rust/src/librustc/middle/check_match.rs
2014-10-11 12:03:15 -04:00

1086 lines
40 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use middle::const_eval::{compare_const_vals, const_bool, const_float, const_nil, const_val};
use middle::const_eval::{const_expr_to_pat, eval_const_expr, lookup_const_by_id};
use middle::def::*;
use middle::expr_use_visitor::{ConsumeMode, Delegate, ExprUseVisitor, Init};
use middle::expr_use_visitor::{JustWrite, LoanCause, MutateMode};
use middle::expr_use_visitor::{WriteAndRead};
use middle::mem_categorization::cmt;
use middle::pat_util::*;
use middle::ty::*;
use middle::ty;
use std::fmt;
use std::iter::AdditiveIterator;
use std::iter::range_inclusive;
use std::slice;
use syntax::ast::*;
use syntax::ast_util::walk_pat;
use syntax::codemap::{Span, Spanned, DUMMY_SP};
use syntax::fold::{Folder, noop_fold_pat};
use syntax::print::pprust::pat_to_string;
use syntax::parse::token;
use syntax::ptr::P;
use syntax::visit::{mod, Visitor, FnKind};
use util::ppaux::ty_to_string;
pub const DUMMY_WILD_PAT: Pat = Pat {
id: DUMMY_NODE_ID,
node: PatWild(PatWildSingle),
span: DUMMY_SP
};
struct Matrix<'a>(Vec<Vec<&'a Pat>>);
/// Pretty-printer for matrices of patterns, example:
/// ++++++++++++++++++++++++++
/// + _ + [] +
/// ++++++++++++++++++++++++++
/// + true + [First] +
/// ++++++++++++++++++++++++++
/// + true + [Second(true)] +
/// ++++++++++++++++++++++++++
/// + false + [_] +
/// ++++++++++++++++++++++++++
/// + _ + [_, _, ..tail] +
/// ++++++++++++++++++++++++++
impl<'a> fmt::Show for Matrix<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "\n"));
let &Matrix(ref m) = self;
let pretty_printed_matrix: Vec<Vec<String>> = m.iter().map(|row| {
row.iter()
.map(|&pat| pat_to_string(&*pat))
.collect::<Vec<String>>()
}).collect();
let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0u);
assert!(m.iter().all(|row| row.len() == column_count));
let column_widths: Vec<uint> = range(0, column_count).map(|col| {
pretty_printed_matrix.iter().map(|row| row.get(col).len()).max().unwrap_or(0u)
}).collect();
let total_width = column_widths.iter().map(|n| *n).sum() + column_count * 3 + 1;
let br = String::from_char(total_width, '+');
try!(write!(f, "{}\n", br));
for row in pretty_printed_matrix.into_iter() {
try!(write!(f, "+"));
for (column, pat_str) in row.into_iter().enumerate() {
try!(write!(f, " "));
f.width = Some(*column_widths.get(column));
try!(f.pad(pat_str.as_slice()));
try!(write!(f, " +"));
}
try!(write!(f, "\n"));
try!(write!(f, "{}\n", br));
}
Ok(())
}
}
impl<'a> FromIterator<Vec<&'a Pat>> for Matrix<'a> {
fn from_iter<T: Iterator<Vec<&'a Pat>>>(mut iterator: T) -> Matrix<'a> {
Matrix(iterator.collect())
}
}
pub struct MatchCheckCtxt<'a, 'tcx: 'a> {
pub tcx: &'a ty::ctxt<'tcx>
}
#[deriving(Clone, PartialEq)]
pub enum Constructor {
/// The constructor of all patterns that don't vary by constructor,
/// e.g. struct patterns and fixed-length arrays.
Single,
/// Enum variants.
Variant(DefId),
/// Literal values.
ConstantValue(const_val),
/// Ranges of literal values (2..5).
ConstantRange(const_val, const_val),
/// Array patterns of length n.
Slice(uint),
/// Array patterns with a subslice.
