rust/src/libstd/fmt/parse.rs
Alex Crichton 02882fbd7e std: Change assert_eq!() to use {} instead of {:?}
Formatting via reflection has been a little questionable for some time now, and
it's a little unfortunate that one of the standard macros will silently use
reflection when you weren't expecting it. This adds small bits of code bloat to
libraries, as well as not always being necessary. In light of this information,
this commit switches assert_eq!() to using {} in the error message instead of
{:?}.

In updating existing code, there were a few error cases that I encountered:

* It's impossible to define Show for [T, ..N]. I think DST will alleviate this
  because we can define Show for [T].
* A few types here and there just needed a #[deriving(Show)]
* Type parameters needed a Show bound, I often moved this to `assert!(a == b)`
* `Path` doesn't implement `Show`, so assert_eq!() cannot be used on two paths.
  I don't think this is much of a regression though because {:?} on paths looks
  awful (it's a byte array).

Concretely speaking, this shaved 10K off a 656K binary. Not a lot, but sometime
significant for smaller binaries.
2014-02-28 23:01:54 -08:00

957 lines
31 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Parsing of format strings
//!
//! These structures are used when parsing format strings for the compiler.
//! Parsing does not currently happen at runtime (structures of std::fmt::rt are
//! generated instead).
use prelude::*;
use char;
use str;
/// A piece is a portion of the format string which represents the next part to
/// emit. These are emitted as a stream by the `Parser` class.
#[deriving(Eq)]
pub enum Piece<'a> {
/// A literal string which should directly be emitted
String(&'a str),
/// A back-reference to whatever the current argument is. This is used
/// inside of a method call to refer back to the original argument.
CurrentArgument,
/// This describes that formatting should process the next argument (as
/// specified inside) for emission.
Argument(Argument<'a>),
}
/// Representation of an argument specification.
#[deriving(Eq)]
pub struct Argument<'a> {
/// Where to find this argument
position: Position<'a>,
/// How to format the argument
format: FormatSpec<'a>,
/// If not `None`, what method to invoke on the argument
method: Option<~Method<'a>>
}
/// Specification for the formatting of an argument in the format string.
#[deriving(Eq)]
pub struct FormatSpec<'a> {
/// Optionally specified character to fill alignment with
fill: Option<char>,
/// Optionally specified alignment
align: Alignment,
/// Packed version of various flags provided
flags: uint,
/// The integer precision to use
precision: Count<'a>,
/// The string width requested for the resulting format
width: Count<'a>,
/// The descriptor string representing the name of the format desired for
/// this argument, this can be empty or any number of characters, although
/// it is required to be one word.
ty: &'a str
}
/// Enum describing where an argument for a format can be located.
#[deriving(Eq)]
#[allow(missing_doc)]
pub enum Position<'a> {
ArgumentNext, ArgumentIs(uint), ArgumentNamed(&'a str)
}
/// Enum of alignments which are supported.
#[deriving(Eq)]
#[allow(missing_doc)]
pub enum Alignment { AlignLeft, AlignRight, AlignUnknown }
/// Various flags which can be applied to format strings, the meaning of these
/// flags is defined by the formatters themselves.
#[deriving(Eq)]
#[allow(missing_doc)]
pub enum Flag {
FlagSignPlus,
FlagSignMinus,
FlagAlternate,
FlagSignAwareZeroPad,
}
/// A count is used for the precision and width parameters of an integer, and
/// can reference either an argument or a literal integer.
#[deriving(Eq)]
#[allow(missing_doc)]
pub enum Count<'a> {
CountIs(uint),
CountIsName(&'a str),
CountIsParam(uint),
CountIsNextParam,
CountImplied,
}
/// Enum describing all of the possible methods which the formatting language
/// currently supports.
#[deriving(Eq)]
pub enum Method<'a> {
/// A plural method selects on an integer over a list of either integer or
/// keyword-defined clauses. The meaning of the keywords is defined by the
/// current locale.
