rust/src/librustc/middle/trans/_match.rs

2268 lines
83 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
*
* # Compilation of match statements
*
* I will endeavor to explain the code as best I can. I have only a loose
* understanding of some parts of it.
*
* ## Matching
*
* The basic state of the code is maintained in an array `m` of `Match`
* objects. Each `Match` describes some list of patterns, all of which must
* match against the current list of values. If those patterns match, then
* the arm listed in the match is the correct arm. A given arm may have
* multiple corresponding match entries, one for each alternative that
* remains. As we proceed these sets of matches are adjusted by the various
* `enter_XXX()` functions, each of which adjusts the set of options given
* some information about the value which has been matched.
*
* So, initially, there is one value and N matches, each of which have one
* constituent pattern. N here is usually the number of arms but may be
* greater, if some arms have multiple alternatives. For example, here:
*
* enum Foo { A, B(int), C(uint, uint) }
* match foo {
* A => ...,
* B(x) => ...,
* C(1u, 2) => ...,
* C(_) => ...
* }
*
* The value would be `foo`. There would be four matches, each of which
* contains one pattern (and, in one case, a guard). We could collect the
* various options and then compile the code for the case where `foo` is an
* `A`, a `B`, and a `C`. When we generate the code for `C`, we would (1)
* drop the two matches that do not match a `C` and (2) expand the other two
* into two patterns each. In the first case, the two patterns would be `1u`
* and `2`, and the in the second case the _ pattern would be expanded into
* `_` and `_`. The two values are of course the arguments to `C`.
*
* Here is a quick guide to the various functions:
*
* - `compile_submatch()`: The main workhouse. It takes a list of values and
* a list of matches and finds the various possibilities that could occur.
*
* - `enter_XXX()`: modifies the list of matches based on some information
* about the value that has been matched. For example,
* `enter_rec_or_struct()` adjusts the values given that a record or struct
* has been matched. This is an infallible pattern, so *all* of the matches
* must be either wildcards or record/struct patterns. `enter_opt()`
* handles the fallible cases, and it is correspondingly more complex.
*
* ## Bindings
*
* We store information about the bound variables for each arm as part of the
* per-arm `ArmData` struct. There is a mapping from identifiers to
* `BindingInfo` structs. These structs contain the mode/id/type of the
* binding, but they also contain up to two LLVM values, called `llmatch` and
* `llbinding` respectively (the `llbinding`, as will be described shortly, is
* optional and only present for by-value bindings---therefore it is bundled
* up as part of the `TransBindingMode` type). Both point at allocas.
*
* The `llmatch` binding always stores a pointer into the value being matched
* which points at the data for the binding. If the value being matched has
* type `T`, then, `llmatch` will point at an alloca of type `T*` (and hence
* `llmatch` has type `T**`). So, if you have a pattern like:
*
* let a: A = ...;
* let b: B = ...;
* match (a, b) { (ref c, d) => { ... } }
*
* For `c` and `d`, we would generate allocas of type `C*` and `D*`
* respectively. These are called the `llmatch`. As we match, when we come
* up against an identifier, we store the current pointer into the
* corresponding alloca.
*
* In addition, for each by-value binding (copy or move), we will create a
* second alloca (`llbinding`) that will hold the final value. In this
* example, that means that `d` would have this second alloca of type `D` (and
* hence `llbinding` has type `D*`).
*
* Once a pattern is completely matched, and assuming that there is no guard
* pattern, we will branch to a block that leads to the body itself. For any
* by-value bindings, this block will first load the ptr from `llmatch` (the
* one of type `D*`) and copy/move the value into `llbinding` (the one of type
* `D`). The second alloca then becomes the value of the local variable. For
* by ref bindings, the value of the local variable is simply the first
* alloca.
*
* So, for the example above, we would generate a setup kind of like this:
*
* +-------+
* | Entry |
* +-------+
* |
* +-------------------------------------------+
* | llmatch_c = (addr of first half of tuple) |
* | llmatch_d = (addr of first half of tuple) |
* +-------------------------------------------+
* |
* +--------------------------------------+
* | *llbinding_d = **llmatch_dlbinding_d |
* +--------------------------------------+
*
* If there is a guard, the situation is slightly different, because we must
* execute the guard code. Moreover, we need to do so once for each of the
* alternatives that lead to the arm, because if the guard fails, they may
* have different points from which to continue the search. Therefore, in that
* case, we generate code that looks more like:
*
* +-------+
* | Entry |
* +-------+
* |
* +-------------------------------------------+
* | llmatch_c = (addr of first half of tuple) |
* | llmatch_d = (addr of first half of tuple) |
* +-------------------------------------------+
* |
* +-------------------------------------------------+
* | *llbinding_d = **llmatch_dlbinding_d |
* | check condition |
* | if false { free *llbinding_d, goto next case } |
* | if true { goto body } |
* +-------------------------------------------------+
*
* The handling for the cleanups is a bit... sensitive. Basically, the body
* is the one that invokes `add_clean()` for each binding. During the guard
* evaluation, we add temporary cleanups and revoke them after the guard is
* evaluated (it could fail, after all). Presuming the guard fails, we drop
* the various values we copied explicitly. Note that guards and moves are
* just plain incompatible.
*
* Some relevant helper functions that manage bindings:
* - `create_bindings_map()`
* - `store_non_ref_bindings()`
* - `insert_lllocals()`
*
*
* ## Notes on vector pattern matching.
*
* Vector pattern matching is surprisingly tricky. The problem is that
* the structure of the vector isn't fully known, and slice matches
* can be done on subparts of it.
*
* The way that vector pattern matches are dealt with, then, is as
* follows. First, we make the actual condition associated with a
* vector pattern simply a vector length comparison. So the pattern
* [1, .. x] gets the condition "vec len >= 1", and the pattern
* [.. x] gets the condition "vec len >= 0". The problem here is that
* having the condition "vec len >= 1" hold clearly does not mean that
* only a pattern that has exactly that condition will match. This
* means that it may well be the case that a condition holds, but none
* of the patterns matching that condition match; to deal with this,
* when doing vector length matches, we have match failures proceed to
* the next condition to check.
*
* There are a couple more subtleties to deal with. While the "actual"
* condition associated with vector length tests is simply a test on
* the vector length, the actual vec_len Opt entry contains more
* information used to restrict which matches are associated with it.
* So that all matches in a submatch are matching against the same
* values from inside the vector, they are split up by how many
* elements they match at the front and at the back of the vector. In
* order to make sure that arms are properly checked in order, even
* with the overmatching conditions, each vec_len Opt entry is
* associated with a range of matches.
* Consider the following:
*
* match &[1, 2, 3] {
* [1, 1, .. _] => 0,
* [1, 2, 2, .. _] => 1,
* [1, 2, 3, .. _] => 2,
* [1, 2, .. _] => 3,
* _ => 4
* }
* The proper arm to match is arm 2, but arms 0 and 3 both have the
* condition "len >= 2". If arm 3 was lumped in with arm 0, then the
* wrong branch would be taken. Instead, vec_len Opts are associated
* with a contiguous range of matches that have the same "shape".
* This is sort of ugly and requires a bunch of special handling of
* vec_len options.
*
*/
#[allow(non_camel_case_types)];
use back::abi;
use driver::session::FullDebugInfo;
use lib::llvm::{llvm, ValueRef, BasicBlockRef};
use middle::const_eval;
use middle::borrowck::root_map_key;
use middle::lang_items::{UniqStrEqFnLangItem, StrEqFnLangItem};
use middle::pat_util::*;
use middle::resolve::DefMap;
use middle::trans::adt;
use middle::trans::base::*;
use middle::trans::build::*;
use middle::trans::callee;
use middle::trans::cleanup;
use middle::trans::cleanup::CleanupMethods;
use middle::trans::common::*;
use middle::trans::consts;
use middle::trans::controlflow;
use middle::trans::datum;
use middle::trans::datum::*;
use middle::trans::expr::Dest;
use middle::trans::expr;
use middle::trans::glue;
use middle::trans::tvec;
use middle::trans::type_of;
use middle::trans::debuginfo;
use middle::ty;
use util::common::indenter;
use util::ppaux::{Repr, vec_map_to_str};
use std::cell::Cell;
use collections::HashMap;
use std::vec;
use syntax::ast;
use syntax::ast::Ident;
use syntax::ast_util::path_to_ident;
use syntax::ast_util;
use syntax::codemap::{Span, DUMMY_SP};
use syntax::parse::token::InternedString;
// An option identifying a literal: either a unit-like struct or an
// expression.
