rust/clippy_lints/src/utils/inspector.rs
Oliver Schneider 141f79f844 Rustup
2018-07-02 19:07:12 +02:00

516 lines
18 KiB
Rust

#![allow(print_stdout, use_debug)]
//! checks for attributes
use rustc::lint::*;
use rustc::hir;
use rustc::hir::print;
use syntax::ast::Attribute;
use crate::utils::get_attr;
/// **What it does:** Dumps every ast/hir node which has the `#[clippy_dump]`
/// attribute
///
/// **Example:**
/// ```rust
/// #[clippy_dump]
/// extern crate foo;
/// ```
///
/// prints
///
/// ```
/// item `foo`
/// visibility inherited from outer item
/// extern crate dylib source: "/path/to/foo.so"
/// ```
declare_clippy_lint! {
pub DEEP_CODE_INSPECTION,
internal_warn,
"helper to dump info about code"
}
pub struct Pass;
impl LintPass for Pass {
fn get_lints(&self) -> LintArray {
lint_array!(DEEP_CODE_INSPECTION)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Pass {
fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx hir::Item) {
if !has_attr(&item.attrs) {
return;
}
print_item(cx, item);
}
fn check_impl_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx hir::ImplItem) {
if !has_attr(&item.attrs) {
return;
}
println!("impl item `{}`", item.ident.name);
match item.vis.node {
hir::VisibilityKind::Public => println!("public"),
hir::VisibilityKind::Crate(_) => println!("visible crate wide"),
hir::VisibilityKind::Restricted { ref path, .. } => println!(
"visible in module `{}`",
print::to_string(print::NO_ANN, |s| s.print_path(path, false))
),
hir::VisibilityKind::Inherited => println!("visibility inherited from outer item"),
}
if item.defaultness.is_default() {
println!("default");
}
match item.node {
hir::ImplItemKind::Const(_, body_id) => {
println!("associated constant");
print_expr(cx, &cx.tcx.hir.body(body_id).value, 1);
},
hir::ImplItemKind::Method(..) => println!("method"),
hir::ImplItemKind::Type(_) => println!("associated type"),
}
}
// fn check_trait_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx
// hir::TraitItem) {
// if !has_attr(&item.attrs) {
// return;
// }
// }
//
// fn check_variant(&mut self, cx: &LateContext<'a, 'tcx>, var: &'tcx
// hir::Variant, _:
// &hir::Generics) {
// if !has_attr(&var.node.attrs) {
// return;
// }
// }
//
// fn check_struct_field(&mut self, cx: &LateContext<'a, 'tcx>, field: &'tcx
// hir::StructField) {
// if !has_attr(&field.attrs) {
// return;
// }
// }
//
fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr) {
if !has_attr(&expr.attrs) {
return;
}
print_expr(cx, expr, 0);
}
fn check_arm(&mut self, cx: &LateContext<'a, 'tcx>, arm: &'tcx hir::Arm) {
if !has_attr(&arm.attrs) {
return;
}
for pat in &arm.pats {
print_pat(cx, pat, 1);
}
if let Some(ref guard) = arm.guard {
println!("guard:");
print_expr(cx, guard, 1);
}
println!("body:");
print_expr(cx, &arm.body, 1);
}
fn check_stmt(&mut self, cx: &LateContext<'a, 'tcx>, stmt: &'tcx hir::Stmt) {
if !has_attr(stmt.node.attrs()) {
return;
}
match stmt.node {
hir::StmtDecl(ref decl, _) => print_decl(cx, decl),
hir::StmtExpr(ref e, _) | hir::StmtSemi(ref e, _) => print_expr(cx, e, 0),
}
}
// fn check_foreign_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx
// hir::ForeignItem) {
// if !has_attr(&item.attrs) {
// return;
// }
// }
//
}
fn has_attr(attrs: &[Attribute]) -> bool {
get_attr(attrs, "dump").count() > 0
}
fn print_decl(cx: &LateContext, decl: &hir::Decl) {
match decl.node {
hir::DeclLocal(ref local) => {
