50db7ce906
- merges math and float into core::float - Splits core::ctypes into core::ctypes and core::mtypes - cmath is not exported - stdtest::math passes
731 lines
15 KiB
Rust
731 lines
15 KiB
Rust
/*
|
|
Module: float
|
|
*/
|
|
|
|
// Currently this module supports from -lm
|
|
// C95 + log2 + log1p + trunc + round + rint
|
|
|
|
export t;
|
|
|
|
export consts;
|
|
|
|
export
|
|
acos, asin, atan, atan2, ceil, cos, cosh, exp, abs, floor, fmod, frexp,
|
|
ldexp, ln, ln1p, log10, log2, modf, rint, round, pow, sin, sinh, sqrt,
|
|
tan, tanh, trunc;
|
|
|
|
export to_str_common, to_str_exact, to_str, from_str;
|
|
export lt, le, eq, ne, gt, eq;
|
|
export NaN, isNaN, infinity, neg_infinity;
|
|
export pow_uint_to_uint_as_float;
|
|
export min, max;
|
|
export add, sub, mul, div;
|
|
export positive, negative, nonpositive, nonnegative;
|
|
|
|
import mtypes::m_float;
|
|
import ctypes::c_int;
|
|
import ptr;
|
|
|
|
// PORT This must match in width according to architecture
|
|
import f64;
|
|
import m_float = f64;
|
|
|
|
type t = m_float;
|
|
|
|
/**
|
|
* Section: String Conversions
|
|
*/
|
|
|
|
/*
|
|
Function: to_str_common
|
|
|
|
Converts a float to a string
|
|
|
|
Parameters:
|
|
|
|
num - The float value
|
|
digits - The number of significant digits
|
|
exact - Whether to enforce the exact number of significant digits
|
|
*/
|
|
fn to_str_common(num: float, digits: uint, exact: bool) -> str {
|
|
let (num, accum) = num < 0.0 ? (-num, "-") : (num, "");
|
|
let trunc = num as uint;
|
|
let frac = num - (trunc as float);
|
|
accum += uint::str(trunc);
|
|
if frac == 0.0 || digits == 0u { ret accum; }
|
|
accum += ".";
|
|
let i = digits;
|
|
let epsilon = 1. / pow_uint_to_uint_as_float(10u, i);
|
|
while i > 0u && (frac >= epsilon || exact) {
|
|
frac *= 10.0;
|
|
epsilon *= 10.0;
|
|
let digit = frac as uint;
|
|
accum += uint::str(digit);
|
|
frac -= digit as float;
|
|
i -= 1u;
|
|
}
|
|
ret accum;
|
|
|
|
}
|
|
|
|
/*
|
|
Function: to_str
|
|
|
|
Converts a float to a string with exactly the number of provided significant
|
|
digits
|
|
|
|
Parameters:
|
|
|
|
num - The float value
|
|
digits - The number of significant digits
|
|
*/
|
|
fn to_str_exact(num: float, digits: uint) -> str {
|
|
to_str_common(num, digits, true)
|
|
}
|
|
|
|
/*
|
|
Function: to_str
|
|
|
|
Converts a float to a string with a maximum number of significant digits
|
|
|
|
Parameters:
|
|
|
|
num - The float value
|
|
digits - The number of significant digits
|
|
*/
|
|
fn to_str(num: float, digits: uint) -> str {
|
|
to_str_common(num, digits, false)
|
|
}
|
|
|
|
/*
|
|
Function: from_str
|
|
|
|
Convert a string to a float
|
|
|
|
This function accepts strings such as
|
|
* "3.14"
|
|
* "+3.14", equivalent to "3.14"
|
|
* "-3.14"
|
|
* "2.5E10", or equivalently, "2.5e10"
|
|
* "2.5E-10"
|
|
* "", or, equivalently, "." (understood as 0)
|
|
* "5."
|
|
* ".5", or, equivalently, "0.5"
|
|
|
|
Leading and trailing whitespace are ignored.