enum Lit {
UnitLikeStructLit(ast::NodeId), // the node ID of the pattern
ExprLit(@ast::Expr),
ConstLit(ast::DefId), // the def ID of the constant
}
#[deriving(Eq)]
pub enum VecLenOpt {
vec_len_eq,
vec_len_ge(/* length of prefix */uint)
}
// An option identifying a branch (either a literal, an enum variant or a
// range)
enum Opt {
lit(Lit),
var(ty::Disr, @adt::Repr),
range(@ast::Expr, @ast::Expr),
vec_len(/* length */ uint, VecLenOpt, /*range of matches*/(uint, uint))
}
fn opt_eq(tcx: ty::ctxt, a: &Opt, b: &Opt) -> bool {
match (a, b) {
(&lit(a), &lit(b)) => {
match (a, b) {
(UnitLikeStructLit(a), UnitLikeStructLit(b)) => a == b,
_ => {
let a_expr;
match a {
ExprLit(existing_a_expr) => a_expr = existing_a_expr,
ConstLit(a_const) => {
let e = const_eval::lookup_const_by_id(tcx, a_const);
a_expr = e.unwrap();
}
UnitLikeStructLit(_) => {
fail!("UnitLikeStructLit should have been handled \
above")
}
}
let b_expr;
match b {
ExprLit(existing_b_expr) => b_expr = existing_b_expr,
ConstLit(b_const) => {
let e = const_eval::lookup_const_by_id(tcx, b_const);
b_expr = e.unwrap();
}
UnitLikeStructLit(_) => {
fail!("UnitLikeStructLit should have been handled \
above")
}
}
match const_eval::compare_lit_exprs(tcx, a_expr, b_expr) {
Some(val1) => val1 == 0,
None => fail!("compare_list_exprs: type mismatch"),
}
}
}
}
(&range(a1, a2), &range(b1, b2)) => {
let m1 = const_eval::compare_lit_exprs(tcx, a1, b1);
let m2 = const_eval::compare_lit_exprs(tcx, a2, b2);
match (m1, m2) {
(Some(val1), Some(val2)) => (val1 == 0 && val2 == 0),
_ => fail!("compare_list_exprs: type mismatch"),
}
}
(&var(a, _), &var(b, _)) => a == b,
(&vec_len(a1, a2, _), &vec_len(b1, b2, _)) =>
a1 == b1 && a2 == b2,
_ => false
}
}
pub enum opt_result<'a> {
single_result(Result<'a>),
lower_bound(Result<'a>),
range_result(Result<'a>, Result<'a>),
}
fn trans_opt<'a>(bcx: &'a Block<'a>, o: &Opt) -> opt_result<'a> {
let _icx = push_ctxt("match::trans_opt");
let ccx = bcx.ccx();
let mut bcx = bcx;
match *o {
lit(ExprLit(lit_expr)) => {
let lit_datum = unpack_datum!(bcx, expr::trans(bcx, lit_expr));
let lit_datum = lit_datum.assert_rvalue(bcx); // literals are rvalues
let lit_datum = unpack_datum!(bcx, lit_datum.to_appropriate_datum(bcx));
return single_result(rslt(bcx, lit_datum.val));
}
lit(UnitLikeStructLit(pat_id)) => {
let struct_ty = ty::node_id_to_type(bcx.tcx(), pat_id);
let datum = datum::rvalue_scratch_datum(bcx, struct_ty, "");
return single_result(rslt(bcx, datum.val));
}
lit(ConstLit(lit_id)) => {
let (llval, _) = consts::get_const_val(bcx.ccx(), lit_id);
return single_result(rslt(bcx, llval));
}
var(disr_val, repr) => {
return adt::trans_case(bcx, repr, disr_val);
}
range(l1, l2) => {
let (l1, _) = consts::const_expr(ccx, l1, true);
let (l2, _) = consts::const_expr(ccx, l2, true);
return range_result(rslt(bcx, l1), rslt(bcx, l2));
}
vec_len(n, vec_len_eq, _) => {
return single_result(rslt(bcx, C_int(ccx, n as int)));
}
vec_len(n, vec_len_ge(_), _) => {
return lower_bound(rslt(bcx, C_int(ccx, n as int)));
}
}
}
fn variant_opt(bcx: &Block, pat_id: ast::NodeId) -> Opt {
let ccx = bcx.ccx();
let def_map = ccx.tcx.def_map.borrow();
match def_map.get().get_copy(&pat_id) {
ast::DefVariant(enum_id, var_id, _) => {
let variants = ty::enum_variants(ccx.tcx, enum_id);
for v in (*variants).iter() {
if var_id == v.id {
return var(v.disr_val,
adt::represent_node(bcx, pat_id))
}
}
unreachable!();
}
ast::DefFn(..) |
ast::DefStruct(_) => {
return lit(UnitLikeStructLit(pat_id));
}
_ => {
ccx.sess.bug("non-variant or struct in variant_opt()");
}
}
}
#[deriving(Clone)]
enum TransBindingMode {
TrByValue(/*llbinding:*/ ValueRef),
TrByRef,
}
/**
* Information about a pattern binding:
* - `llmatch` is a pointer to a stack slot. The stack slot contains a
* pointer into the value being matched. Hence, llmatch has type `T**`
* where `T` is the value being matched.
* - `trmode` is the trans binding mode
* - `id` is the node id of the binding
* - `ty` is the Rust type of the binding */
#[deriving(Clone)]
struct BindingInfo {
llmatch: ValueRef,
trmode: TransBindingMode,
id: ast::NodeId,
span: Span,
ty: ty::t,
}
type BindingsMap = HashMap<Ident, BindingInfo>;
struct ArmData<'a,'b> {
bodycx: &'b Block<'b>,
arm: &'a ast::Arm,
bindings_map: @BindingsMap
}
// FIXME #11820: method resolution is unreliable with &
impl<'a,'b> Clone for ArmData<'a, 'b> {
fn clone(&self) -> ArmData<'a, 'b> { *self }
}
/**
* Info about Match.
* If all `pats` are matched then arm `data` will be executed.
* As we proceed `bound_ptrs` are filled with pointers to values to be bound,
* these pointers are stored in llmatch variables just before executing `data` arm.
*/
#[deriving(Clone)]
struct Match<'a,'b> {
pats: ~[@ast::Pat],
data: ArmData<'a,'b>,
bound_ptrs: ~[(Ident, ValueRef)]
}
impl<'a,'b> Repr for Match<'a,'b> {
fn repr(&self, tcx: ty::ctxt) -> ~str {
if tcx.sess.verbose() {
// for many programs, this just take too long to serialize
self.pats.repr(tcx)
} else {
format!("{} pats", self.pats.len())
}
}
}
fn has_nested_bindings(m: &[Match], col: uint) -> bool {
for br in m.iter() {
match br.pats[col].node {
ast::PatIdent(_, _, Some(_)) => return true,
_ => ()
}
}
return false;
}
fn expand_nested_bindings<'r,'b>(
bcx: &'b Block<'b>,
m: &[Match<'r,'b>],
col: uint,
val: ValueRef)
-> ~[Match<'r,'b>] {
debug!("expand_nested_bindings(bcx={}, m={}, col={}, val={})",
bcx.to_str(),
m.repr(bcx.tcx()),
col,
bcx.val_to_str(val));
let _indenter = indenter();
m.map(|br| {
match br.pats[col].node {
ast::PatIdent(_, ref path, Some(inner)) => {
let pats = vec::append(
br.pats.slice(0u, col).to_owned(),
vec::append(~[inner],
br.pats.slice(col + 1u,
br.pats.len())));
let mut res = Match {
pats: pats,
data: br.data.clone(),
bound_ptrs: br.bound_ptrs.clone()
};
res.bound_ptrs.push((path_to_ident(path), val));
res
}
_ => (*br).clone(),
}
})
}
fn assert_is_binding_or_wild(bcx: &Block, p: @ast::Pat) {
if !pat_is_binding_or_wild(bcx.tcx().def_map, p) {
bcx.sess().span_bug(
p.span,
format!("expected an identifier pattern but found p: {}",
p.repr(bcx.tcx())));
}
}
type enter_pat<'a> = 'a |@ast::Pat| -> Option<~[@ast::Pat]>;
fn enter_match<'r,'b>(
bcx: &'b Block<'b>,
dm: DefMap,
m: &[Match<'r,'b>],
col: uint,
val: ValueRef,
e: enter_pat)
-> ~[Match<'r,'b>] {
debug!("enter_match(bcx={}, m={}, col={}, val={})",
bcx.to_str(),
m.repr(bcx.tcx()),
col,
bcx.val_to_str(val));
let _indenter = indenter();
let mut result = ~[];
for br in m.iter() {
match e(br.pats[col]) {
Some(sub) => {
let pats =
vec::append(
vec::append(sub, br.pats.slice(0u, col)),
br.pats.slice(col + 1u, br.pats.len()));
let this = br.pats[col];
let mut bound_ptrs = br.bound_ptrs.clone();
match this.node {
ast::PatIdent(_, ref path, None) => {
if pat_is_binding(dm, this) {
bound_ptrs.push((path_to_ident(path), val));
}
}
_ => {}
}
result.push(Match {
pats: pats,
data: br.data.clone(),
bound_ptrs: bound_ptrs
});
}
None => ()
}
}
debug!("result={}", result.repr(bcx.tcx()));
return result;
}
fn enter_default<'r,'b>(
bcx: &'b Block<'b>,
dm: DefMap,
m: &[Match<'r,'b>],
col: uint,
val: ValueRef,
chk: &FailureHandler)
-> ~[Match<'r,'b>] {
debug!("enter_default(bcx={}, m={}, col={}, val={})",
bcx.to_str(),
m.repr(bcx.tcx()),
col,
bcx.val_to_str(val));
let _indenter = indenter();
// Collect all of the matches that can match against anything.
let matches = enter_match(bcx, dm, m, col, val, |p| {
match p.node {
ast::PatWild | ast::PatWildMulti | ast::PatTup(_) => Some(~[]),
ast::PatIdent(_, _, None) if pat_is_binding(dm, p) => Some(~[]),
_ => None
}
});
// Ok, now, this is pretty subtle. A "default" match is a match
// that needs to be considered if none of the actual checks on the
// value being considered succeed. The subtlety lies in that sometimes
// identifier/wildcard matches are *not* default matches. Consider:
// "match x { _ if something => foo, true => bar, false => baz }".