println!("local variable of type {}", cx.tables.node_id_to_type(local.hir_id));
println!("pattern:");
print_pat(cx, &local.pat, 0);
if let Some(ref e) = local.init {
println!("init expression:");
print_expr(cx, e, 0);
}
},
hir::DeclItem(_) => println!("item decl"),
}
}
fn print_expr(cx: &LateContext, expr: &hir::Expr, indent: usize) {
let ind = " ".repeat(indent);
println!("{}+", ind);
println!("{}ty: {}", ind, cx.tables.expr_ty(expr));
println!("{}adjustments: {:?}", ind, cx.tables.adjustments().get(expr.hir_id));
match expr.node {
hir::ExprBox(ref e) => {
println!("{}Box", ind);
print_expr(cx, e, indent + 1);
},
hir::ExprArray(ref v) => {
println!("{}Array", ind);
for e in v {
print_expr(cx, e, indent + 1);
}
},
hir::ExprCall(ref func, ref args) => {
println!("{}Call", ind);
println!("{}function:", ind);
print_expr(cx, func, indent + 1);
println!("{}arguments:", ind);
for arg in args {
print_expr(cx, arg, indent + 1);
}
},
hir::ExprMethodCall(ref path, _, ref args) => {
println!("{}MethodCall", ind);
println!("{}method name: {}", ind, path.ident.name);
for arg in args {
print_expr(cx, arg, indent + 1);
}
},
hir::ExprTup(ref v) => {
println!("{}Tup", ind);
for e in v {
print_expr(cx, e, indent + 1);
}
},
hir::ExprBinary(op, ref lhs, ref rhs) => {
println!("{}Binary", ind);
println!("{}op: {:?}", ind, op.node);
println!("{}lhs:", ind);
print_expr(cx, lhs, indent + 1);
println!("{}rhs:", ind);
print_expr(cx, rhs, indent + 1);
},
hir::ExprUnary(op, ref inner) => {
println!("{}Unary", ind);
println!("{}op: {:?}", ind, op);
print_expr(cx, inner, indent + 1);
},
hir::ExprLit(ref lit) => {
println!("{}Lit", ind);
println!("{}{:?}", ind, lit);
},
hir::ExprCast(ref e, ref target) => {
println!("{}Cast", ind);
print_expr(cx, e, indent + 1);
println!("{}target type: {:?}", ind, target);
},
hir::ExprType(ref e, ref target) => {
println!("{}Type", ind);
print_expr(cx, e, indent + 1);
println!("{}target type: {:?}", ind, target);
},
hir::ExprIf(ref e, _, ref els) => {
println!("{}If", ind);
println!("{}condition:", ind);
print_expr(cx, e, indent + 1);
if let Some(ref els) = *els {
println!("{}else:", ind);
print_expr(cx, els, indent + 1);
}
},
hir::ExprWhile(ref cond, _, _) => {
println!("{}While", ind);
println!("{}condition:", ind);
print_expr(cx, cond, indent + 1);
},
hir::ExprLoop(..) => {
println!("{}Loop", ind);
},
hir::ExprMatch(ref cond, _, ref source) => {
println!("{}Match", ind);
println!("{}condition:", ind);
print_expr(cx, cond, indent + 1);
println!("{}source: {:?}", ind, source);
},
hir::ExprClosure(ref clause, _, _, _, _) => {
println!("{}Closure", ind);
println!("{}clause: {:?}", ind, clause);
},
hir::ExprYield(ref sub) => {
println!("{}Yield", ind);
print_expr(cx, sub, indent + 1);
},
hir::ExprBlock(_, _) => {
println!("{}Block", ind);
},
hir::ExprAssign(ref lhs, ref rhs) => {
println!("{}Assign", ind);
println!("{}lhs:", ind);
print_expr(cx, lhs, indent + 1);
println!("{}rhs:", ind);
print_expr(cx, rhs, indent + 1);
},
hir::ExprAssignOp(ref binop, ref lhs, ref rhs) => {
println!("{}AssignOp", ind);
println!("{}op: {:?}", ind, binop.node);
println!("{}lhs:", ind);
print_expr(cx, lhs, indent + 1);
println!("{}rhs:", ind);
print_expr(cx, rhs, indent + 1);
},
hir::ExprField(ref e, ident) => {
println!("{}Field", ind);
println!("{}field name: {}", ind, ident.name);
println!("{}struct expr:", ind);
print_expr(cx, e, indent + 1);
},
