ) {
(
// use the $tyvar's to get the appropriate number of
// repeats (they're not actually needed)
$(
_rng.gen::<$tyvar>()
),*
,
)
}
}
}
}
impl Rand for () {
#[inline]
fn rand<R: Rng>(_: &mut R) -> () { () }
}
tuple_impl!{A}
tuple_impl!{A, B}
tuple_impl!{A, B, C}
tuple_impl!{A, B, C, D}
tuple_impl!{A, B, C, D, E}
tuple_impl!{A, B, C, D, E, F}
tuple_impl!{A, B, C, D, E, F, G}
tuple_impl!{A, B, C, D, E, F, G, H}
tuple_impl!{A, B, C, D, E, F, G, H, I}
tuple_impl!{A, B, C, D, E, F, G, H, I, J}
impl<T:Rand> Rand for Option<T> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Option<T> {
if rng.gen() {
Some(rng.gen())
} else {
None
}
}
}
impl<T: Rand> Rand for ~T {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> ~T { ~rng.gen() }
}
impl<T: Rand + 'static> Rand for @T {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> @T { @rng.gen() }
}
#[cfg(test)]
mod tests {
use {Rng, task_rng, Open01, Closed01};
struct ConstantRng(u64);
impl Rng for ConstantRng {
fn next_u32(&mut self) -> u32 {
let ConstantRng(v) = *self;
v as u32
}
fn next_u64(&mut self) -> u64 {
let ConstantRng(v) = *self;
v
}
}
#[test]
fn floating_point_edge_cases() {
// the test for exact equality is correct here.
assert!(ConstantRng(0xffff_ffff).gen::<f32>() != 1.0)
assert!(ConstantRng(0xffff_ffff_ffff_ffff).gen::<f64>() != 1.0)
}
#[test]
fn rand_open() {
// this is unlikely to catch an incorrect implementation that
// generates exactly 0 or 1, but it keeps it sane.
let mut rng = task_rng();
for _ in range(0, 1_000) {
// strict inequalities
let Open01(f) = rng.gen::<Open01<f64>>();
assert!(0.0 < f && f < 1.0);
let Open01(f) = rng.gen::<Open01<f32>>();
assert!(0.0 < f && f < 1.0);
}
}
#[test]
fn rand_closed() {
let mut rng = task_rng();
for _ in range(0, 1_000) {
// strict inequalities
let Closed01(f) = rng.gen::<Closed01<f64>>();
assert!(0.0 <= f && f <= 1.0);
let Closed01(f) = rng.gen::<Closed01<f32>>();
assert!(0.0 <= f && f <= 1.0);
}
}
}