|
|
|
|
Parameters:
|
|
|
|
num - A string, possibly empty.
|
|
|
|
Returns:
|
|
|
|
<NaN> If the string did not represent a valid number.
|
|
Otherwise, the floating-point number represented [num].
|
|
*/
|
|
fn from_str(num: str) -> float {
|
|
let num = str::trim(num);
|
|
|
|
let pos = 0u; //Current byte position in the string.
|
|
//Used to walk the string in O(n).
|
|
let len = str::byte_len(num); //Length of the string, in bytes.
|
|
|
|
if len == 0u { ret 0.; }
|
|
let total = 0f; //Accumulated result
|
|
let c = 'z'; //Latest char.
|
|
|
|
//The string must start with one of the following characters.
|
|
alt str::char_at(num, 0u) {
|
|
'-' | '+' | '0' to '9' | '.' {}
|
|
_ { ret NaN; }
|
|
}
|
|
|
|
//Determine if first char is '-'/'+'. Set [pos] and [neg] accordingly.
|
|
let neg = false; //Sign of the result
|
|
alt str::char_at(num, 0u) {
|
|
'-' {
|
|
neg = true;
|
|
pos = 1u;
|
|
}
|
|
'+' {
|
|
pos = 1u;
|
|
}
|
|
_ {}
|
|
}
|
|
|
|
//Examine the following chars until '.', 'e', 'E'
|
|
while(pos < len) {
|
|
let char_range = str::char_range_at(num, pos);
|
|
c = char_range.ch;
|
|
pos = char_range.next;
|
|
alt c {
|
|
'0' to '9' {
|
|
total = total * 10f;
|
|
total += ((c as int) - ('0' as int)) as float;
|
|
}
|
|
'.' | 'e' | 'E' {
|
|
break;
|
|
}
|
|
_ {
|
|
ret NaN;
|
|
}
|
|
}
|
|
}
|
|
|
|
if c == '.' {//Examine decimal part
|
|
let decimal = 1.f;
|
|
while(pos < len) {
|
|
let char_range = str::char_range_at(num, pos);
|
|
c = char_range.ch;
|
|
pos = char_range.next;
|
|
alt c {
|
|
'0' | '1' | '2' | '3' | '4' | '5' | '6'| '7' | '8' | '9' {
|
|
decimal /= 10.f;
|
|
total += (((c as int) - ('0' as int)) as float)*decimal;
|
|
}
|
|
'e' | 'E' {
|
|
break;
|
|
}
|
|
_ {
|
|
ret NaN;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (c == 'e') | (c == 'E') {//Examine exponent
|
|
let exponent = 0u;
|
|
let neg_exponent = false;
|
|
if(pos < len) {
|
|
let char_range = str::char_range_at(num, pos);
|
|
c = char_range.ch;
|
|
alt c {
|
|
'+' {
|
|
pos = char_range.next;
|
|
}
|
|
'-' {
|
|
pos = char_range.next;
|
|
neg_exponent = true;
|
|
}
|
|
_ {}
|
|
}
|
|
while(pos < len) {
|
|
let char_range = str::char_range_at(num, pos);
|
|
c = char_range.ch;
|
|
alt c {
|
|
'0' | '1' | '2' | '3' | '4' | '5' | '6'| '7' | '8' | '9' {
|
|
exponent *= 10u;
|
|
exponent += ((c as uint) - ('0' as uint));
|
|
}
|
|
_ {
|
|
break;
|
|
}
|
|
}
|
|
pos = char_range.next;
|
|
}
|
|
let multiplier = pow_uint_to_uint_as_float(10u, exponent);
|
|
//Note: not [int::pow], otherwise, we'll quickly
|
|
//end up with a nice overflow
|
|
if neg_exponent {
|
|
total = total / multiplier;
|
|
} else {
|
|
total = total * multiplier;
|
|
}
|
|
} else {
|
|
ret NaN;
|
|
}
|
|
}
|
|
|
|
if(pos < len) {
|
|
ret NaN;
|
|
} else {
|
|
if(neg) {
|
|
total *= -1f;
|
|
}
|
|
ret total;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Section: Arithmetics
|
|
*/
|
|
|
|
/*
|
|
Function: pow_uint_to_uint_as_float
|
|
|
|
Compute the exponentiation of an integer by another integer as a float.