// There is a wildcard match, but it is *not* a default case. The boolean
// case on the value being considered is exhaustive. If the case is
// exhaustive, then there are no defaults.
//
// We detect whether the case is exhaustive in the following
// somewhat kludgy way: if the last wildcard/binding match has a
// guard, then by non-redundancy, we know that there aren't any
// non guarded matches, and thus by exhaustiveness, we know that
// we don't need any default cases. If the check *isn't* nonexhaustive
// (because chk is Some), then we need the defaults anyways.
let is_exhaustive = match matches.last() {
Some(m) if m.data.arm.guard.is_some() && chk.is_infallible() => true,
_ => false
};
if is_exhaustive { ~[] } else { matches }
}
// <pcwalton> nmatsakis: what does enter_opt do?
// <pcwalton> in trans/match
// <pcwalton> trans/match.rs is like stumbling around in a dark cave
// <nmatsakis> pcwalton: the enter family of functions adjust the set of
// patterns as needed
// <nmatsakis> yeah, at some point I kind of achieved some level of
// understanding
// <nmatsakis> anyhow, they adjust the patterns given that something of that
// kind has been found
// <nmatsakis> pcwalton: ok, right, so enter_XXX() adjusts the patterns, as I
// said
// <nmatsakis> enter_match() kind of embodies the generic code
// <nmatsakis> it is provided with a function that tests each pattern to see
// if it might possibly apply and so forth
// <nmatsakis> so, if you have a pattern like {a: _, b: _, _} and one like _
// <nmatsakis> then _ would be expanded to (_, _)
// <nmatsakis> one spot for each of the sub-patterns
// <nmatsakis> enter_opt() is one of the more complex; it covers the fallible
// cases
// <nmatsakis> enter_rec_or_struct() or enter_tuple() are simpler, since they
// are infallible patterns
// <nmatsakis> so all patterns must either be records (resp. tuples) or
// wildcards
fn enter_opt<'r,'b>(
bcx: &'b Block<'b>,
m: &[Match<'r,'b>],
opt: &Opt,
col: uint,
variant_size: uint,
val: ValueRef)
-> ~[Match<'r,'b>] {
debug!("enter_opt(bcx={}, m={}, opt={:?}, col={}, val={})",
bcx.to_str(),
m.repr(bcx.tcx()),
*opt,
col,
bcx.val_to_str(val));
let _indenter = indenter();
let tcx = bcx.tcx();
let dummy = @ast::Pat {id: 0, node: ast::PatWild, span: DUMMY_SP};
let mut i = 0;
enter_match(bcx, tcx.def_map, m, col, val, |p| {
let answer = match p.node {
ast::PatEnum(..) |
ast::PatIdent(_, _, None) if pat_is_const(tcx.def_map, p) => {
let const_def = {
let def_map = tcx.def_map.borrow();
def_map.get().get_copy(&p.id)
};
let const_def_id = ast_util::def_id_of_def(const_def);
if opt_eq(tcx, &lit(ConstLit(const_def_id)), opt) {
Some(~[])
} else {
None
}
}
ast::PatEnum(_, ref subpats) => {
if opt_eq(tcx, &variant_opt(bcx, p.id), opt) {
// FIXME: Must we clone?
match *subpats {
None => Some(vec::from_elem(variant_size, dummy)),
Some(ref subpats) => {
Some((*subpats).iter().map(|x| *x).collect())
}
}
} else {
None
}
}
ast::PatIdent(_, _, None)
if pat_is_variant_or_struct(tcx.def_map, p) => {
if opt_eq(tcx, &variant_opt(bcx, p.id), opt) {
Some(~[])
} else {
None
}
}
ast::PatLit(l) => {
if opt_eq(tcx, &lit(ExprLit(l)), opt) {Some(~[])} else {None}
}
ast::PatRange(l1, l2) => {
if opt_eq(tcx, &range(l1, l2), opt) {Some(~[])} else {None}
}
ast::PatStruct(_, ref field_pats, _) => {
if opt_eq(tcx, &variant_opt(bcx, p.id), opt) {
// Look up the struct variant ID.
let struct_id;
let defn = {
let def_map = tcx.def_map.borrow();
def_map.get().get_copy(&p.id)
};
match defn {
ast::DefVariant(_, found_struct_id, _) => {
struct_id = found_struct_id;
}
_ => {
tcx.sess.span_bug(p.span, "expected enum variant def");
}
}
// Reorder the patterns into the same order they were
// specified in the struct definition. Also fill in
// unspecified fields with dummy.
let mut reordered_patterns = ~[];
let r = ty::lookup_struct_fields(tcx, struct_id);
for field in r.iter() {
match field_pats.iter().find(|p| p.ident.name
== field.name) {
None => reordered_patterns.push(dummy),
Some(fp) => reordered_patterns.push(fp.pat)
}
}
Some(reordered_patterns)
} else {
None
}
}
ast::PatVec(ref before, slice, ref after) => {
let (lo, hi) = match *opt {
vec_len(_, _, (lo, hi)) => (lo, hi),
_ => tcx.sess.span_bug(p.span,
"vec pattern but not vec opt")
};
match slice {
Some(slice) if i >= lo && i <= hi => {
let n = before.len() + after.len();
let this_opt = vec_len(n, vec_len_ge(before.len()),
(lo, hi));
if opt_eq(tcx, &this_opt, opt) {
let mut new_before = ~[];
for pat in before.iter() {
new_before.push(*pat);
}
new_before.push(slice);
for pat in after.iter() {
new_before.push(*pat);
}
Some(new_before)
} else {
None
}
}
None if i >= lo && i <= hi => {
let n = before.len();
if opt_eq(tcx, &vec_len(n, vec_len_eq, (lo,hi)), opt) {
let mut new_before = ~[];
for pat in before.iter() {
new_before.push(*pat);
}
Some(new_before)
} else {
None
}
}
_ => None
}
}
_ => {
assert_is_binding_or_wild(bcx, p);
// In most cases, a binding/wildcard match be
// considered to match against any Opt. However, when
// doing vector pattern matching, submatches are
// considered even if the eventual match might be from
// a different submatch. Thus, when a submatch fails
// when doing a vector match, we proceed to the next
// submatch. Thus, including a default match would
// cause the default match to fire spuriously.