SliceWithSubslice(uint, uint)
}
#[deriving(Clone, PartialEq)]
enum Usefulness {
Useful,
UsefulWithWitness(Vec<P<Pat>>),
NotUseful
}
enum WitnessPreference {
ConstructWitness,
LeaveOutWitness
}
impl<'a, 'tcx, 'v> Visitor<'v> for MatchCheckCtxt<'a, 'tcx> {
fn visit_expr(&mut self, ex: &Expr) {
check_expr(self, ex);
}
fn visit_local(&mut self, l: &Local) {
check_local(self, l);
}
fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v FnDecl,
b: &'v Block, s: Span, _: NodeId) {
check_fn(self, fk, fd, b, s);
}
}
pub fn check_crate(tcx: &ty::ctxt) {
visit::walk_crate(&mut MatchCheckCtxt { tcx: tcx }, tcx.map.krate());
tcx.sess.abort_if_errors();
}
fn check_expr(cx: &mut MatchCheckCtxt, ex: &Expr) {
visit::walk_expr(cx, ex);
match ex.node {
ExprMatch(ref scrut, ref arms, source) => {
// First, check legality of move bindings.
for arm in arms.iter() {
check_legality_of_move_bindings(cx,
arm.guard.is_some(),
arm.pats.as_slice());
for pat in arm.pats.iter() {
check_legality_of_bindings_in_at_patterns(cx, &**pat);
}
}
// Second, if there is a guard on each arm, make sure it isn't
// assigning or borrowing anything mutably.
for arm in arms.iter() {
match arm.guard {
Some(ref guard) => check_for_mutation_in_guard(cx, &**guard),
None => {}
}
}
let mut static_inliner = StaticInliner::new(cx.tcx);
let inlined_arms = arms.iter().map(|arm| {
(arm.pats.iter().map(|pat| {
static_inliner.fold_pat((*pat).clone())
}).collect(), arm.guard.as_ref().map(|e| &**e))
}).collect::<Vec<(Vec<P<Pat>>, Option<&Expr>)>>();
if static_inliner.failed {
return;
}
// Third, check if there are any references to NaN that we should warn about.
for &(ref pats, _) in inlined_arms.iter() {
check_for_static_nan(cx, pats.as_slice());
}
// Fourth, check for unreachable arms.
check_arms(cx, inlined_arms.as_slice(), source);
// Finally, check if the whole match expression is exhaustive.
// Check for empty enum, because is_useful only works on inhabited types.
let pat_ty = node_id_to_type(cx.tcx, scrut.id);
if inlined_arms.is_empty() {
if !type_is_empty(cx.tcx, pat_ty) {
// We know the type is inhabited, so this must be wrong
span_err!(cx.tcx.sess, ex.span, E0002,
"non-exhaustive patterns: type {} is non-empty",
ty_to_string(cx.tcx, pat_ty)
);
}
// If the type *is* empty, it's vacuously exhaustive
return;
}
let matrix: Matrix = inlined_arms
.iter()
.filter(|&&(_, guard)| guard.is_none())
.flat_map(|arm| arm.ref0().iter())
.map(|pat| vec![&**pat])
.collect();
check_exhaustive(cx, ex.span, &matrix);
},
ExprForLoop(ref pat, _, _, _) => {
let mut static_inliner = StaticInliner::new(cx.tcx);
is_refutable(cx, &*static_inliner.fold_pat((*pat).clone()), |uncovered_pat| {
cx.tcx.sess.span_err(
pat.span,
format!("refutable pattern in `for` loop binding: \
`{}` not covered",
pat_to_string(uncovered_pat)).as_slice());
});
// Check legality of move bindings.
check_legality_of_move_bindings(cx, false, slice::ref_slice(pat));
check_legality_of_bindings_in_at_patterns(cx, &**pat);
}
_ => ()
}
}
fn is_expr_const_nan(tcx: &ty::ctxt, expr: &Expr) -> bool {
match eval_const_expr(tcx, expr) {
const_float(f) => f.is_nan(),
_ => false
}
}
// Check that we do not match against a static NaN (#6804)
fn check_for_static_nan(cx: &MatchCheckCtxt, pats: &[P<Pat>]) {
for pat in pats.iter() {
walk_pat(&**pat, |p| {
match p.node {
PatLit(ref expr) if is_expr_const_nan(cx.tcx, &**expr) => {
span_warn!(cx.tcx.sess, p.span, E0003,
"unmatchable NaN in pattern, \
use the is_nan method in a guard instead");
}
_ => ()
}
true
});
}
}
// Check for unreachable patterns
fn check_arms(cx: &MatchCheckCtxt, arms: &[(Vec<P<Pat>>, Option<&Expr>)], source: MatchSource) {
let mut seen = Matrix(vec![]);
let mut printed_if_let_err = false;
for &(ref pats, guard) in arms.iter() {
for pat in pats.iter() {
let v = vec![&**pat];
match is_useful(cx, &seen, v.as_slice(), LeaveOutWitness) {
NotUseful => {
match source {
MatchIfLetDesugar => {
if printed_if_let_err {
// we already printed an irrefutable if-let pattern error.
// We don't want two, that's just confusing.