|
|
|
|
Parameters:
|
|
x - The base.
|
|
pow - The exponent.
|
|
|
|
Returns:
|
|
<NaN> of both `x` and `pow` are `0u`, otherwise `x^pow`.
|
|
*/
|
|
fn pow_uint_to_uint_as_float(x: uint, pow: uint) -> float {
|
|
if x == 0u {
|
|
if pow == 0u {
|
|
ret NaN;
|
|
}
|
|
ret 0.;
|
|
}
|
|
let my_pow = pow;
|
|
let total = 1f;
|
|
let multiplier = x as float;
|
|
while (my_pow > 0u) {
|
|
if my_pow % 2u == 1u {
|
|
total = total * multiplier;
|
|
}
|
|
my_pow /= 2u;
|
|
multiplier *= multiplier;
|
|
}
|
|
ret total;
|
|
}
|
|
|
|
|
|
/* Const: NaN */
|
|
const NaN: float = 0./0.;
|
|
|
|
/* Const: infinity */
|
|
const infinity: float = 1./0.;
|
|
|
|
/* Const: neg_infinity */
|
|
const neg_infinity: float = -1./0.;
|
|
|
|
/* Predicate: isNaN */
|
|
pure fn isNaN(f: float) -> bool { f != f }
|
|
|
|
/* Function: add */
|
|
pure fn add(x: float, y: float) -> float { ret x + y; }
|
|
|
|
/* Function: sub */
|
|
pure fn sub(x: float, y: float) -> float { ret x - y; }
|
|
|
|
/* Function: mul */
|
|
pure fn mul(x: float, y: float) -> float { ret x * y; }
|
|
|
|
/* Function: div */
|
|
pure fn div(x: float, y: float) -> float { ret x / y; }
|
|
|
|
/* Function: rem */
|
|
pure fn rem(x: float, y: float) -> float { ret x % y; }
|
|
|
|
/* Predicate: lt */
|
|
pure fn lt(x: float, y: float) -> bool { ret x < y; }
|
|
|
|
/* Predicate: le */
|
|
pure fn le(x: float, y: float) -> bool { ret x <= y; }
|
|
|
|
/* Predicate: eq */
|
|
pure fn eq(x: float, y: float) -> bool { ret x == y; }
|
|
|
|
/* Predicate: ne */
|
|
pure fn ne(x: float, y: float) -> bool { ret x != y; }
|
|
|
|
/* Predicate: ge */
|
|
pure fn ge(x: float, y: float) -> bool { ret x >= y; }
|
|
|
|
/* Predicate: gt */
|
|
pure fn gt(x: float, y: float) -> bool { ret x > y; }
|
|
|
|
/*
|
|
Predicate: positive
|
|
|
|
Returns true if `x` is a positive number, including +0.0 and +Infinity.
|
|
*/
|
|
pure fn positive(x: float) -> bool { ret x > 0. || (1./x) == infinity; }
|
|
|
|
/*
|
|
Predicate: negative
|
|
|
|
Returns true if `x` is a negative number, including -0.0 and -Infinity.
|
|
*/
|
|
pure fn negative(x: float) -> bool { ret x < 0. || (1./x) == neg_infinity; }
|
|
|
|
/*
|
|
Predicate: nonpositive
|
|
|
|
Returns true if `x` is a negative number, including -0.0 and -Infinity.
|
|
(This is the same as `float::negative`.)