match *opt {
vec_len(..) => None,
_ => Some(vec::from_elem(variant_size, dummy))
}
}
};
i += 1;
answer
})
}
fn enter_rec_or_struct<'r,'b>(
bcx: &'b Block<'b>,
dm: DefMap,
m: &[Match<'r,'b>],
col: uint,
fields: &[ast::Ident],
val: ValueRef)
-> ~[Match<'r,'b>] {
debug!("enter_rec_or_struct(bcx={}, m={}, col={}, val={})",
bcx.to_str(),
m.repr(bcx.tcx()),
col,
bcx.val_to_str(val));
let _indenter = indenter();
let dummy = @ast::Pat {id: 0, node: ast::PatWild, span: DUMMY_SP};
enter_match(bcx, dm, m, col, val, |p| {
match p.node {
ast::PatStruct(_, ref fpats, _) => {
let mut pats = ~[];
for fname in fields.iter() {
match fpats.iter().find(|p| p.ident.name == fname.name) {
None => pats.push(dummy),
Some(pat) => pats.push(pat.pat)
}
}
Some(pats)
}
_ => {
assert_is_binding_or_wild(bcx, p);
Some(vec::from_elem(fields.len(), dummy))
}
}
})
}
fn enter_tup<'r,'b>(
bcx: &'b Block<'b>,
dm: DefMap,
m: &[Match<'r,'b>],
col: uint,
val: ValueRef,
n_elts: uint)
-> ~[Match<'r,'b>] {
debug!("enter_tup(bcx={}, m={}, col={}, val={})",
bcx.to_str(),
m.repr(bcx.tcx()),
col,
bcx.val_to_str(val));
let _indenter = indenter();
let dummy = @ast::Pat {id: 0, node: ast::PatWild, span: DUMMY_SP};
enter_match(bcx, dm, m, col, val, |p| {
match p.node {
ast::PatTup(ref elts) => {
let mut new_elts = ~[];
for elt in elts.iter() {
new_elts.push((*elt).clone())
}
Some(new_elts)
}
_ => {
assert_is_binding_or_wild(bcx, p);
Some(vec::from_elem(n_elts, dummy))
}
}
})
}
fn enter_tuple_struct<'r,'b>(
bcx: &'b Block<'b>,
dm: DefMap,
m: &[Match<'r,'b>],
col: uint,
val: ValueRef,
n_elts: uint)
-> ~[Match<'r,'b>] {
debug!("enter_tuple_struct(bcx={}, m={}, col={}, val={})",
bcx.to_str(),
m.repr(bcx.tcx()),
col,
bcx.val_to_str(val));
let _indenter = indenter();
let dummy = @ast::Pat {id: 0, node: ast::PatWild, span: DUMMY_SP};
enter_match(bcx, dm, m, col, val, |p| {
match p.node {
ast::PatEnum(_, Some(ref elts)) => {
Some(elts.iter().map(|x| (*x)).collect())
}
_ => {
assert_is_binding_or_wild(bcx, p);
Some(vec::from_elem(n_elts, dummy))
}
}
})
}
fn enter_uniq<'r,'b>(
bcx: &'b Block<'b>,
dm: DefMap,
m: &[Match<'r,'b>],
col: uint,
val: ValueRef)
-> ~[Match<'r,'b>] {
debug!("enter_uniq(bcx={}, m={}, col={}, val={})",
bcx.to_str(),
m.repr(bcx.tcx()),
col,
bcx.val_to_str(val));
let _indenter = indenter();
let dummy = @ast::Pat {id: 0, node: ast::PatWild, span: DUMMY_SP};
enter_match(bcx, dm, m, col, val, |p| {
match p.node {
ast::PatUniq(sub) => {
Some(~[sub])
}
_ => {
assert_is_binding_or_wild(bcx, p);
Some(~[dummy])
}
}
})
}
fn enter_region<'r,
'b>(
bcx: &'b Block<'b>,
dm: DefMap,
m: &[Match<'r,'b>],
col: uint,
val: ValueRef)
-> ~[Match<'r,'b>] {
debug!("enter_region(bcx={}, m={}, col={}, val={})",
bcx.to_str(),
m.repr(bcx.tcx()),
col,
bcx.val_to_str(val));
let _indenter = indenter();
let dummy = @ast::Pat { id: 0, node: ast::PatWild, span: DUMMY_SP };
enter_match(bcx, dm, m, col, val, |p| {
match p.node {
ast::PatRegion(sub) => {
Some(~[sub])
}
_ => {
assert_is_binding_or_wild(bcx, p);
Some(~[dummy])
}
}
})
}
// Returns the options in one column of matches. An option is something that
// needs to be conditionally matched at runtime; for example, the discriminant
// on a set of enum variants or a literal.
fn get_options(bcx: &Block, m: &[Match], col: uint) -> ~[Opt] {
let ccx = bcx.ccx();
fn add_to_set(tcx: ty::ctxt, set: &mut ~[Opt], val: Opt) {
if set.iter().any(|l| opt_eq(tcx, l, &val)) {return;}
set.push(val);
}
// Vector comparisions are special in that since the actual
// conditions over-match, we need to be careful about them. This
// means that in order to properly handle things in order, we need
// to not always merge conditions.
fn add_veclen_to_set(set: &mut ~[Opt], i: uint,
len: uint, vlo: VecLenOpt) {
match set.last() {
// If the last condition in the list matches the one we want
// to add, then extend its range. Otherwise, make a new
// vec_len with a range just covering the new entry.
Some(&vec_len(len2, vlo2, (start, end)))
if len == len2 && vlo == vlo2 =>
set[set.len() - 1] = vec_len(len, vlo, (start, end+1)),
_ => set.push(vec_len(len, vlo, (i, i)))
}
}
let mut found = ~[];
for (i, br) in m.iter().enumerate() {
let cur = br.pats[col];
match cur.node {
ast::PatLit(l) => {
add_to_set(ccx.tcx, &mut found, lit(ExprLit(l)));
}
ast::PatIdent(..) => {
// This is one of: an enum variant, a unit-like struct, or a
// variable binding.
let opt_def = {
let def_map = ccx.tcx.def_map.borrow();
def_map.get().find_copy(&cur.id)
};
match opt_def {
Some(ast::DefVariant(..)) => {
add_to_set(ccx.tcx, &mut found,
variant_opt(bcx, cur.id));
}
Some(ast::DefStruct(..)) => {
add_to_set(ccx.tcx, &mut found,
lit(UnitLikeStructLit(cur.id)));
}
Some(ast::DefStatic(const_did, false)) => {
add_to_set(ccx.tcx, &mut found,
lit(ConstLit(const_did)));
}
_ => {}
}
}
ast::PatEnum(..) | ast::PatStruct(..) => {
// This could be one of: a tuple-like enum variant, a
// struct-like enum variant, or a struct.
let opt_def = {
let def_map = ccx.tcx.def_map.borrow();
def_map.get().find_copy(&cur.id)
};
match opt_def {
Some(ast::DefFn(..)) |
Some(ast::DefVariant(..)) => {
add_to_set(ccx.tcx, &mut found,
variant_opt(bcx, cur.id));
}
Some(ast::DefStatic(const_did, false)) => {
add_to_set(ccx.tcx, &mut found,
lit(ConstLit(const_did)));
}
_ => {}
}
}
ast::PatRange(l1, l2) => {
add_to_set(ccx.tcx, &mut found, range(l1, l2));
}
ast::PatVec(ref before, slice, ref after) => {
let (len, vec_opt) = match slice {
None => (before.len(), vec_len_eq),
Some(_) => (before.len() + after.len(),
vec_len_ge(before.len()))
};
add_veclen_to_set(&mut found, i, len, vec_opt);
}
_ => {}
}
}
return found;
}
struct ExtractedBlock<'a> {
vals: ~[ValueRef],
bcx: &'a Block<'a>,
}
fn extract_variant_args<'a>(
bcx: &'a Block<'a>,
repr: &adt::Repr,
disr_val: ty::Disr,
val: ValueRef)
-> ExtractedBlock<'a> {
let _icx = push_ctxt("match::extract_variant_args");
let args = vec::from_fn(adt::num_args(repr, disr_val), |i| {
adt::trans_field_ptr(bcx, repr, val, disr_val, i)
});
ExtractedBlock { vals: args, bcx: bcx }
}
fn match_datum(bcx: &Block,
val: ValueRef,
pat_id: ast::NodeId)
-> Datum<Lvalue> {
/*!
* Helper for converting from the ValueRef that we pass around in
* the match code, which is always an lvalue, into a Datum. Eventually
* we should just pass around a Datum and be done with it.
*/
let ty = node_id_type(bcx, pat_id);
Datum(val, ty, Lvalue)
}
fn extract_vec_elems<'a>(
bcx: &'a Block<'a>,
pat_id: ast::NodeId,
elem_count: uint,
slice: Option<uint>,
val: ValueRef,
count: ValueRef)
-> ExtractedBlock<'a> {
let _icx = push_ctxt("match::extract_vec_elems");
let vec_datum = match_datum(bcx, val, pat_id);
let (base, len) = vec_datum.get_vec_base_and_len(bcx);
let vt = tvec::vec_types(bcx, node_id_type(bcx, pat_id));
let mut elems = vec::from_fn(elem_count, |i| {
match slice {
None => GEPi(bcx, base, [i]),
Some(n) if i < n => GEPi(bcx, base, [i]),
Some(n) if i > n => {
InBoundsGEP(bcx, base, [
Sub(bcx, count,
C_int(bcx.ccx(), (elem_count - i) as int))])
}
_ => unsafe { llvm::LLVMGetUndef(vt.llunit_ty.to_ref()) }
}
});
if slice.is_some() {
let n = slice.unwrap();
let slice_byte_offset = Mul(bcx, vt.llunit_size, C_uint(bcx.ccx(), n));
let slice_begin = tvec::pointer_add_byte(bcx, base, slice_byte_offset);
let slice_len_offset = C_uint(bcx.ccx(), elem_count - 1u);
let slice_len = Sub(bcx, len, slice_len_offset);
let slice_ty = ty::mk_vec(bcx.tcx(),
ty::mt {ty: vt.unit_ty, mutbl: ast::MutImmutable},
ty::vstore_slice(ty::ReStatic)
);
let scratch = rvalue_scratch_datum(bcx, slice_ty, "");
Store(bcx, slice_begin,
GEPi(bcx, scratch.val, [0u, abi::slice_elt_base]));
Store(bcx, slice_len, GEPi(bcx, scratch.val, [0u, abi::slice_elt_len]));
elems[n] = scratch.val;
}
ExtractedBlock { vals: elems, bcx: bcx }
}
/// Checks every pattern in `m` at `col` column.
/// If there are a struct pattern among them function
/// returns list of all fields that are matched in these patterns.
/// Function returns None if there is no struct pattern.
/// Function doesn't collect fields from struct-like enum variants.