} else {
// find the first arm pattern so we can use its span
let &(ref first_arm_pats, _) = &arms[0];
let first_pat = first_arm_pats.get(0);
let span = first_pat.span;
span_err!(cx.tcx.sess, span, E0162, "irrefutable if-let pattern");
printed_if_let_err = true;
}
},
MatchWhileLetDesugar => {
// find the first arm pattern so we can use its span
let &(ref first_arm_pats, _) = &arms[0];
let first_pat = first_arm_pats.get(0);
let span = first_pat.span;
span_err!(cx.tcx.sess, span, E0165, "irrefutable while-let pattern");
},
MatchNormal => {
span_err!(cx.tcx.sess, pat.span, E0001, "unreachable pattern")
},
}
}
Useful => (),
UsefulWithWitness(_) => unreachable!()
}
if guard.is_none() {
let Matrix(mut rows) = seen;
rows.push(v);
seen = Matrix(rows);
}
}
}
}
fn raw_pat<'a>(p: &'a Pat) -> &'a Pat {
match p.node {
PatIdent(_, _, Some(ref s)) => raw_pat(&**s),
_ => p
}
}
fn check_exhaustive(cx: &MatchCheckCtxt, sp: Span, matrix: &Matrix) {
match is_useful(cx, matrix, &[&DUMMY_WILD_PAT], ConstructWitness) {
UsefulWithWitness(pats) => {
let dummy = DUMMY_WILD_PAT.clone();
let witness = match pats.as_slice() {
[ref witness] => &**witness,
[] => &dummy,
_ => unreachable!()
};
span_err!(cx.tcx.sess, sp, E0004,
"non-exhaustive patterns: `{}` not covered",
pat_to_string(witness)
);
}
NotUseful => {
// This is good, wildcard pattern isn't reachable
},
_ => unreachable!()
}
}
fn const_val_to_expr(value: &const_val) -> P<Expr> {
let node = match value {
&const_bool(b) => LitBool(b),
&const_nil => LitNil,
_ => unreachable!()
};
P(Expr {
id: 0,
node: ExprLit(P(Spanned { node: node, span: DUMMY_SP })),
span: DUMMY_SP
})
}
pub struct StaticInliner<'a, 'tcx: 'a> {
pub tcx: &'a ty::ctxt<'tcx>,
pub failed: bool
}
impl<'a, 'tcx> StaticInliner<'a, 'tcx> {
pub fn new<'a>(tcx: &'a ty::ctxt<'tcx>) -> StaticInliner<'a, 'tcx> {
StaticInliner {
tcx: tcx,
failed: false
}
}
}
impl<'a, 'tcx> Folder for StaticInliner<'a, 'tcx> {
fn fold_pat(&mut self, pat: P<Pat>) -> P<Pat> {
match pat.node {
PatIdent(..) | PatEnum(..) => {
let def = self.tcx.def_map.borrow().find_copy(&pat.id);
match def {
Some(DefConst(did)) => match lookup_const_by_id(self.tcx, did) {
Some(const_expr) => {
const_expr_to_pat(self.tcx, const_expr).map(|mut new_pat| {
new_pat.span = pat.span;
new_pat
})
}
None => {
self.failed = true;
span_err!(self.tcx.sess, pat.span, E0158,
"statics cannot be referenced in patterns");
pat
}
},
_ => noop_fold_pat(pat, self)
}
}
_ => noop_fold_pat(pat, self)
}
}
}
/// Constructs a partial witness for a pattern given a list of
/// patterns expanded by the specialization step.