|
|
*/
|
|
pure fn nonpositive(x: float) -> bool {
|
|
ret x < 0. || (1./x) == neg_infinity;
|
|
}
|
|
|
|
/*
|
|
Predicate: nonnegative
|
|
|
|
Returns true if `x` is a positive number, including +0.0 and +Infinity.
|
|
(This is the same as `float::positive`.)
|
|
*/
|
|
pure fn nonnegative(x: float) -> bool {
|
|
ret x > 0. || (1./x) == infinity;
|
|
}
|
|
|
|
/*
|
|
Module: consts
|
|
*/
|
|
mod consts {
|
|
/*
|
|
Const: pi
|
|
|
|
Archimedes' constant
|
|
*/
|
|
const pi: float = 3.14159265358979323846264338327950288;
|
|
|
|
/*
|
|
Const: frac_pi_2
|
|
|
|
pi/2.0
|
|
*/
|
|
const frac_pi_2: float = 1.57079632679489661923132169163975144;
|
|
|
|
/*
|
|
Const: frac_pi_4
|
|
|
|
pi/4.0
|
|
*/
|
|
const frac_pi_4: float = 0.785398163397448309615660845819875721;
|
|
|
|
/*
|
|
Const: frac_1_pi
|
|
|
|
1.0/pi
|
|
*/
|
|
const frac_1_pi: float = 0.318309886183790671537767526745028724;
|
|
|
|
/*
|
|
Const: frac_2_pi
|
|
|
|
2.0/pi
|
|
*/
|
|
const frac_2_pi: float = 0.636619772367581343075535053490057448;
|
|
|
|
/*
|
|
Const: frac_2_sqrtpi
|
|
|
|
2.0/sqrt(pi)
|
|
*/
|
|
const frac_2_sqrtpi: float = 1.12837916709551257389615890312154517;
|
|
|
|
/*
|
|
Const: sqrt2
|
|
|
|
sqrt(2.0)
|
|
*/
|
|
const sqrt2: float = 1.41421356237309504880168872420969808;
|
|
|
|
/*
|
|
Const: frac_1_sqrt2
|
|
|
|
1.0/sqrt(2.0)
|
|
*/
|
|
const frac_1_sqrt2: float = 0.707106781186547524400844362104849039;
|
|
|
|
/*
|
|
Const: e
|
|
|
|
Euler's number
|
|
*/
|
|
const e: float = 2.71828182845904523536028747135266250;
|
|
|
|
/*
|
|
Const: log2_e
|
|
|
|
log2(e)
|
|
*/
|
|
const log2_e: float = 1.44269504088896340735992468100189214;
|
|
|
|
/*
|
|
Const: log10_e
|
|
|
|
log10(e)
|
|
*/
|
|
const log10_e: float = 0.434294481903251827651128918916605082;
|
|
|
|
/*
|
|
Const: ln_2
|
|
|
|
ln(2.0)
|
|
*/
|
|
const ln_2: float = 0.693147180559945309417232121458176568;
|
|
|
|
/*
|
|
Const: ln_10
|
|
|
|
ln(10.0)
|
|
*/
|
|
const ln_10: float = 2.30258509299404568401799145468436421;
|
|
}
|
|
|
|
|
|
// FIXME min/max type specialize via libm when overloading works
|
|
// (in theory fmax/fmin, fmaxf, fminf /should/ be faster)
|
|
|
|
/*
|
|
Function: min
|
|
|
|
Returns the minimum of two values
|
|
*/
|
|
pure fn min<copy T>(x: T, y: T) -> T { x < y ? x : y }
|
|
|
|
/*
|
|
Function: max
|
|
|
|
Returns the maximum of two values
|
|
*/
|
|
pure fn max<copy T>(x: T, y: T) -> T { x < y ? y : x }
|
|
|
|
/*
|
|
Function: acos
|
|
|
|
Returns the arccosine of an angle (measured in rad)
|
|
*/
|
|
pure fn acos(x: float) -> float
|
|
{ be m_float::acos(x as m_float) as float }
|
|
|
|
/*
|
|
Function: asin
|
|
|
|
Returns the arcsine of an angle (measured in rad)
|
|
*/
|
|
pure fn asin(x: float) -> float
|
|
{ be m_float::asin(x as m_float) as float }