/// Function can return empty list if there is only wildcard struct pattern.
fn collect_record_or_struct_fields<'a>(
bcx: &'a Block<'a>,
m: &[Match],
col: uint)
-> Option<~[ast::Ident]> {
let mut fields: ~[ast::Ident] = ~[];
let mut found = false;
for br in m.iter() {
match br.pats[col].node {
ast::PatStruct(_, ref fs, _) => {
match ty::get(node_id_type(bcx, br.pats[col].id)).sty {
ty::ty_struct(..) => {
extend(&mut fields, fs.as_slice());
found = true;
}
_ => ()
}
}
_ => ()
}
}
if found {
return Some(fields);
} else {
return None;
}
fn extend(idents: &mut ~[ast::Ident], field_pats: &[ast::FieldPat]) {
for field_pat in field_pats.iter() {
let field_ident = field_pat.ident;
if !idents.iter().any(|x| x.name == field_ident.name) {
idents.push(field_ident);
}
}
}
}
fn pats_require_rooting(bcx: &Block, m: &[Match], col: uint) -> bool {
m.iter().any(|br| {
let pat_id = br.pats[col].id;
let key = root_map_key {id: pat_id, derefs: 0u };
let root_map = bcx.ccx().maps.root_map.borrow();
root_map.get().contains_key(&key)
})
}
// Macro for deciding whether any of the remaining matches fit a given kind of
// pattern. Note that, because the macro is well-typed, either ALL of the
// matches should fit that sort of pattern or NONE (however, some of the
// matches may be wildcards like _ or identifiers).
macro_rules! any_pat (
($m:expr, $pattern:pat) => (
($m).iter().any(|br| {
match br.pats[col].node {
$pattern => true,
_ => false
}
})
)
)
fn any_uniq_pat(m: &[Match], col: uint) -> bool {
any_pat!(m, ast::PatUniq(_))
}
fn any_region_pat(m: &[Match], col: uint) -> bool {
any_pat!(m, ast::PatRegion(_))
}
fn any_tup_pat(m: &[Match], col: uint) -> bool {
any_pat!(m, ast::PatTup(_))
}
fn any_tuple_struct_pat(bcx: &Block, m: &[Match], col: uint) -> bool {
m.iter().any(|br| {
let pat = br.pats[col];
match pat.node {
ast::PatEnum(_, Some(_)) => {
let def_map = bcx.tcx().def_map.borrow();
match def_map.get().find(&pat.id) {
Some(&ast::DefFn(..)) |
Some(&ast::DefStruct(..)) => true,
_ => false
}
}
_ => false
}
})
}
struct DynamicFailureHandler<'a> {
bcx: &'a Block<'a>,
sp: Span,
msg: InternedString,
finished: @Cell<Option<BasicBlockRef>>,
}
impl<'a> DynamicFailureHandler<'a> {
fn handle_fail(&self) -> BasicBlockRef {
match self.finished.get() {
Some(bb) => return bb,
_ => (),
}
let fcx = self.bcx.fcx;
let fail_cx = fcx.new_block(false, "case_fallthrough", None);
controlflow::trans_fail(fail_cx, self.sp, self.msg.clone());
self.finished.set(Some(fail_cx.llbb));
fail_cx.llbb
}
}
/// What to do when the pattern match fails.
enum FailureHandler<'a> {
Infallible,
JumpToBasicBlock(BasicBlockRef),
DynamicFailureHandlerClass(~DynamicFailureHandler<'a>),
}
impl<'a> FailureHandler<'a> {
fn is_infallible(&self) -> bool {
match *self {
Infallible => true,
_ => false,
}
}
fn is_fallible(&self) -> bool {
!self.is_infallible()
}
fn handle_fail(&self) -> BasicBlockRef {
match *self {
Infallible => {
fail!("attempted to fail in infallible failure handler!")
}
JumpToBasicBlock(basic_block) => basic_block,
DynamicFailureHandlerClass(ref dynamic_failure_handler) => {
dynamic_failure_handler.handle_fail()
}
}
}
}
fn pick_col(m: &[Match]) -> uint {
fn score(p: &ast::Pat) -> uint {
match p.node {
ast::PatLit(_) | ast::PatEnum(_, _) | ast::PatRange(_, _) => 1u,
ast::PatIdent(_, _, Some(p)) => score(p),
_ => 0u
}
}
let mut scores = vec::from_elem(m[0].pats.len(), 0u);
for br in m.iter() {
for (i, p) in br.pats.iter().enumerate() {
scores[i] += score(*p);
}
}
let mut max_score = 0u;
let mut best_col = 0u;
for (i, score) in scores.iter().enumerate() {
let score = *score;
// Irrefutable columns always go first, they'd only be duplicated in
// the branches.
if score == 0u { return i; }
// If no irrefutable ones are found, we pick the one with the biggest
// branching factor.
if score > max_score { max_score = score; best_col = i; }
}
return best_col;
}
#[deriving(Eq)]
pub enum branch_kind { no_branch, single, switch, compare, compare_vec_len, }
// Compiles a comparison between two things.
//
// NB: This must produce an i1, not a Rust bool (i8).
fn compare_values<'a>(
cx: &'a Block<'a>,
lhs: ValueRef,
rhs: ValueRef,
rhs_t: ty::t)
-> Result<'a> {
let _icx = push_ctxt("compare_values");
if ty::type_is_scalar(rhs_t) {
let rs = compare_scalar_types(cx, lhs, rhs, rhs_t, ast::BiEq);
return rslt(rs.bcx, rs.val);
}
match ty::get(rhs_t).sty {
ty::ty_str(ty::vstore_uniq) => {
let scratch_lhs = alloca(cx, val_ty(lhs), "__lhs");
Store(cx, lhs, scratch_lhs);
let scratch_rhs = alloca(cx, val_ty(rhs), "__rhs");
Store(cx, rhs, scratch_rhs);
let did = langcall(cx, None,
format!("comparison of `{}`", cx.ty_to_str(rhs_t)),
UniqStrEqFnLangItem);
let result = callee::trans_lang_call(cx, did, [scratch_lhs, scratch_rhs], None);
Result {
bcx: result.bcx,
val: bool_to_i1(result.bcx, result.val)
}
}
ty::ty_str(_) => {
let did = langcall(cx, None,
format!("comparison of `{}`", cx.ty_to_str(rhs_t)),
StrEqFnLangItem);
let result = callee::trans_lang_call(cx, did, [lhs, rhs], None);
Result {
bcx: result.bcx,
val: bool_to_i1(result.bcx, result.val)
}
}
_ => {
cx.tcx().sess.bug("only scalars and strings supported in \
compare_values");
}
}
}
fn store_non_ref_bindings<'a>(
bcx: &'a Block<'a>,
bindings_map: &BindingsMap,
opt_cleanup_scope: Option<cleanup::ScopeId>)
-> &'a Block<'a>
{
/*!
* For each copy/move binding, copy the value from the value being
* matched into its final home. This code executes once one of
* the patterns for a given arm has completely matched. It adds
* cleanups to the `opt_cleanup_scope`, if one is provided.
*/
let fcx = bcx.fcx;
let mut bcx = bcx;
for (_, &binding_info) in bindings_map.iter() {
match binding_info.trmode {
TrByValue(lldest) => {
let llval = Load(bcx, binding_info.llmatch); // get a T*
let datum = Datum(llval, binding_info.ty, Lvalue);
bcx = datum.store_to(bcx, lldest);
match opt_cleanup_scope {
None => {}
Some(s) => {
fcx.schedule_drop_mem(s, lldest, binding_info.ty);
}
}
}
TrByRef => {}
}
}
return bcx;
}
fn insert_lllocals<'a>(bcx: &'a Block<'a>,
bindings_map: &BindingsMap,
cleanup_scope: cleanup::ScopeId)
-> &'a Block<'a> {
/*!
* For each binding in `data.bindings_map`, adds an appropriate entry into
* the `fcx.lllocals` map, scheduling cleanup in `cleanup_scope`.
*/
let fcx = bcx.fcx;
for (&ident, &binding_info) in bindings_map.iter() {
let llval = match binding_info.trmode {
// By value bindings: use the stack slot that we
// copied/moved the value into
TrByValue(lldest) => lldest,
// By ref binding: use the ptr into the matched value
TrByRef => binding_info.llmatch
};
let datum = Datum(llval, binding_info.ty, Lvalue);
fcx.schedule_drop_mem(cleanup_scope, llval, binding_info.ty);
{
debug!("binding {:?} to {}",
binding_info.id,
bcx.val_to_str(llval));
let mut llmap = bcx.fcx.lllocals.borrow_mut();
llmap.get().insert(binding_info.id, datum);
}
if bcx.sess().opts.debuginfo == FullDebugInfo {
debuginfo::create_match_binding_metadata(bcx,
ident,
binding_info.id,
binding_info.span,
datum);
}
}
bcx
}
fn compile_guard<'r,
'b>(
bcx: &'b Block<'b>,
guard_expr: &ast::Expr,
data: &ArmData,
m: &[Match<'r,'b>],
vals: &[ValueRef],
chk: &FailureHandler)
-> &'b Block<'b> {
debug!("compile_guard(bcx={}, guard_expr={}, m={}, vals={})",
bcx.to_str(),
bcx.expr_to_str(guard_expr),
m.repr(bcx.tcx()),
vec_map_to_str(vals, |v| bcx.val_to_str(*v)));
let _indenter = indenter();
// Lest the guard itself should fail, introduce a temporary cleanup
// scope for any non-ref bindings we create.