///
/// An offset is optionally present at the beginning which is used to match
/// against keywords, but it is not matched against the literal integers.
///
/// The final element of this enum is the default "other" case which is
/// always required to be specified.
Plural(Option<uint>, ~[PluralArm<'a>], ~[Piece<'a>]),
/// A select method selects over a string. Each arm is a different string
/// which can be selected for.
///
/// As with `Plural`, a default "other" case is required as well.
Select(~[SelectArm<'a>], ~[Piece<'a>]),
}
/// A selector for what pluralization a plural method should take
#[deriving(Eq, Hash)]
pub enum PluralSelector {
/// One of the plural keywords should be used
Keyword(PluralKeyword),
/// A literal pluralization should be used
Literal(uint),
}
/// Structure representing one "arm" of the `plural` function.
#[deriving(Eq)]
pub struct PluralArm<'a> {
/// A selector can either be specified by a keyword or with an integer
/// literal.
selector: PluralSelector,
/// Array of pieces which are the format of this arm
result: ~[Piece<'a>],
}
/// Enum of the 5 CLDR plural keywords. There is one more, "other", but that is
/// specially placed in the `Plural` variant of `Method`
///
/// http://www.icu-project.org/apiref/icu4c/classicu_1_1PluralRules.html
#[deriving(Eq, Hash)]
#[allow(missing_doc)]
pub enum PluralKeyword {
Zero, One, Two, Few, Many
}
/// Structure representing one "arm" of the `select` function.
#[deriving(Eq)]
pub struct SelectArm<'a> {
/// String selector which guards this arm
selector: &'a str,
/// Array of pieces which are the format of this arm
result: ~[Piece<'a>],
}
/// The parser structure for interpreting the input format string. This is
/// modelled as an iterator over `Piece` structures to form a stream of tokens
/// being output.
///
/// This is a recursive-descent parser for the sake of simplicity, and if
/// necessary there's probably lots of room for improvement performance-wise.
pub struct Parser<'a> {
priv input: &'a str,
priv cur: str::CharOffsets<'a>,
priv depth: uint,
/// Error messages accumulated during parsing
errors: ~[~str],
}
impl<'a> Iterator<Piece<'a>> for Parser<'a> {
fn next(&mut self) -> Option<Piece<'a>> {
match self.cur.clone().next() {
Some((_, '#')) => { self.cur.next(); Some(CurrentArgument) }
Some((_, '{')) => {
self.cur.next();
let ret = Some(Argument(self.argument()));
self.must_consume('}');
ret
}
Some((pos, '\\')) => {
self.cur.next();
self.escape(); // ensure it's a valid escape sequence
Some(String(self.string(pos + 1))) // skip the '\' character
}
Some((_, '}')) if self.depth == 0 => {
self.cur.next();
self.err("unmatched `}` found");
None
}
Some((_, '}')) | None => { None }
Some((pos, _)) => {
Some(String(self.string(pos)))
}
}
}
}
impl<'a> Parser<'a> {
/// Creates a new parser for the given format string
pub fn new<'a>(s: &'a str) -> Parser<'a> {
Parser {
input: s,
cur: s.char_indices(),
depth: 0,
errors: ~[],
}
}
/// Notifies of an error. The message doesn't actually need to be of type
/// ~str, but I think it does when this eventually uses conditions so it
/// might as well start using it now.
fn err(&mut self, msg: &str) {
self.errors.push(msg.to_owned());
}
/// Optionally consumes the specified character. If the character is not at
/// the current position, then the current iterator isn't moved and false is
/// returned, otherwise the character is consumed and true is returned.
fn consume(&mut self, c: char) -> bool {
match self.cur.clone().next() {
Some((_, maybe)) if c == maybe => {
self.cur.next();
true
}
Some(..) | None => false,
}
}
/// Forces consumption of the specified character. If the character is not
/// found, an error is emitted.