///
/// When a pattern P is discovered to be useful, this function is used bottom-up
/// to reconstruct a complete witness, e.g. a pattern P' that covers a subset
/// of values, V, where each value in that set is not covered by any previously
/// used patterns and is covered by the pattern P'. Examples:
///
/// left_ty: tuple of 3 elements
/// pats: [10, 20, _] => (10, 20, _)
///
/// left_ty: struct X { a: (bool, &'static str), b: uint}
/// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
fn construct_witness(cx: &MatchCheckCtxt, ctor: &Constructor,
pats: Vec<&Pat>, left_ty: ty::t) -> P<Pat> {
let pats_len = pats.len();
let mut pats = pats.into_iter().map(|p| P((*p).clone()));
let pat = match ty::get(left_ty).sty {
ty::ty_tup(_) => PatTup(pats.collect()),
ty::ty_enum(cid, _) | ty::ty_struct(cid, _) => {
let (vid, is_structure) = match ctor {
&Variant(vid) =>
(vid, ty::enum_variant_with_id(cx.tcx, cid, vid).arg_names.is_some()),
_ =>
(cid, ty::lookup_struct_fields(cx.tcx, cid).iter()
.any(|field| field.name != token::special_idents::unnamed_field.name))
};
if is_structure {
let fields = ty::lookup_struct_fields(cx.tcx, vid);
let field_pats: Vec<FieldPat> = fields.into_iter()
.zip(pats)
.filter(|&(_, ref pat)| pat.node != PatWild(PatWildSingle))
.map(|(field, pat)| FieldPat {
ident: Ident::new(field.name),
pat: pat
}).collect();
let has_more_fields = field_pats.len() < pats_len;
PatStruct(def_to_path(cx.tcx, vid), field_pats, has_more_fields)
} else {
PatEnum(def_to_path(cx.tcx, vid), Some(pats.collect()))
}
}
ty::ty_rptr(_, ty::mt { ty: ty, .. }) => {
match ty::get(ty).sty {
ty::ty_vec(_, Some(n)) => match ctor {
&Single => {
assert_eq!(pats_len, n);
PatVec(pats.collect(), None, vec!())
},
_ => unreachable!()
},
ty::ty_vec(_, None) => match ctor {
&Slice(n) => {
assert_eq!(pats_len, n);
PatVec(pats.collect(), None, vec!())
},
_ => unreachable!()
},
ty::ty_str => PatWild(PatWildSingle),
_ => {
assert_eq!(pats_len, 1);
PatRegion(pats.nth(0).unwrap())
}
}
}
ty::ty_vec(_, Some(len)) => {
assert_eq!(pats_len, len);
PatVec(pats.collect(), None, vec![])
}
_ => {
match *ctor {
ConstantValue(ref v) => PatLit(const_val_to_expr(v)),
_ => PatWild(PatWildSingle),
}
}
};
P(Pat {
id: 0,
node: pat,
span: DUMMY_SP
})
}
fn missing_constructor(cx: &MatchCheckCtxt, &Matrix(ref rows): &Matrix,
left_ty: ty::t, max_slice_length: uint) -> Option<Constructor> {
let used_constructors: Vec<Constructor> = rows.iter()
.flat_map(|row| pat_constructors(cx, *row.get(0), left_ty, max_slice_length).into_iter())
.collect();
all_constructors(cx, left_ty, max_slice_length)
.into_iter()
.find(|c| !used_constructors.contains(c))
}
/// This determines the set of all possible constructors of a pattern matching
/// values of type `left_ty`. For vectors, this would normally be an infinite set
/// but is instead bounded by the maximum fixed length of slice patterns in
/// the column of patterns being analyzed.
fn all_constructors(cx: &MatchCheckCtxt, left_ty: ty::t,
max_slice_length: uint) -> Vec<Constructor> {
match ty::get(left_ty).sty {
ty::ty_bool =>
[true, false].iter().map(|b| ConstantValue(const_bool(*b))).collect(),
ty::ty_nil =>
vec!(ConstantValue(const_nil)),
ty::ty_rptr(_, ty::mt { ty: ty, .. }) => match ty::get(ty).sty {
ty::ty_vec(_, None) =>
range_inclusive(0, max_slice_length).map(|length| Slice(length)).collect(),
_ => vec!(Single)
},
ty::ty_enum(eid, _) =>
ty::enum_variants(cx.tcx, eid)
.iter()
.map(|va| Variant(va.id))
.collect(),
_ =>
vec!(Single)
}
}
// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
//
// Whether a vector `v` of patterns is 'useful' in relation to a set of such
// vectors `m` is defined as there being a set of inputs that will match `v`
// but not any of the sets in `m`.
//
// This is used both for reachability checking (if a pattern isn't useful in
// relation to preceding patterns, it is not reachable) and exhaustiveness
// checking (if a wildcard pattern is useful in relation to a matrix, the
// matrix isn't exhaustive).
// Note: is_useful doesn't work on empty types, as the paper notes.
// So it assumes that v is non-empty.