|
|
|
|
/*
|
|
Function: atan
|
|
|
|
Returns the arctangents of an angle (measured in rad)
|
|
*/
|
|
pure fn atan(x: float) -> float
|
|
{ be m_float::atan(x as m_float) as float }
|
|
|
|
|
|
/*
|
|
Function: atan2
|
|
|
|
Returns the arctangent of an angle (measured in rad)
|
|
*/
|
|
pure fn atan2(y: float, x: float) -> float
|
|
{ be m_float::atan2(y as m_float, x as m_float) as float }
|
|
|
|
/*
|
|
Function: ceil
|
|
|
|
Returns the smallest integral value less than or equal to `n`
|
|
*/
|
|
pure fn ceil(n: float) -> float
|
|
{ be m_float::ceil(n as m_float) as float }
|
|
|
|
/*
|
|
Function: cos
|
|
|
|
Returns the cosine of an angle `x` (measured in rad)
|
|
*/
|
|
pure fn cos(x: float) -> float
|
|
{ be m_float::cos(x as m_float) as float }
|
|
|
|
/*
|
|
Function: cosh
|
|
|
|
Returns the hyperbolic cosine of `x`
|
|
|
|
*/
|
|
pure fn cosh(x: float) -> float
|
|
{ be m_float::cosh(x as m_float) as float }
|
|
|
|
|
|
/*
|
|
Function: exp
|
|
|
|
Returns `consts::e` to the power of `n*
|
|
*/
|
|
pure fn exp(n: float) -> float
|
|
{ be m_float::exp(n as m_float) as float }
|
|
|
|
/*
|
|
Function: abs
|
|
|
|
Returns the absolute value of `n`
|
|
*/
|
|
pure fn abs(n: float) -> float
|
|
{ be m_float::abs(n as m_float) as float }
|
|
|
|
/*
|
|
Function: floor
|
|
|
|
Returns the largest integral value less than or equal to `n`
|
|
*/
|
|
pure fn floor(n: float) -> float
|
|
{ be m_float::floor(n as m_float) as float }
|
|
|
|
/*
|
|
Function: fmod
|
|
|
|
Returns the floating-point remainder of `x/y`
|
|
*/
|
|
pure fn fmod(x: float, y: float) -> float
|
|
{ be m_float::fmod(x as m_float, y as m_float) as float }
|
|
|
|
/*
|
|
Function: ln
|
|
|
|
Returns the natural logaritm of `n`
|
|
*/
|
|
pure fn ln(n: float) -> float
|
|
{ be m_float::ln(n as m_float) as float }
|
|
|
|
/*
|
|
Function: ldexp
|
|
|
|
Returns `x` multiplied by 2 to the power of `n`
|
|
*/
|
|
pure fn ldexp(n: float, i: int) -> float
|
|
{ be m_float::ldexp(n as m_float, i as c_int) as float }
|
|
|
|
/*
|
|
Function: ln1p
|
|
|
|
Returns the natural logarithm of `1+n` accurately,
|
|
even for very small values of `n`
|
|
*/
|
|
pure fn ln1p(n: float) -> float
|
|
{ be m_float::ln1p(n as m_float) as float }
|
|
|
|
/*
|
|
Function: log10
|
|
|
|
Returns the logarithm to base 10 of `n`
|
|
*/
|
|
pure fn log10(n: float) -> float
|
|
{ be m_float::log10(n as m_float) as float }
|
|
|
|
/*
|
|
Function: log2
|
|
|
|
Returns the logarithm to base 2 of `n`
|
|
*/
|
|
pure fn log2(n: float) -> float
|
|
{ be m_float::log2(n as m_float) as float }
|
|
|
|
/*
|
|
Function: modf
|
|
|
|
Breaks `n` into integral and fractional parts such that both
|
|
have the same sign as `n`
|
|
|
|
The integral part is stored in `iptr`.