hir::ExprIndex(ref arr, ref idx) => {
println!("{}Index", ind);
println!("{}array expr:", ind);
print_expr(cx, arr, indent + 1);
println!("{}index expr:", ind);
print_expr(cx, idx, indent + 1);
},
hir::ExprPath(hir::QPath::Resolved(ref ty, ref path)) => {
println!("{}Resolved Path, {:?}", ind, ty);
println!("{}path: {:?}", ind, path);
},
hir::ExprPath(hir::QPath::TypeRelative(ref ty, ref seg)) => {
println!("{}Relative Path, {:?}", ind, ty);
println!("{}seg: {:?}", ind, seg);
},
hir::ExprAddrOf(ref muta, ref e) => {
println!("{}AddrOf", ind);
println!("mutability: {:?}", muta);
print_expr(cx, e, indent + 1);
},
hir::ExprBreak(_, ref e) => {
println!("{}Break", ind);
if let Some(ref e) = *e {
print_expr(cx, e, indent + 1);
}
},
hir::ExprContinue(_) => println!("{}Again", ind),
hir::ExprRet(ref e) => {
println!("{}Ret", ind);
if let Some(ref e) = *e {
print_expr(cx, e, indent + 1);
}
},
hir::ExprInlineAsm(_, ref input, ref output) => {
println!("{}InlineAsm", ind);
println!("{}inputs:", ind);
for e in input {
print_expr(cx, e, indent + 1);
}
println!("{}outputs:", ind);
for e in output {
print_expr(cx, e, indent + 1);
}
},
hir::ExprStruct(ref path, ref fields, ref base) => {
println!("{}Struct", ind);
println!("{}path: {:?}", ind, path);
for field in fields {
println!("{}field \"{}\":", ind, field.ident.name);
print_expr(cx, &field.expr, indent + 1);
}
if let Some(ref base) = *base {
println!("{}base:", ind);
print_expr(cx, base, indent + 1);
}
},
hir::ExprRepeat(ref val, ref anon_const) => {
println!("{}Repeat", ind);
println!("{}value:", ind);
print_expr(cx, val, indent + 1);
println!("{}repeat count:", ind);
print_expr(cx, &cx.tcx.hir.body(anon_const.body).value, indent + 1);
},
}
}
fn print_item(cx: &LateContext, item: &hir::Item) {
let did = cx.tcx.hir.local_def_id(item.id);
println!("item `{}`", item.name);
match item.vis.node {
hir::VisibilityKind::Public => println!("public"),
hir::VisibilityKind::Crate(_) => println!("visible crate wide"),
hir::VisibilityKind::Restricted { ref path, .. } => println!(
"visible in module `{}`",
print::to_string(print::NO_ANN, |s| s.print_path(path, false))
),
hir::VisibilityKind::Inherited => println!("visibility inherited from outer item"),
}
match item.node {
hir::ItemExternCrate(ref _renamed_from) => {
let def_id = cx.tcx.hir.local_def_id(item.id);
if let Some(crate_id) = cx.tcx.extern_mod_stmt_cnum(def_id) {
let source = cx.tcx.used_crate_source(crate_id);
if let Some(ref src) = source.dylib {
println!("extern crate dylib source: {:?}", src.0);
}
if let Some(ref src) = source.rlib {
println!("extern crate rlib source: {:?}", src.0);
}
} else {
println!("weird extern crate without a crate id");
}
},
hir::ItemUse(ref path, ref kind) => println!("{:?}, {:?}", path, kind),
hir::ItemStatic(..) => println!("static item of type {:#?}", cx.tcx.type_of(did)),
hir::ItemConst(..) => println!("const item of type {:#?}", cx.tcx.type_of(did)),
hir::ItemFn(..) => {
let item_ty = cx.tcx.type_of(did);
println!("function of type {:#?}", item_ty);
},
hir::ItemMod(..) => println!("module"),
hir::ItemForeignMod(ref fm) => println!("foreign module with abi: {}", fm.abi),
hir::ItemGlobalAsm(ref asm) => println!("global asm: {:?}", asm),
hir::ItemTy(..) => {
println!("type alias for {:?}", cx.tcx.type_of(did));
},
hir::ItemExistential(..) => {
println!("existential type with real type {:?}", cx.tcx.type_of(did));
},
hir::ItemEnum(..) => {