fn is_useful(cx: &MatchCheckCtxt,
matrix: &Matrix,
v: &[&Pat],
witness: WitnessPreference)
-> Usefulness {
let &Matrix(ref rows) = matrix;
debug!("{:}", matrix);
if rows.len() == 0u {
return match witness {
ConstructWitness => UsefulWithWitness(vec!()),
LeaveOutWitness => Useful
};
}
if rows.get(0).len() == 0u {
return NotUseful;
}
let real_pat = match rows.iter().find(|r| r.get(0).id != DUMMY_NODE_ID) {
Some(r) => raw_pat(*r.get(0)),
None if v.len() == 0 => return NotUseful,
None => v[0]
};
let left_ty = if real_pat.id == DUMMY_NODE_ID {
ty::mk_nil()
} else {
ty::pat_ty(cx.tcx, &*real_pat)
};
let max_slice_length = rows.iter().filter_map(|row| match row.get(0).node {
PatVec(ref before, _, ref after) => Some(before.len() + after.len()),
_ => None
}).max().map_or(0, |v| v + 1);
let constructors = pat_constructors(cx, v[0], left_ty, max_slice_length);
if constructors.is_empty() {
match missing_constructor(cx, matrix, left_ty, max_slice_length) {
None => {
all_constructors(cx, left_ty, max_slice_length).into_iter().map(|c| {
match is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness) {
UsefulWithWitness(pats) => UsefulWithWitness({
let arity = constructor_arity(cx, &c, left_ty);
let mut result = {
let pat_slice = pats.as_slice();
let dummy = DUMMY_WILD_PAT.clone();
let subpats = Vec::from_fn(arity, |i| {
pat_slice.get(i).map_or(&dummy, |p| &**p)
});
vec![construct_witness(cx, &c, subpats, left_ty)]
};
result.extend(pats.into_iter().skip(arity));
result
}),
result => result
}
}).find(|result| result != &NotUseful).unwrap_or(NotUseful)
},
Some(constructor) => {
let matrix = rows.iter().filter_map(|r| {
if pat_is_binding_or_wild(&cx.tcx.def_map, raw_pat(r[0])) {
Some(Vec::from_slice(r.tail()))
} else {
None
}
}).collect();
match is_useful(cx, &matrix, v.tail(), witness) {
UsefulWithWitness(pats) => {
let dummy = DUMMY_WILD_PAT.clone();
let arity = constructor_arity(cx, &constructor, left_ty);
let wild_pats = Vec::from_elem(arity, &dummy);
let enum_pat = construct_witness(cx, &constructor, wild_pats, left_ty);
let mut new_pats = vec![enum_pat];
new_pats.extend(pats.into_iter());
UsefulWithWitness(new_pats)
},
result => result
}
}
}
} else {
constructors.into_iter().map(|c|
is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness)
).find(|result| result != &NotUseful).unwrap_or(NotUseful)
}
}
fn is_useful_specialized(cx: &MatchCheckCtxt, &Matrix(ref m): &Matrix,
v: &[&Pat], ctor: Constructor, lty: ty::t,
witness: WitnessPreference) -> Usefulness {
let arity = constructor_arity(cx, &ctor, lty);
let dummy = DUMMY_WILD_PAT.clone();
let matrix = Matrix(m.iter().filter_map(|r| {
specialize(cx, r.as_slice(), &dummy, &ctor, 0u, arity)
}).collect());
match specialize(cx, v, &dummy, &ctor, 0u, arity) {
Some(v) => is_useful(cx, &matrix, v.as_slice(), witness),
None => NotUseful
}
}
/// Determines the constructors that the given pattern can be specialized to.
///
/// In most cases, there's only one constructor that a specific pattern
/// represents, such as a specific enum variant or a specific literal value.
/// Slice patterns, however, can match slices of different lengths. For instance,
/// `[a, b, ..tail]` can match a slice of length 2, 3, 4 and so on.
///
/// On the other hand, a wild pattern and an identifier pattern cannot be
/// specialized in any way.
fn pat_constructors(cx: &MatchCheckCtxt, p: &Pat,
left_ty: ty::t, max_slice_length: uint) -> Vec<Constructor> {
let pat = raw_pat(p);
match pat.node {
PatIdent(..) =>
match cx.tcx.def_map.borrow().find(&pat.id) {
Some(&DefConst(..)) =>
cx.tcx.sess.span_bug(pat.span, "const pattern should've \
been rewritten"),
Some(&DefStruct(_)) => vec!(Single),
Some(&DefVariant(_, id, _)) => vec!(Variant(id)),
_ => vec!()
},
PatEnum(..) =>
match cx.tcx.def_map.borrow().find(&pat.id) {
Some(&DefConst(..)) =>
cx.tcx.sess.span_bug(pat.span, "static pattern should've \
been rewritten"),
Some(&DefVariant(_, id, _)) => vec!(Variant(id)),
_ => vec!(Single)
},
PatStruct(..) =>
match cx.tcx.def_map.borrow().find(&pat.id) {
Some(&DefConst(..)) =>
cx.tcx.sess.span_bug(pat.span, "static pattern should've \
been rewritten"),
Some(&DefVariant(_, id, _)) => vec!(Variant(id)),
_ => vec!(Single)
},
PatLit(ref expr) =>
vec!(ConstantValue(eval_const_expr(cx.tcx, &**expr))),
PatRange(ref lo, ref hi) =>
vec!(ConstantRange(eval_const_expr(cx.tcx, &**lo), eval_const_expr(cx.tcx, &**hi))),
PatVec(ref before, ref slice, ref after) =>
match ty::get(left_ty).sty {
ty::ty_vec(_, Some(_)) => vec!(Single),
_ => if slice.is_some() {
range_inclusive(before.len() + after.len(), max_slice_length)
.map(|length| Slice(length))
.collect()
} else {
vec!(Slice(before.len() + after.len()))
}
},
PatBox(_) | PatTup(_) | PatRegion(..) =>
vec!(Single),
PatWild(_) =>
vec!(),
PatMac(_) =>
cx.tcx.sess.bug("unexpanded macro")
}
}
/// This computes the arity of a constructor. The arity of a constructor
/// is how many subpattern patterns of that constructor should be expanded to.