|
|
|
|
Returns:
|
|
|
|
The fractional part of `n`
|
|
*/
|
|
#[no(warn_trivial_casts)] // FIXME Implement
|
|
pure fn modf(n: float, &iptr: float) -> float { unsafe {
|
|
be m_float::modf(n as m_float, ptr::addr_of(iptr) as *m_float) as float
|
|
} }
|
|
|
|
/*
|
|
Function: frexp
|
|
|
|
Breaks `n` into a normalized fraction and an integral power of 2
|
|
|
|
The inegral part is stored in iptr.
|
|
|
|
The functions return a number x such that x has a magnitude in the interval
|
|
[1/2, 1) or 0, and `n == x*(2 to the power of exp)`.
|
|
|
|
Returns:
|
|
|
|
The fractional part of `n`
|
|
*/
|
|
pure fn frexp(n: float, &exp: c_int) -> float
|
|
{ be m_float::frexp(n as m_float, exp) as float }
|
|
|
|
/*
|
|
Function: pow
|
|
*/
|
|
pure fn pow(v: float, e: float) -> float
|
|
{ be m_float::pow(v as m_float, e as m_float) as float }
|
|
|
|
|
|
/*
|
|
Function: rint
|
|
|
|
Returns the integral value nearest to `x` (according to the
|
|
prevailing rounding mode) in floating-point format
|
|
*/
|
|
pure fn rint(x: float) -> float
|
|
{ be m_float::rint(x as m_float) as float }
|
|
|
|
/*
|
|
Function: round
|
|
|
|
|
|
Return the integral value nearest to `x` rounding half-way
|
|
cases away from zero, regardless of the current rounding direction.
|
|
*/
|
|
pure fn round(x: float) -> float
|
|
{ be m_float::round(x as m_float) as float }
|
|
|
|
/*
|
|
Function: sin
|
|
|
|
Returns the sine of an angle `x` (measured in rad)
|
|
*/
|
|
pure fn sin(x: float) -> float
|
|
{ be m_float::sin(x as m_float) as float }
|
|
|
|
/*
|
|
Function: sinh
|
|
|
|
Returns the hyperbolic sine of an angle `x` (measured in rad)
|
|
*/
|
|
pure fn sinh(x: float) -> float
|
|
{ be m_float::sinh(x as m_float) as float }
|
|
|
|
/*
|
|
Function: sqrt
|
|
|
|
Returns the square root of `x`
|
|
*/
|
|
pure fn sqrt(x: float) -> float
|
|
{ be m_float::sqrt(x as m_float) as float }
|
|
|
|
/*
|
|
Function: tan
|
|
|
|
Returns the tangent of an angle `x` (measured in rad)
|
|
|
|
*/
|
|
pure fn tan(x: float) -> float
|
|
{ be m_float::tan(x as m_float) as float }
|
|
|
|
/*
|
|
Function: tanh
|
|
|
|
Returns the hyperbolic tangent of an angle `x` (measured in rad)
|
|
|
|
*/
|
|
pure fn tanh(x: float) -> float
|
|
{ be m_float::tanh(x as m_float) as float }
|
|
|
|
/*
|
|
Function: trunc
|
|
|
|
Returns the integral value nearest to but no larger in magnitude than `x`
|
|
|
|
*/
|
|
pure fn trunc(x: float) -> float
|
|
{ be m_float::trunc(x as m_float) as float }
|
|
|
|
//
|
|
// Local Variables:
|
|
// mode: rust
|
|
// fill-column: 78;
|
|
// indent-tabs-mode: nil
|
|
// c-basic-offset: 4
|
|
// buffer-file-coding-system: utf-8-unix
|
|
// End:
|
|
//
|