fn must_consume(&mut self, c: char) {
self.ws();
match self.cur.clone().next() {
Some((_, maybe)) if c == maybe => {
self.cur.next();
}
Some((_, other)) => {
self.err(
format!("expected `{}` but found `{}`", c, other));
}
None => {
self.err(
format!("expected `{}` but string was terminated", c));
}
}
}
/// Attempts to consume any amount of whitespace followed by a character
fn wsconsume(&mut self, c: char) -> bool {
self.ws(); self.consume(c)
}
/// Consumes all whitespace characters until the first non-whitespace
/// character
fn ws(&mut self) {
loop {
match self.cur.clone().next() {
Some((_, c)) if char::is_whitespace(c) => { self.cur.next(); }
Some(..) | None => { return }
}
}
}
/// Consumes an escape sequence, failing if there is not a valid character
/// to be escaped.
fn escape(&mut self) -> char {
match self.cur.next() {
Some((_, c @ '#')) | Some((_, c @ '{')) |
Some((_, c @ '\\')) | Some((_, c @ '}')) => { c }
Some((_, c)) => {
self.err(format!("invalid escape character `{}`", c));
c
}
None => {
self.err("expected an escape sequence, but format string was \
terminated");
' '
}
}
}
/// Parses all of a string which is to be considered a "raw literal" in a
/// format string. This is everything outside of the braces.
fn string(&mut self, start: uint) -> &'a str {
loop {
// we may not consume the character, so clone the iterator
match self.cur.clone().next() {
Some((pos, '\\')) | Some((pos, '#')) |
Some((pos, '}')) | Some((pos, '{')) => {
return self.input.slice(start, pos);
}
Some(..) => { self.cur.next(); }
None => {
self.cur.next();
return self.input.slice(start, self.input.len());
}
}
}
}
/// Parses an Argument structure, or what's contained within braces inside
/// the format string
fn argument(&mut self) -> Argument<'a> {
Argument {
position: self.position(),
format: self.format(),
method: self.method(),
}
}
/// Parses a positional argument for a format. This could either be an
/// integer index of an argument, a named argument, or a blank string.
fn position(&mut self) -> Position<'a> {
match self.integer() {
Some(i) => { ArgumentIs(i) }
None => {
match self.cur.clone().next() {
Some((_, c)) if char::is_alphabetic(c) => {
ArgumentNamed(self.word())
}
_ => ArgumentNext
}
}
}
}
/// Parses a format specifier at the current position, returning all of the
/// relevant information in the FormatSpec struct.
fn format(&mut self) -> FormatSpec<'a> {
let mut spec = FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: self.input.slice(0, 0),
};
if !self.consume(':') { return spec }
// fill character
match self.cur.clone().next() {
Some((_, c)) => {
match self.cur.clone().skip(1).next() {
Some((_, '>')) | Some((_, '<')) => {
spec.fill = Some(c);
self.cur.next();
}
Some(..) | None => {}
}
}
None => {}
}
// Alignment
if self.consume('<') {
spec.align = AlignLeft;
} else if self.consume('>') {
spec.align = AlignRight;
}
// Sign flags
if self.consume('+') {
spec.flags |= 1 << (FlagSignPlus as uint);
} else if self.consume('-') {
spec.flags |= 1 << (FlagSignMinus as uint);
}
// Alternate marker
if self.consume('#') {
spec.flags |= 1 << (FlagAlternate as uint);
}
// Width and precision
let mut havewidth = false;
if self.consume('0') {
// small ambiguity with '0$' as a format string. In theory this is a
// '0' flag and then an ill-formatted format string with just a '$'
// and no count, but this is better if we instead interpret this as
// no '0' flag and '0$' as the width instead.