///
/// For instance, a tuple pattern (_, 42u, Some([])) has the arity of 3.
/// A struct pattern's arity is the number of fields it contains, etc.
pub fn constructor_arity(cx: &MatchCheckCtxt, ctor: &Constructor, ty: ty::t) -> uint {
match ty::get(ty).sty {
ty::ty_tup(ref fs) => fs.len(),
ty::ty_uniq(_) => 1u,
ty::ty_rptr(_, ty::mt { ty: ty, .. }) => match ty::get(ty).sty {
ty::ty_vec(_, None) => match *ctor {
Slice(length) => length,
ConstantValue(_) => 0u,
_ => unreachable!()
},
ty::ty_str => 0u,
_ => 1u
},
ty::ty_enum(eid, _) => {
match *ctor {
Variant(id) => enum_variant_with_id(cx.tcx, eid, id).args.len(),
_ => unreachable!()
}
}
ty::ty_struct(cid, _) => ty::lookup_struct_fields(cx.tcx, cid).len(),
ty::ty_vec(_, Some(n)) => n,
_ => 0u
}
}
fn range_covered_by_constructor(ctor: &Constructor,
from: &const_val, to: &const_val) -> Option<bool> {
let (c_from, c_to) = match *ctor {
ConstantValue(ref value) => (value, value),
ConstantRange(ref from, ref to) => (from, to),
Single => return Some(true),
_ => unreachable!()
};
let cmp_from = compare_const_vals(c_from, from);
let cmp_to = compare_const_vals(c_to, to);
match (cmp_from, cmp_to) {
(Some(val1), Some(val2)) => Some(val1 >= 0 && val2 <= 0),
_ => None
}
}
/// This is the main specialization step. It expands the first pattern in the given row
/// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
/// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
///
/// OTOH, slice patterns with a subslice pattern (..tail) can be expanded into multiple
/// different patterns.
/// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
/// fields filled with wild patterns.
pub fn specialize<'a>(cx: &MatchCheckCtxt, r: &[&'a Pat], dummy: &'a Pat,
constructor: &Constructor, col: uint, arity: uint) -> Option<Vec<&'a Pat>> {
let &Pat {
id: pat_id, node: ref node, span: pat_span
} = raw_pat(r[col]);
let head: Option<Vec<&Pat>> = match node {
&PatWild(_) =>
Some(Vec::from_elem(arity, dummy)),
&PatIdent(_, _, _) => {
let opt_def = cx.tcx.def_map.borrow().find_copy(&pat_id);
match opt_def {
Some(DefConst(..)) =>
cx.tcx.sess.span_bug(pat_span, "const pattern should've \
been rewritten"),
Some(DefVariant(_, id, _)) => if *constructor == Variant(id) {
Some(vec!())
} else {
None
},
_ => Some(Vec::from_elem(arity, dummy))
}
}
&PatEnum(_, ref args) => {
let def = cx.tcx.def_map.borrow().get_copy(&pat_id);
match def {
DefConst(..) =>
cx.tcx.sess.span_bug(pat_span, "const pattern should've \
been rewritten"),
DefVariant(_, id, _) if *constructor != Variant(id) => None,
DefVariant(..) | DefStruct(..) => {
Some(match args {
&Some(ref args) => args.iter().map(|p| &**p).collect(),
&None => Vec::from_elem(arity, dummy)
})
}
_ => None
}
}
&PatStruct(_, ref pattern_fields, _) => {
// Is this a struct or an enum variant?
let def = cx.tcx.def_map.borrow().get_copy(&pat_id);
let class_id = match def {
DefConst(..) =>
cx.tcx.sess.span_bug(pat_span, "const pattern should've \
been rewritten"),
DefVariant(_, variant_id, _) => if *constructor == Variant(variant_id) {
Some(variant_id)
} else {
None
},
_ => {
// Assume this is a struct.
match ty::ty_to_def_id(node_id_to_type(cx.tcx, pat_id)) {
None => {
cx.tcx.sess.span_bug(pat_span,
"struct pattern wasn't of a \
type with a def ID?!")