let temp_scope = bcx.fcx.push_custom_cleanup_scope();
let mut bcx = bcx;
bcx = store_non_ref_bindings(bcx, data.bindings_map,
Some(cleanup::CustomScope(temp_scope)));
bcx = insert_lllocals(bcx, data.bindings_map,
cleanup::CustomScope(temp_scope));
let val = unpack_datum!(bcx, expr::trans(bcx, guard_expr));
let val = val.to_llbool(bcx);
// Cancel cleanups now that the guard successfully executed. If
// the guard was false, we will drop the values explicitly
// below. Otherwise, we'll add lvalue cleanups at the end.
bcx.fcx.pop_custom_cleanup_scope(temp_scope);
return with_cond(bcx, Not(bcx, val), |bcx| {
// Guard does not match: free the values we copied,
// and remove all bindings from the lllocals table
let bcx = drop_bindings(bcx, data);
compile_submatch(bcx, m, vals, chk);
bcx
});
fn drop_bindings<'a>(bcx: &'a Block<'a>, data: &ArmData)
-> &'a Block<'a> {
let mut bcx = bcx;
for (_, &binding_info) in data.bindings_map.iter() {
match binding_info.trmode {
TrByValue(llval) => {
bcx = glue::drop_ty(bcx, llval, binding_info.ty);
}
TrByRef => {}
}
let mut lllocals = bcx.fcx.lllocals.borrow_mut();
lllocals.get().remove(&binding_info.id);
}
return bcx;
}
}
fn compile_submatch<'r,
'b>(
bcx: &'b Block<'b>,
m: &[Match<'r,'b>],
vals: &[ValueRef],
chk: &FailureHandler) {
debug!("compile_submatch(bcx={}, m={}, vals={})",
bcx.to_str(),
m.repr(bcx.tcx()),
vec_map_to_str(vals, |v| bcx.val_to_str(*v)));
let _indenter = indenter();
/*
For an empty match, a fall-through case must exist
*/
assert!((m.len() > 0u || chk.is_fallible()));
let _icx = push_ctxt("match::compile_submatch");
let mut bcx = bcx;
if m.len() == 0u {
Br(bcx, chk.handle_fail());
return;
}
if m[0].pats.len() == 0u {
let data = &m[0].data;
for &(ref ident, ref value_ptr) in m[0].bound_ptrs.iter() {
let llmatch = data.bindings_map.get(ident).llmatch;
Store(bcx, *value_ptr, llmatch);
}
match data.arm.guard {
Some(guard_expr) => {
bcx = compile_guard(bcx,
guard_expr,
&m[0].data,
m.slice(1, m.len()),
vals,
chk);
}
_ => ()
}
Br(bcx, data.bodycx.llbb);
return;
}
let col = pick_col(m);
let val = vals[col];
if has_nested_bindings(m, col) {
let expanded = expand_nested_bindings(bcx, m, col, val);
compile_submatch_continue(bcx, expanded, vals, chk, col, val)
} else {
compile_submatch_continue(bcx, m, vals, chk, col, val)
}
}
fn compile_submatch_continue<'r,
'b>(
mut bcx: &'b Block<'b>,
m: &[Match<'r,'b>],
vals: &[ValueRef],
chk: &FailureHandler,
col: uint,
val: ValueRef) {
let fcx = bcx.fcx;
let tcx = bcx.tcx();
let dm = tcx.def_map;
let vals_left = vec::append(vals.slice(0u, col).to_owned(),
vals.slice(col + 1u, vals.len()));
let ccx = bcx.fcx.ccx;
let mut pat_id = 0;
for br in m.iter() {
// Find a real id (we're adding placeholder wildcard patterns, but
// each column is guaranteed to have at least one real pattern)
if pat_id == 0 {
pat_id = br.pats[col].id;
}
}
// If we are not matching against an `@T`, we should not be
// required to root any values.
assert!(!pats_require_rooting(bcx, m, col));
match collect_record_or_struct_fields(bcx, m, col) {
Some(ref rec_fields) => {
let pat_ty = node_id_type(bcx, pat_id);
let pat_repr = adt::represent_type(bcx.ccx(), pat_ty);
expr::with_field_tys(tcx, pat_ty, Some(pat_id), |discr, field_tys| {
let rec_vals = rec_fields.map(|field_name| {
let ix = ty::field_idx_strict(tcx, field_name.name, field_tys);
adt::trans_field_ptr(bcx, pat_repr, val, discr, ix)
});
compile_submatch(
bcx,
enter_rec_or_struct(bcx, dm, m, col, *rec_fields, val),
vec::append(rec_vals, vals_left),
chk);
});
return;
}
None => {}
}
if any_tup_pat(m, col) {
let tup_ty = node_id_type(bcx, pat_id);
let tup_repr = adt::represent_type(bcx.ccx(), tup_ty);
let n_tup_elts = match ty::get(tup_ty).sty {
ty::ty_tup(ref elts) => elts.len(),
_ => ccx.sess.bug("non-tuple type in tuple pattern")
};
let tup_vals = vec::from_fn(n_tup_elts, |i| {
adt::trans_field_ptr(bcx, tup_repr, val, 0, i)
});
compile_submatch(bcx, enter_tup(bcx, dm, m, col, val, n_tup_elts),
vec::append(tup_vals, vals_left), chk);
return;
}
if any_tuple_struct_pat(bcx, m, col) {
let struct_ty = node_id_type(bcx, pat_id);
let struct_element_count;
match ty::get(struct_ty).sty {
ty::ty_struct(struct_id, _) => {
struct_element_count =
ty::lookup_struct_fields(tcx, struct_id).len();
}
_ => {
ccx.sess.bug("non-struct type in tuple struct pattern");
}
}
let struct_repr = adt::represent_type(bcx.ccx(), struct_ty);
let llstructvals = vec::from_fn(struct_element_count, |i| {
adt::trans_field_ptr(bcx, struct_repr, val, 0, i)
});
compile_submatch(bcx,
enter_tuple_struct(bcx, dm, m, col, val,
struct_element_count),
vec::append(llstructvals, vals_left),
chk);
return;
}
if any_uniq_pat(m, col) {
let llbox = Load(bcx, val);
compile_submatch(bcx, enter_uniq(bcx, dm, m, col, val),
vec::append(~[llbox], vals_left), chk);
return;
}
if any_region_pat(m, col) {
let loaded_val = Load(bcx, val);
compile_submatch(bcx, enter_region(bcx, dm, m, col, val),
vec::append(~[loaded_val], vals_left), chk);
return;
}
// Decide what kind of branch we need
let opts = get_options(bcx, m, col);
debug!("options={:?}", opts);
let mut kind = no_branch;
let mut test_val = val;
debug!("test_val={}", bcx.val_to_str(test_val));
if opts.len() > 0u {
match opts[0] {
var(_, repr) => {
let (the_kind, val_opt) = adt::trans_switch(bcx, repr, val);
kind = the_kind;
for &tval in val_opt.iter() { test_val = tval; }
}
lit(_) => {
let pty = node_id_type(bcx, pat_id);
test_val = load_if_immediate(bcx, val, pty);
kind = if ty::type_is_integral(pty) { switch }
else { compare };
}
range(_, _) => {
test_val = Load(bcx, val);
kind = compare;
},
vec_len(..) => {
let vt = tvec::vec_types(bcx, node_id_type(bcx, pat_id));
let (_, len) = tvec::get_base_and_len(bcx, val, vt.vec_ty);
test_val = len;
kind = compare_vec_len;
}
}
}
for o in opts.iter() {
match *o {
range(_, _) => { kind = compare; break }
_ => ()
}
}
let else_cx = match kind {
no_branch | single => bcx,
_ => bcx.fcx.new_temp_block("match_else")
};
let sw = if kind == switch {
Switch(bcx, test_val, else_cx.llbb, opts.len())
} else {
C_int(ccx, 0) // Placeholder for when not using a switch
};
let defaults = enter_default(else_cx, dm, m, col, val, chk);
let exhaustive = chk.is_infallible() && defaults.len() == 0u;
let len = opts.len();
// Compile subtrees for each option
for (i, opt) in opts.iter().enumerate() {
// In some cases in vector pattern matching, we need to override
// the failure case so that instead of failing, it proceeds to
// try more matching. branch_chk, then, is the proper failure case
// for the current conditional branch.