if self.consume('$') {
spec.width = CountIsParam(0);
havewidth = true;
} else {
spec.flags |= 1 << (FlagSignAwareZeroPad as uint);
}
}
if !havewidth {
spec.width = self.count();
}
if self.consume('.') {
if self.consume('*') {
spec.precision = CountIsNextParam;
} else {
spec.precision = self.count();
}
}
// Finally the actual format specifier
if self.consume('?') {
spec.ty = "?";
} else {
spec.ty = self.word();
}
return spec;
}
/// Parses a method to be applied to the previously specified argument and
/// its format. The two current supported methods are 'plural' and 'select'
fn method(&mut self) -> Option<~Method<'a>> {
if !self.wsconsume(',') {
return None;
}
self.ws();
match self.word() {
"select" => {
self.must_consume(',');
Some(self.select())
}
"plural" => {
self.must_consume(',');
Some(self.plural())
}
"" => {
self.err("expected method after comma");
return None;
}
method => {
self.err(format!("unknown method: `{}`", method));
return None;
}
}
}
/// Parses a 'select' statement (after the initial 'select' word)
fn select(&mut self) -> ~Method<'a> {
let mut other = None;
let mut arms = ~[];
// Consume arms one at a time
loop {
self.ws();
let selector = self.word();
if selector == "" {
self.err("cannot have an empty selector");
break
}
self.must_consume('{');
self.depth += 1;
let pieces = self.collect();
self.depth -= 1;
self.must_consume('}');
if selector == "other" {
if !other.is_none() {
self.err("multiple `other` statements in `select");
}
other = Some(pieces);
} else {
arms.push(SelectArm { selector: selector, result: pieces });
}
self.ws();
match self.cur.clone().next() {
Some((_, '}')) => { break }
Some(..) | None => {}
}
}
// The "other" selector must be present
let other = match other {
Some(arm) => { arm }
None => {
self.err("`select` statement must provide an `other` case");
~[]
}
};
~Select(arms, other)
}
/// Parses a 'plural' statement (after the initial 'plural' word)
fn plural(&mut self) -> ~Method<'a> {
let mut offset = None;
let mut other = None;
let mut arms = ~[];
// First, attempt to parse the 'offset:' field. We know the set of
// selector words which can appear in plural arms, and the only ones
// which start with 'o' are "other" and "offset", hence look two
// characters deep to see if we can consume the word "offset"
self.ws();
let mut it = self.cur.clone();
match it.next() {
Some((_, 'o')) => {
match it.next() {
Some((_, 'f')) => {
let word = self.word();
if word != "offset" {
self.err(format!("expected `offset`, found `{}`",
word));
} else {
self.must_consume(':');
match self.integer() {
Some(i) => { offset = Some(i); }
None => {
self.err("offset must be an integer");
}
}
}
}
Some(..) | None => {}
}
}
Some(..) | None => {}
}
// Next, generate all the arms
loop {
let mut isother = false;
let selector = if self.wsconsume('=') {
match self.integer() {
Some(i) => Literal(i),
None => {
self.err("plural `=` selectors must be followed by an \
integer");
Literal(0)
}
}
} else {
let word = self.word();
match word {
"other" => { isother = true; Keyword(Zero) }
"zero" => Keyword(Zero),
"one" => Keyword(One),
"two" => Keyword(Two),
"few" => Keyword(Few),
"many" => Keyword(Many),
word => {
self.err(format!("unexpected plural selector `{}`",
word));
if word == "" {
break
} else {
Keyword(Zero)
}
}
}
};
self.must_consume('{');
self.depth += 1;
let pieces = self.collect();
self.depth -= 1;
self.must_consume('}');
if isother {
if !other.is_none() {
self.err("multiple `other` statements in `select");
}
other = Some(pieces);
} else {
arms.push(PluralArm { selector: selector, result: pieces });
}
self.ws();
match self.cur.clone().next() {
Some((_, '}')) => { break }
Some(..) | None => {}
}
}
let other = match other {
Some(arm) => { arm }
None => {
self.err("`plural` statement must provide an `other` case");
~[]
}
};
~Plural(offset, arms, other)
}
/// Parses a Count parameter at the current position. This does not check
/// for 'CountIsNextParam' because that is only used in precision, not
/// width.