}
Some(def_id) => Some(def_id),
}
}
};
class_id.map(|variant_id| {
let struct_fields = ty::lookup_struct_fields(cx.tcx, variant_id);
let args = struct_fields.iter().map(|sf| {
match pattern_fields.iter().find(|f| f.ident.name == sf.name) {
Some(ref f) => &*f.pat,
_ => dummy
}
}).collect();
args
})
}
&PatTup(ref args) =>
Some(args.iter().map(|p| &**p).collect()),
&PatBox(ref inner) | &PatRegion(ref inner) =>
Some(vec![&**inner]),
&PatLit(ref expr) => {
let expr_value = eval_const_expr(cx.tcx, &**expr);
match range_covered_by_constructor(constructor, &expr_value, &expr_value) {
Some(true) => Some(vec![]),
Some(false) => None,
None => {
cx.tcx.sess.span_err(pat_span, "mismatched types between arms");
None
}
}
}
&PatRange(ref from, ref to) => {
let from_value = eval_const_expr(cx.tcx, &**from);
let to_value = eval_const_expr(cx.tcx, &**to);
match range_covered_by_constructor(constructor, &from_value, &to_value) {
Some(true) => Some(vec![]),
Some(false) => None,
None => {
cx.tcx.sess.span_err(pat_span, "mismatched types between arms");
None
}
}
}
&PatVec(ref before, ref slice, ref after) => {
match *constructor {
// Fixed-length vectors.
Single => {
let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
pats.grow_fn(arity - before.len() - after.len(), |_| dummy);
pats.extend(after.iter().map(|p| &**p));
Some(pats)
},
Slice(length) if before.len() + after.len() <= length && slice.is_some() => {
let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
pats.grow_fn(arity - before.len() - after.len(), |_| dummy);
pats.extend(after.iter().map(|p| &**p));
Some(pats)
},
Slice(length) if before.len() + after.len() == length => {
let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
pats.extend(after.iter().map(|p| &**p));
Some(pats)
},
SliceWithSubslice(prefix, suffix)
if before.len() == prefix
&& after.len() == suffix
&& slice.is_some() => {
let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
pats.extend(after.iter().map(|p| &**p));
Some(pats)
}
_ => None
}
}
&PatMac(_) => {
cx.tcx.sess.span_err(pat_span, "unexpanded macro");
None
}
};
head.map(|head| head.append(r[..col]).append(r[col + 1..]))
}
fn check_local(cx: &mut MatchCheckCtxt, loc: &Local) {
visit::walk_local(cx, loc);
let name = match loc.source {
LocalLet => "local",
LocalFor => "`for` loop"
};
let mut static_inliner = StaticInliner::new(cx.tcx);
is_refutable(cx, &*static_inliner.fold_pat(loc.pat.clone()), |pat| {
span_err!(cx.tcx.sess, loc.pat.span, E0005,
"refutable pattern in {} binding: `{}` not covered",
name, pat_to_string(pat)
);
});
// Check legality of move bindings and `@` patterns.
check_legality_of_move_bindings(cx, false, slice::ref_slice(&loc.pat));
check_legality_of_bindings_in_at_patterns(cx, &*loc.pat);
}
fn check_fn(cx: &mut MatchCheckCtxt,
kind: FnKind,
decl: &FnDecl,
body: &Block,
sp: Span) {
visit::walk_fn(cx, kind, decl, body, sp);
for input in decl.inputs.iter() {
is_refutable(cx, &*input.pat, |pat| {
span_err!(cx.tcx.sess, input.pat.span, E0006,
"refutable pattern in function argument: `{}` not covered",
pat_to_string(pat)
);
});
check_legality_of_move_bindings(cx, false, slice::ref_slice(&input.pat));
check_legality_of_bindings_in_at_patterns(cx, &*input.pat);
}
}
fn is_refutable<A>(cx: &MatchCheckCtxt, pat: &Pat, refutable: |&Pat| -> A) -> Option<A> {
let pats = Matrix(vec!(vec!(pat)));
match is_useful(cx, &pats, [&DUMMY_WILD_PAT], ConstructWitness) {
UsefulWithWitness(pats) => {
assert_eq!(pats.len(), 1);
Some(refutable(&*pats[0]))
},
NotUseful => None,
Useful => unreachable!()
}
}
// Legality of move bindings checking
fn check_legality_of_move_bindings(cx: &MatchCheckCtxt,
has_guard: bool,
pats: &[P<Pat>]) {
let tcx = cx.tcx;
let def_map = &tcx.def_map;
let mut by_ref_span = None;
for pat in pats.iter() {
pat_bindings(def_map, &**pat, |bm, _, span, _path| {
match bm {
BindByRef(_) => {
by_ref_span = Some(span);
}
BindByValue(_) => {
}
}
})
}
let check_move: |&Pat, Option<&Pat>| = |p, sub| {
// check legality of moving out of the enum
// x @ Foo(..) is legal, but x @ Foo(y) isn't.