println!("enum definition of type {:?}", cx.tcx.type_of(did));
},
hir::ItemStruct(..) => {
println!("struct definition of type {:?}", cx.tcx.type_of(did));
},
hir::ItemUnion(..) => {
println!("union definition of type {:?}", cx.tcx.type_of(did));
},
hir::ItemTrait(..) => {
println!("trait decl");
if cx.tcx.trait_is_auto(did) {
println!("trait is auto");
} else {
println!("trait is not auto");
}
},
hir::ItemTraitAlias(..) => {
println!("trait alias");
}
hir::ItemImpl(_, _, _, _, Some(ref _trait_ref), _, _) => {
println!("trait impl");
},
hir::ItemImpl(_, _, _, _, None, _, _) => {
println!("impl");
},
}
}
fn print_pat(cx: &LateContext, pat: &hir::Pat, indent: usize) {
let ind = " ".repeat(indent);
println!("{}+", ind);
match pat.node {
hir::PatKind::Wild => println!("{}Wild", ind),
hir::PatKind::Binding(ref mode, _, ident, ref inner) => {
println!("{}Binding", ind);
println!("{}mode: {:?}", ind, mode);
println!("{}name: {}", ind, ident.name);
if let Some(ref inner) = *inner {
println!("{}inner:", ind);
print_pat(cx, inner, indent + 1);
}
},
hir::PatKind::Struct(ref path, ref fields, ignore) => {
println!("{}Struct", ind);
println!(
"{}name: {}",
ind,
print::to_string(print::NO_ANN, |s| s.print_qpath(path, false))
);
println!("{}ignore leftover fields: {}", ind, ignore);
println!("{}fields:", ind);
for field in fields {
println!("{} field name: {}", ind, field.node.ident.name);
if field.node.is_shorthand {
println!("{} in shorthand notation", ind);
}
print_pat(cx, &field.node.pat, indent + 1);
}
},
hir::PatKind::TupleStruct(ref path, ref fields, opt_dots_position) => {
println!("{}TupleStruct", ind);
println!(
"{}path: {}",
ind,
print::to_string(print::NO_ANN, |s| s.print_qpath(path, false))
);
if let Some(dot_position) = opt_dots_position {
println!("{}dot position: {}", ind, dot_position);
}
for field in fields {
print_pat(cx, field, indent + 1);
}
},
hir::PatKind::Path(hir::QPath::Resolved(ref ty, ref path)) => {
println!("{}Resolved Path, {:?}", ind, ty);
println!("{}path: {:?}", ind, path);
},
hir::PatKind::Path(hir::QPath::TypeRelative(ref ty, ref seg)) => {
println!("{}Relative Path, {:?}", ind, ty);
println!("{}seg: {:?}", ind, seg);
},
hir::PatKind::Tuple(ref pats, opt_dots_position) => {
println!("{}Tuple", ind);
if let Some(dot_position) = opt_dots_position {
println!("{}dot position: {}", ind, dot_position);
}
for field in pats {
print_pat(cx, field, indent + 1);
}
},
hir::PatKind::Box(ref inner) => {
println!("{}Box", ind);
print_pat(cx, inner, indent + 1);
},
hir::PatKind::Ref(ref inner, ref muta) => {
println!("{}Ref", ind);
println!("{}mutability: {:?}", ind, muta);
print_pat(cx, inner, indent + 1);
},
hir::PatKind::Lit(ref e) => {
println!("{}Lit", ind);
print_expr(cx, e, indent + 1);
},
hir::PatKind::Range(ref l, ref r, ref range_end) => {
println!("{}Range", ind);
print_expr(cx, l, indent + 1);
print_expr(cx, r, indent + 1);
match *range_end {
hir::RangeEnd::Included => println!("{} end included", ind),
hir::RangeEnd::Excluded => println!("{} end excluded", ind),
}
},
hir::PatKind::Slice(ref first_pats, ref range, ref last_pats) => {
println!("{}Slice [a, b, ..i, y, z]", ind);
println!("[a, b]:");
for pat in first_pats {
print_pat(cx, pat, indent + 1);
}
println!("i:");
if let Some(ref pat) = *range {
print_pat(cx, pat, indent + 1);
}
println!("[y, z]:");
for pat in last_pats {
print_pat(cx, pat, indent + 1);
}
},
}
}