fn count(&mut self) -> Count<'a> {
match self.integer() {
Some(i) => {
if self.consume('$') {
CountIsParam(i)
} else {
CountIs(i)
}
}
None => {
let tmp = self.cur.clone();
match self.word() {
word if word.len() > 0 && self.consume('$') => {
CountIsName(word)
}
_ => {
self.cur = tmp;
CountImplied
}
}
}
}
}
/// Parses a word starting at the current position. A word is considered to
/// be an alphabetic character followed by any number of alphanumeric
/// characters.
fn word(&mut self) -> &'a str {
let start = match self.cur.clone().next() {
Some((pos, c)) if char::is_XID_start(c) => {
self.cur.next();
pos
}
Some(..) | None => { return self.input.slice(0, 0); }
};
let mut end;
loop {
match self.cur.clone().next() {
Some((_, c)) if char::is_XID_continue(c) => {
self.cur.next();
}
Some((pos, _)) => { end = pos; break }
None => { end = self.input.len(); break }
}
}
self.input.slice(start, end)
}
/// Optionally parses an integer at the current position. This doesn't deal
/// with overflow at all, it's just accumulating digits.
fn integer(&mut self) -> Option<uint> {
let mut cur = 0;
let mut found = false;
loop {
match self.cur.clone().next() {
Some((_, c)) => {
match char::to_digit(c, 10) {
Some(i) => {
cur = cur * 10 + i;
found = true;
self.cur.next();
}
None => { break }
}
}
None => { break }
}
}
if found {
return Some(cur);
} else {
return None;
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use prelude::*;
fn same(fmt: &'static str, p: ~[Piece<'static>]) {
let mut parser = Parser::new(fmt);
assert!(p == parser.collect());
}
fn fmtdflt() -> FormatSpec<'static> {
return FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "",
}
}
fn musterr(s: &str) {
let mut p = Parser::new(s);
p.next();
assert!(p.errors.len() != 0);
}
#[test]
fn simple() {
same("asdf", ~[String("asdf")]);
same("a\\{b", ~[String("a"), String("{b")]);
same("a\\#b", ~[String("a"), String("#b")]);
same("a\\}b", ~[String("a"), String("}b")]);
same("a\\}", ~[String("a"), String("}")]);
same("\\}", ~[String("}")]);
}
#[test] fn invalid01() { musterr("{") }
#[test] fn invalid02() { musterr("\\") }
#[test] fn invalid03() { musterr("\\a") }
#[test] fn invalid04() { musterr("{3a}") }
#[test] fn invalid05() { musterr("{:|}") }
#[test] fn invalid06() { musterr("{:>>>}") }
#[test]
fn format_nothing() {
same("{}", ~[Argument(Argument {
position: ArgumentNext,
format: fmtdflt(),
method: None,
})]);
}
#[test]
fn format_position() {
same("{3}", ~[Argument(Argument {
position: ArgumentIs(3),
format: fmtdflt(),
method: None,
})]);
}
#[test]
fn format_position_nothing_else() {
same("{3:}", ~[Argument(Argument {
position: ArgumentIs(3),
format: fmtdflt(),
method: None,
})]);
}
#[test]
fn format_type() {
same("{3:a}", ~[Argument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "a",
},
method: None,
})]);
}
#[test]
fn format_align_fill() {
same("{3:>}", ~[Argument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: None,
align: AlignRight,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "",
},
method: None,
})]);
same("{3:0<}", ~[Argument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: Some('0'),
align: AlignLeft,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "",
},
method: None,
})]);
same("{3:*<abcd}", ~[Argument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: Some('*'),
align: AlignLeft,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "abcd",
},
method: None,
})]);
}
#[test]
fn format_counts() {
same("{:10s}", ~[Argument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountIs(10),
ty: "s",
},
method: None,
})]);
same("{:10$.10s}", ~[Argument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountIs(10),