let mut branch_chk = None;
let mut opt_cx = else_cx;
if !exhaustive || i+1 < len {
opt_cx = bcx.fcx.new_temp_block("match_case");
match kind {
single => Br(bcx, opt_cx.llbb),
switch => {
match trans_opt(bcx, opt) {
single_result(r) => {
unsafe {
llvm::LLVMAddCase(sw, r.val, opt_cx.llbb);
bcx = r.bcx;
}
}
_ => {
bcx.sess().bug(
"in compile_submatch, expected \
trans_opt to return a single_result")
}
}
}
compare => {
let t = node_id_type(bcx, pat_id);
let Result {bcx: after_cx, val: matches} = {
match trans_opt(bcx, opt) {
single_result(Result {bcx, val}) => {
compare_values(bcx, test_val, val, t)
}
lower_bound(Result {bcx, val}) => {
compare_scalar_types(
bcx, test_val, val,
t, ast::BiGe)
}
range_result(Result {val: vbegin, ..},
Result {bcx, val: vend}) => {
let Result {bcx, val: llge} =
compare_scalar_types(
bcx, test_val,
vbegin, t, ast::BiGe);
let Result {bcx, val: llle} =
compare_scalar_types(
bcx, test_val, vend,
t, ast::BiLe);
rslt(bcx, And(bcx, llge, llle))
}
}
};
bcx = fcx.new_temp_block("compare_next");
CondBr(after_cx, matches, opt_cx.llbb, bcx.llbb);
}
compare_vec_len => {
let Result {bcx: after_cx, val: matches} = {
match trans_opt(bcx, opt) {
single_result(
Result {bcx, val}) => {
let value = compare_scalar_values(
bcx, test_val, val,
signed_int, ast::BiEq);
rslt(bcx, value)
}
lower_bound(
Result {bcx, val: val}) => {
let value = compare_scalar_values(
bcx, test_val, val,
signed_int, ast::BiGe);
rslt(bcx, value)
}
range_result(
Result {val: vbegin, ..},
Result {bcx, val: vend}) => {
let llge =
compare_scalar_values(
bcx, test_val,
vbegin, signed_int, ast::BiGe);
let llle =
compare_scalar_values(
bcx, test_val, vend,
signed_int, ast::BiLe);
rslt(bcx, And(bcx, llge, llle))
}
}
};
bcx = fcx.new_temp_block("compare_vec_len_next");
// If none of these subcases match, move on to the
// next condition.
branch_chk = Some(JumpToBasicBlock(bcx.llbb));
CondBr(after_cx, matches, opt_cx.llbb, bcx.llbb);
}
_ => ()
}
} else if kind == compare || kind == compare_vec_len {
Br(bcx, else_cx.llbb);
}
let mut size = 0u;
let mut unpacked = ~[];
match *opt {
var(disr_val, repr) => {
let ExtractedBlock {vals: argvals, bcx: new_bcx} =
extract_variant_args(opt_cx, repr, disr_val, val);
size = argvals.len();
unpacked = argvals;
opt_cx = new_bcx;
}
vec_len(n, vt, _) => {
let (n, slice) = match vt {
vec_len_ge(i) => (n + 1u, Some(i)),
vec_len_eq => (n, None)
};
let args = extract_vec_elems(opt_cx, pat_id, n,
slice, val, test_val);
size = args.vals.len();
unpacked = args.vals.clone();
opt_cx = args.bcx;
}
lit(_) | range(_, _) => ()
}
let opt_ms = enter_opt(opt_cx, m, opt, col, size, val);
let opt_vals = vec::append(unpacked, vals_left);
match branch_chk {
None => compile_submatch(opt_cx, opt_ms, opt_vals, chk),
Some(branch_chk) => {
compile_submatch(opt_cx, opt_ms, opt_vals, &branch_chk)
}
}
}
// Compile the fall-through case, if any
if !exhaustive {
if kind == compare || kind == compare_vec_len {
Br(bcx, else_cx.llbb);
}
if kind != single {
compile_submatch(else_cx, defaults, vals_left, chk);
}
}
}
pub fn trans_match<'a>(
bcx: &'a Block<'a>,
match_expr: &ast::Expr,
discr_expr: &ast::Expr,
arms: &[ast::Arm],
dest: Dest)
-> &'a Block<'a> {
let _icx = push_ctxt("match::trans_match");
trans_match_inner(bcx, match_expr.id, discr_expr, arms, dest)
}
fn create_bindings_map(bcx: &Block, pat: @ast::Pat) -> BindingsMap {
// Create the bindings map, which is a mapping from each binding name
// to an alloca() that will be the value for that local variable.
// Note that we use the names because each binding will have many ids
// from the various alternatives.
let ccx = bcx.ccx();
let tcx = bcx.tcx();
let mut bindings_map = HashMap::new();
pat_bindings(tcx.def_map, pat, |bm, p_id, span, path| {
let ident = path_to_ident(path);
let variable_ty = node_id_type(bcx, p_id);
let llvariable_ty = type_of::type_of(ccx, variable_ty);
let llmatch;
let trmode;
match bm {
ast::BindByValue(_) => {
// in this case, the final type of the variable will be T,
// but during matching we need to store a *T as explained
// above
llmatch = alloca(bcx, llvariable_ty.ptr_to(), "__llmatch");
trmode = TrByValue(alloca(bcx, llvariable_ty,
bcx.ident(ident)));
}
ast::BindByRef(_) => {
llmatch = alloca(bcx, llvariable_ty, bcx.ident(ident));
trmode = TrByRef;
}
};
bindings_map.insert(ident, BindingInfo {
llmatch: llmatch,
trmode: trmode,
id: p_id,
span: span,
ty: variable_ty
});
});
return bindings_map;
}
fn trans_match_inner<'a>(scope_cx: &'a Block<'a>,
match_id: ast::NodeId,
discr_expr: &ast::Expr,
arms: &[ast::Arm],
dest: Dest) -> &'a Block<'a> {
let _icx = push_ctxt("match::trans_match_inner");
let fcx = scope_cx.fcx;
let mut bcx = scope_cx;
let tcx = bcx.tcx();
let discr_datum = unpack_datum!(bcx, expr::trans_to_lvalue(bcx, discr_expr,
"match"));
if bcx.unreachable.get() {
return bcx;
}
let mut arm_datas = ~[];
let mut matches = ~[];
for arm in arms.iter() {
let body = fcx.new_id_block("case_body", arm.body.id);
let bindings_map = create_bindings_map(bcx, *arm.pats.get(0));
let arm_data = ArmData {
bodycx: body,
arm: arm,
bindings_map: @bindings_map
};
arm_datas.push(arm_data.clone());
for p in arm.pats.iter() {
matches.push(Match {
pats: ~[*p],
data: arm_data.clone(),
bound_ptrs: ~[],
});
}
}
let t = node_id_type(bcx, discr_expr.id);
let chk = {
if ty::type_is_empty(tcx, t) {
// Special case for empty types
let fail_cx = @Cell::new(None);
let fail_handler = ~DynamicFailureHandler {
bcx: scope_cx,
sp: discr_expr.span,
msg: InternedString::new("scrutinizing value that can't \
exist"),
finished: fail_cx,
};
DynamicFailureHandlerClass(fail_handler)
} else {
Infallible
}
};
let lldiscr = discr_datum.val;
compile_submatch(bcx, matches, [lldiscr], &chk);
let mut arm_cxs = ~[];
for arm_data in arm_datas.iter() {
let mut bcx = arm_data.bodycx;
// If this arm has a guard, then the various by-value bindings have
// already been copied into their homes. If not, we do it here. This
// is just to reduce code space. See extensive comment at the start
// of the file for more details.
if arm_data.arm.guard.is_none() {
bcx = store_non_ref_bindings(bcx, arm_data.bindings_map, None);
}
// insert bindings into the lllocals map and add cleanups
let cleanup_scope = fcx.push_custom_cleanup_scope();
bcx = insert_lllocals(bcx, arm_data.bindings_map,
cleanup::CustomScope(cleanup_scope));
bcx = expr::trans_into(bcx, arm_data.arm.body, dest);
bcx = fcx.pop_and_trans_custom_cleanup_scope(bcx, cleanup_scope);
arm_cxs.push(bcx);
}
bcx = scope_cx.fcx.join_blocks(match_id, arm_cxs);
return bcx;
}
enum IrrefutablePatternBindingMode {
// Stores the association between node ID and LLVM value in `lllocals`.
BindLocal,
// Stores the association between node ID and LLVM value in `llargs`.
BindArgument
}
pub fn store_local<'a>(bcx: &'a Block<'a>,
local: &ast::Local)
-> &'a Block<'a> {
/*!
* Generates code for a local variable declaration like
* `let <pat>;` or `let <pat> = <opt_init_expr>`.
*/
let _icx = push_ctxt("match::store_local");
let mut bcx = bcx;
let tcx = bcx.tcx();
let pat = local.pat;
let opt_init_expr = local.init;
return match opt_init_expr {
Some(init_expr) => {
// Optimize the "let x = expr" case. This just writes
// the result of evaluating `expr` directly into the alloca
// for `x`. Often the general path results in similar or the
// same code post-optimization, but not always. In particular,
// in unsafe code, you can have expressions like
//
// let x = intrinsics::uninit();
//
// In such cases, the more general path is unsafe, because
// it assumes it is matching against a valid value.
match simple_identifier(pat) {
Some(path) => {
let var_scope = cleanup::var_scope(tcx, local.id);
return mk_binding_alloca(
bcx, pat.id, path, BindLocal, var_scope, (),
|(), bcx, v, _| expr::trans_into(bcx, init_expr,
expr::SaveIn(v)));
}
None => {}
}
// General path.
let init_datum =
unpack_datum!(bcx, expr::trans_to_lvalue(bcx, init_expr, "let"));
if ty::type_is_bot(expr_ty(bcx, init_expr)) {
create_dummy_locals(bcx, pat)
} else {
if bcx.sess().asm_comments() {
add_comment(bcx, "creating zeroable ref llval");
}
let var_scope = cleanup::var_scope(tcx, local.id);
bind_irrefutable_pat(bcx, pat, init_datum.val, BindLocal, var_scope)
}
}
None => {
create_dummy_locals(bcx, pat)
}
};
fn create_dummy_locals<'a>(mut bcx: &'a Block<'a>,
pat: @ast::Pat)
-> &'a Block<'a> {
// create dummy memory for the variables if we have no
// value to store into them immediately
let tcx = bcx.tcx();
pat_bindings(tcx.def_map, pat, |_, p_id, _, path| {
let scope = cleanup::var_scope(tcx, p_id);
bcx = mk_binding_alloca(
bcx, p_id, path, BindLocal, scope, (),
|(), bcx, llval, ty| { zero_mem(bcx, llval, ty); bcx });
});
bcx
}
}
pub fn store_arg<'a>(mut bcx: &'a Block<'a>,
pat: @ast::Pat,
arg: Datum<Rvalue>,
arg_scope: cleanup::ScopeId)
-> &'a Block<'a> {
/*!