if sub.map_or(false, |p| pat_contains_bindings(def_map, &*p)) {
span_err!(cx.tcx.sess, p.span, E0007, "cannot bind by-move with sub-bindings");
} else if has_guard {
span_err!(cx.tcx.sess, p.span, E0008, "cannot bind by-move into a pattern guard");
} else if by_ref_span.is_some() {
span_err!(cx.tcx.sess, p.span, E0009,
"cannot bind by-move and by-ref in the same pattern");
span_note!(cx.tcx.sess, by_ref_span.unwrap(), "by-ref binding occurs here");
}
};
for pat in pats.iter() {
walk_pat(&**pat, |p| {
if pat_is_binding(def_map, &*p) {
match p.node {
PatIdent(BindByValue(_), _, ref sub) => {
let pat_ty = ty::node_id_to_type(tcx, p.id);
if ty::type_moves_by_default(tcx, pat_ty) {
check_move(p, sub.as_ref().map(|p| &**p));
}
}
PatIdent(BindByRef(_), _, _) => {
}
_ => {
cx.tcx.sess.span_bug(
p.span,
format!("binding pattern {} is not an \
identifier: {:?}",
p.id,
p.node).as_slice());
}
}
}
true
});
}
}
/// Ensures that a pattern guard doesn't borrow by mutable reference or
/// assign.
fn check_for_mutation_in_guard<'a, 'tcx>(cx: &'a MatchCheckCtxt<'a, 'tcx>, guard: &Expr) {
let mut checker = MutationChecker {
cx: cx,
};
let mut visitor = ExprUseVisitor::new(&mut checker, checker.cx.tcx);
visitor.walk_expr(guard);
}
struct MutationChecker<'a, 'tcx: 'a> {
cx: &'a MatchCheckCtxt<'a, 'tcx>,
}
impl<'a, 'tcx> Delegate for MutationChecker<'a, 'tcx> {
fn consume(&mut self, _: NodeId, _: Span, _: cmt, _: ConsumeMode) {}
fn consume_pat(&mut self, _: &Pat, _: cmt, _: ConsumeMode) {}
fn borrow(&mut self,
_: NodeId,
span: Span,
_: cmt,
_: Region,
kind: BorrowKind,
_: LoanCause) {
match kind {
MutBorrow => {
self.cx
.tcx
.sess
.span_err(span,
"cannot mutably borrow in a pattern guard")
}
ImmBorrow | UniqueImmBorrow => {}
}
}
fn decl_without_init(&mut self, _: NodeId, _: Span) {}
fn mutate(&mut self, _: NodeId, span: Span, _: cmt, mode: MutateMode) {
match mode {
JustWrite | WriteAndRead => {
self.cx
.tcx
.sess
.span_err(span, "cannot assign in a pattern guard")
}
Init => {}
}
}
}
/// Forbids bindings in `@` patterns. This is necessary for memory safety,
/// because of the way rvalues are handled in the borrow check. (See issue
/// #14587.)
fn check_legality_of_bindings_in_at_patterns(cx: &MatchCheckCtxt, pat: &Pat) {
AtBindingPatternVisitor { cx: cx, bindings_allowed: true }.visit_pat(pat);
}
struct AtBindingPatternVisitor<'a, 'b:'a, 'tcx:'b> {
cx: &'a MatchCheckCtxt<'b, 'tcx>,
bindings_allowed: bool
}
impl<'a, 'b, 'tcx, 'v> Visitor<'v> for AtBindingPatternVisitor<'a, 'b, 'tcx> {
fn visit_pat(&mut self, pat: &Pat) {
if !self.bindings_allowed && pat_is_binding(&self.cx.tcx.def_map, pat) {
self.cx.tcx.sess.span_err(pat.span,
"pattern bindings are not allowed \
after an `@`");
}
match pat.node {
PatIdent(_, _, Some(_)) => {
let bindings_were_allowed = self.bindings_allowed;
self.bindings_allowed = false;
visit::walk_pat(self, pat);
self.bindings_allowed = bindings_were_allowed;
}
_ => visit::walk_pat(self, pat),
}
}
}