width: CountIsParam(10),
ty: "s",
},
method: None,
})]);
same("{:.*s}", ~[Argument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountIsNextParam,
width: CountImplied,
ty: "s",
},
method: None,
})]);
same("{:.10$s}", ~[Argument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountIsParam(10),
width: CountImplied,
ty: "s",
},
method: None,
})]);
same("{:a$.b$s}", ~[Argument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountIsName("b"),
width: CountIsName("a"),
ty: "s",
},
method: None,
})]);
}
#[test]
fn format_flags() {
same("{:-}", ~[Argument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: (1 << FlagSignMinus as uint),
precision: CountImplied,
width: CountImplied,
ty: "",
},
method: None,
})]);
same("{:+#}", ~[Argument(Argument {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: (1 << FlagSignPlus as uint) | (1 << FlagAlternate as uint),
precision: CountImplied,
width: CountImplied,
ty: "",
},
method: None,
})]);
}
#[test]
fn format_mixture() {
same("abcd {3:a} efg", ~[String("abcd "), Argument(Argument {
position: ArgumentIs(3),
format: FormatSpec {
fill: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
ty: "a",
},
method: None,
}), String(" efg")]);
}
#[test]
fn select_simple() {
same("{, select, other { haha } }", ~[Argument(Argument{
position: ArgumentNext,
format: fmtdflt(),
method: Some(~Select(~[], ~[String(" haha ")]))
})]);
same("{1, select, other { haha } }", ~[Argument(Argument{
position: ArgumentIs(1),
format: fmtdflt(),
method: Some(~Select(~[], ~[String(" haha ")]))
})]);
same("{1, select, other {#} }", ~[Argument(Argument{
position: ArgumentIs(1),
format: fmtdflt(),
method: Some(~Select(~[], ~[CurrentArgument]))
})]);
same("{1, select, other {{2, select, other {lol}}} }", ~[Argument(Argument{
position: ArgumentIs(1),
format: fmtdflt(),
method: Some(~Select(~[], ~[Argument(Argument{
position: ArgumentIs(2),
format: fmtdflt(),
method: Some(~Select(~[], ~[String("lol")]))
})])) // wat
})]);
}
#[test]
fn select_cases() {
same("{1, select, a{1} b{2} c{3} other{4} }", ~[Argument(Argument{
position: ArgumentIs(1),
format: fmtdflt(),
method: Some(~Select(~[
SelectArm{ selector: "a", result: ~[String("1")] },
SelectArm{ selector: "b", result: ~[String("2")] },
SelectArm{ selector: "c", result: ~[String("3")] },
], ~[String("4")]))
})]);
}
#[test] fn badselect01() { musterr("{select, }") }
#[test] fn badselect02() { musterr("{1, select}") }
#[test] fn badselect03() { musterr("{1, select, }") }
#[test] fn badselect04() { musterr("{1, select, a {}}") }
#[test] fn badselect05() { musterr("{1, select, other }}") }
#[test] fn badselect06() { musterr("{1, select, other {}") }
#[test] fn badselect07() { musterr("{select, other {}") }
#[test] fn badselect08() { musterr("{1 select, other {}") }
#[test] fn badselect09() { musterr("{:d select, other {}") }
#[test] fn badselect10() { musterr("{1:d select, other {}") }
#[test]
fn plural_simple() {
same("{, plural, other { haha } }", ~[Argument(Argument{
position: ArgumentNext,
format: fmtdflt(),
method: Some(~Plural(None, ~[], ~[String(" haha ")]))
})]);
same("{:, plural, other { haha } }", ~[Argument(Argument{
position: ArgumentNext,
format: fmtdflt(),
method: Some(~Plural(None, ~[], ~[String(" haha ")]))
})]);
same("{, plural, offset:1 =2{2} =3{3} many{yes} other{haha} }",
~[Argument(Argument{
position: ArgumentNext,
format: fmtdflt(),
method: Some(~Plural(Some(1), ~[
PluralArm{ selector: Literal(2), result: ~[String("2")] },
PluralArm{ selector: Literal(3), result: ~[String("3")] },
PluralArm{ selector: Keyword(Many), result: ~[String("yes")] }
], ~[String("haha")]))
})]);
}
}