* Generates code for argument patterns like `fn foo(<pat>: T)`.
* Creates entries in the `llargs` map for each of the bindings
* in `pat`.
*
* # Arguments
*
* - `pat` is the argument pattern
* - `llval` is a pointer to the argument value (in other words,
* if the argument type is `T`, then `llval` is a `T*`). In some
* cases, this code may zero out the memory `llval` points at.
*/
let _icx = push_ctxt("match::store_arg");
match simple_identifier(pat) {
Some(path) => {
// Generate nicer LLVM for the common case of fn a pattern
// like `x: T`
let arg_ty = node_id_type(bcx, pat.id);
if type_of::arg_is_indirect(bcx.ccx(), arg_ty)
&& bcx.ccx().sess.opts.debuginfo != FullDebugInfo {
// Don't copy an indirect argument to an alloca, the caller
// already put it in a temporary alloca and gave it up, unless
// we emit extra-debug-info, which requires local allocas :(.
let arg_val = arg.add_clean(bcx.fcx, arg_scope);
let mut llmap = bcx.fcx.llargs.borrow_mut();
llmap.get().insert(pat.id, Datum(arg_val, arg_ty, Lvalue));
bcx
} else {
mk_binding_alloca(
bcx, pat.id, path, BindArgument, arg_scope, arg,
|arg, bcx, llval, _| arg.store_to(bcx, llval))
}
}
None => {
// General path. Copy out the values that are used in the
// pattern.
let arg = unpack_datum!(
bcx, arg.to_lvalue_datum_in_scope(bcx, "__arg", arg_scope));
bind_irrefutable_pat(bcx, pat, arg.val,
BindArgument, arg_scope)
}
}
}
fn mk_binding_alloca<'a,A>(bcx: &'a Block<'a>,
p_id: ast::NodeId,
path: &ast::Path,
binding_mode: IrrefutablePatternBindingMode,
cleanup_scope: cleanup::ScopeId,
arg: A,
populate: |A, &'a Block<'a>, ValueRef, ty::t| -> &'a Block<'a>)
-> &'a Block<'a> {
let var_ty = node_id_type(bcx, p_id);
let ident = ast_util::path_to_ident(path);
// Allocate memory on stack for the binding.
let llval = alloc_ty(bcx, var_ty, bcx.ident(ident));
// Subtle: be sure that we *populate* the memory *before*
// we schedule the cleanup.
let bcx = populate(arg, bcx, llval, var_ty);
bcx.fcx.schedule_drop_mem(cleanup_scope, llval, var_ty);
// Now that memory is initialized and has cleanup scheduled,
// create the datum and insert into the local variable map.
let datum = Datum(llval, var_ty, Lvalue);
let mut llmap = match binding_mode {
BindLocal => bcx.fcx.lllocals.borrow_mut(),
BindArgument => bcx.fcx.llargs.borrow_mut()
};
llmap.get().insert(p_id, datum);
bcx
}
fn bind_irrefutable_pat<'a>(
bcx: &'a Block<'a>,
pat: @ast::Pat,
val: ValueRef,
binding_mode: IrrefutablePatternBindingMode,
cleanup_scope: cleanup::ScopeId)
-> &'a Block<'a> {
/*!
* A simple version of the pattern matching code that only handles
* irrefutable patterns. This is used in let/argument patterns,
* not in match statements. Unifying this code with the code above
* sounds nice, but in practice it produces very inefficient code,
* since the match code is so much more general. In most cases,
* LLVM is able to optimize the code, but it causes longer compile
* times and makes the generated code nigh impossible to read.
*
* # Arguments
* - bcx: starting basic block context
* - pat: the irrefutable pattern being matched.
* - val: the value being matched -- must be an lvalue (by ref, with cleanup)
* - binding_mode: is this for an argument or a local variable?
*/
debug!("bind_irrefutable_pat(bcx={}, pat={}, binding_mode={:?})",
bcx.to_str(),
pat.repr(bcx.tcx()),
binding_mode);
if bcx.sess().asm_comments() {
add_comment(bcx, format!("bind_irrefutable_pat(pat={})",
pat.repr(bcx.tcx())));
}
let _indenter = indenter();
let _icx = push_ctxt("match::bind_irrefutable_pat");
let mut bcx = bcx;
let tcx = bcx.tcx();
let ccx = bcx.ccx();
match pat.node {
ast::PatIdent(pat_binding_mode, ref path, inner) => {
if pat_is_binding(tcx.def_map, pat) {
// Allocate the stack slot where the value of this
// binding will live and place it into the appropriate
// map.
bcx = mk_binding_alloca(
bcx, pat.id, path, binding_mode, cleanup_scope, (),
|(), bcx, llval, ty| {
match pat_binding_mode {
ast::BindByValue(_) => {
// By value binding: move the value that `val`
// points at into the binding's stack slot.
let d = Datum(val, ty, Lvalue);
d.store_to(bcx, llval)
}
ast::BindByRef(_) => {
// By ref binding: the value of the variable
// is the pointer `val` itself.
Store(bcx, val, llval);
bcx
}
}
});
}
for &inner_pat in inner.iter() {
bcx = bind_irrefutable_pat(bcx, inner_pat, val,
binding_mode, cleanup_scope);
}
}
ast::PatEnum(_, ref sub_pats) => {
let def_map = bcx.tcx().def_map.borrow();
match def_map.get().find(&pat.id) {
Some(&ast::DefVariant(enum_id, var_id, _)) => {
let repr = adt::represent_node(bcx, pat.id);
let vinfo = ty::enum_variant_with_id(ccx.tcx,
enum_id,
var_id);
let args = extract_variant_args(bcx,
repr,
vinfo.disr_val,
val);
for sub_pat in sub_pats.iter() {
for (i, argval) in args.vals.iter().enumerate() {
bcx = bind_irrefutable_pat(bcx, *sub_pat.get(i),
*argval, binding_mode,
cleanup_scope);
}
}
}
Some(&ast::DefFn(..)) |
Some(&ast::DefStruct(..)) => {
match *sub_pats {
None => {
// This is a unit-like struct. Nothing to do here.
}
Some(ref elems) => {
// This is the tuple struct case.
let repr = adt::represent_node(bcx, pat.id);
for (i, elem) in elems.iter().enumerate() {
let fldptr = adt::trans_field_ptr(bcx, repr,
val, 0, i);
bcx = bind_irrefutable_pat(bcx, *elem,
fldptr, binding_mode,
cleanup_scope);
}
}
}
}
Some(&ast::DefStatic(_, false)) => {
}
_ => {
// Nothing to do here.
}
}
}
ast::PatStruct(_, ref fields, _) => {
let tcx = bcx.tcx();
let pat_ty = node_id_type(bcx, pat.id);
let pat_repr = adt::represent_type(bcx.ccx(), pat_ty);
expr::with_field_tys(tcx, pat_ty, Some(pat.id), |discr, field_tys| {
for f in fields.iter() {
let ix = ty::field_idx_strict(tcx, f.ident.name, field_tys);
let fldptr = adt::trans_field_ptr(bcx, pat_repr, val,
discr, ix);
bcx = bind_irrefutable_pat(bcx, f.pat, fldptr,
binding_mode, cleanup_scope);
}
})
}
ast::PatTup(ref elems) => {
let repr = adt::represent_node(bcx, pat.id);
for (i, elem) in elems.iter().enumerate() {
let fldptr = adt::trans_field_ptr(bcx, repr, val, 0, i);
bcx = bind_irrefutable_pat(bcx, *elem, fldptr,
binding_mode, cleanup_scope);
}
}
ast::PatUniq(inner) => {
let llbox = Load(bcx, val);
bcx = bind_irrefutable_pat(bcx, inner, llbox, binding_mode, cleanup_scope);
}
ast::PatRegion(inner) => {
let loaded_val = Load(bcx, val);
bcx = bind_irrefutable_pat(bcx, inner, loaded_val, binding_mode, cleanup_scope);
}
ast::PatVec(..) => {
bcx.tcx().sess.span_bug(
pat.span,
format!("vector patterns are never irrefutable!"));
}
ast::PatWild | ast::PatWildMulti | ast::PatLit(_) | ast::PatRange(_, _) => ()
}
return bcx;
}