rust/crates/ra_prof/src/lib.rs
2020-03-30 11:33:01 +02:00

504 lines
16 KiB
Rust

//! FIXME: write short doc here
mod memory_usage;
#[cfg(feature = "cpu_profiler")]
mod google_cpu_profiler;
use std::{
cell::RefCell,
collections::BTreeMap,
collections::HashSet,
io::{stderr, Write},
sync::{
atomic::{AtomicBool, Ordering},
RwLock,
},
time::{Duration, Instant},
};
use once_cell::sync::Lazy;
pub use crate::memory_usage::{Bytes, MemoryUsage};
// We use jemalloc mainly to get heap usage statistics, actual performance
// difference is not measures.
#[cfg(all(feature = "jemalloc", not(target_env = "msvc")))]
#[global_allocator]
static ALLOC: jemallocator::Jemalloc = jemallocator::Jemalloc;
pub fn init() {
set_filter(match std::env::var("RA_PROFILE") {
Ok(spec) => Filter::from_spec(&spec),
Err(_) => Filter::disabled(),
});
}
/// Set profiling filter. It specifies descriptions allowed to profile.
/// This is helpful when call stack has too many nested profiling scopes.
/// Additionally filter can specify maximum depth of profiling scopes nesting.
///
/// #Example
/// ```
/// use ra_prof::{set_filter, Filter};
/// let f = Filter::from_spec("profile1|profile2@2");
/// set_filter(f);
/// ```
pub fn set_filter(f: Filter) {
PROFILING_ENABLED.store(f.depth > 0, Ordering::SeqCst);
let set: HashSet<_> = f.allowed.iter().cloned().collect();
let mut old = FILTER.write().unwrap();
let filter_data = FilterData {
depth: f.depth,
allowed: set,
longer_than: f.longer_than,
version: old.version + 1,
};
*old = filter_data;
}
pub type Label = &'static str;
/// This function starts a profiling scope in the current execution stack with a given description.
/// It returns a Profile structure and measure elapsed time between this method invocation and Profile structure drop.
/// It supports nested profiling scopes in case when this function invoked multiple times at the execution stack. In this case the profiling information will be nested at the output.
/// Profiling information is being printed in the stderr.
///
/// # Example
/// ```
/// use ra_prof::{profile, set_filter, Filter};
///
/// let f = Filter::from_spec("profile1|profile2@2");
/// set_filter(f);
/// profiling_function1();
///
/// fn profiling_function1() {
/// let _p = profile("profile1");
/// profiling_function2();
/// }
///
/// fn profiling_function2() {
/// let _p = profile("profile2");
/// }
/// ```
/// This will print in the stderr the following:
/// ```text
/// 0ms - profile
/// 0ms - profile2
/// ```
pub fn profile(label: Label) -> Profiler {
assert!(!label.is_empty());
if !PROFILING_ENABLED.load(Ordering::Relaxed) {
return Profiler { label: None, detail: None };
}
PROFILE_STACK.with(|stack| {
let mut stack = stack.borrow_mut();
if stack.starts.is_empty() {
if let Ok(f) = FILTER.try_read() {
if f.version > stack.filter_data.version {
stack.filter_data = f.clone();
}
};
}
if stack.starts.len() > stack.filter_data.depth {
return Profiler { label: None, detail: None };
}
let allowed = &stack.filter_data.allowed;
if stack.starts.is_empty() && !allowed.is_empty() && !allowed.contains(label) {
return Profiler { label: None, detail: None };
}
stack.starts.push(Instant::now());
Profiler { label: Some(label), detail: None }
})
}
pub fn print_time(label: Label) -> impl Drop {
struct Guard {
label: Label,
start: Instant,
}
impl Drop for Guard {
fn drop(&mut self) {
eprintln!("{}: {:?}", self.label, self.start.elapsed())
}
}
Guard { label, start: Instant::now() }
}
pub struct Profiler {
label: Option<Label>,
detail: Option<String>,
}
impl Profiler {
pub fn detail(mut self, detail: impl FnOnce() -> String) -> Profiler {
if self.label.is_some() {
self.detail = Some(detail())
}
self
}
}
pub struct Filter {
depth: usize,
allowed: Vec<String>,
longer_than: Duration,
}
impl Filter {
// Filtering syntax
// env RA_PROFILE=* // dump everything
// env RA_PROFILE=foo|bar|baz // enabled only selected entries
// env RA_PROFILE=*@3>10 // dump everything, up to depth 3, if it takes more than 10 ms
pub fn from_spec(mut spec: &str) -> Filter {
let longer_than = if let Some(idx) = spec.rfind('>') {
let longer_than = spec[idx + 1..].parse().expect("invalid profile longer_than");
spec = &spec[..idx];
Duration::from_millis(longer_than)
} else {
Duration::new(0, 0)
};
let depth = if let Some(idx) = spec.rfind('@') {
let depth: usize = spec[idx + 1..].parse().expect("invalid profile depth");
spec = &spec[..idx];
depth
} else {
999
};
let allowed =
if spec == "*" { Vec::new() } else { spec.split('|').map(String::from).collect() };
Filter::new(depth, allowed, longer_than)
}
pub fn disabled() -> Filter {
Filter::new(0, Vec::new(), Duration::new(0, 0))
}
pub fn new(depth: usize, allowed: Vec<String>, longer_than: Duration) -> Filter {
Filter { depth, allowed, longer_than }
}
}
struct ProfileStack {
starts: Vec<Instant>,
messages: Vec<Message>,
filter_data: FilterData,
}
struct Message {
level: usize,
duration: Duration,
label: Label,
detail: Option<String>,
}
impl ProfileStack {
fn new() -> ProfileStack {
ProfileStack { starts: Vec::new(), messages: Vec::new(), filter_data: Default::default() }
}
}
#[derive(Default, Clone)]
struct FilterData {
depth: usize,
version: usize,
allowed: HashSet<String>,
longer_than: Duration,
}
static PROFILING_ENABLED: AtomicBool = AtomicBool::new(false);
static FILTER: Lazy<RwLock<FilterData>> = Lazy::new(Default::default);
thread_local!(static PROFILE_STACK: RefCell<ProfileStack> = RefCell::new(ProfileStack::new()));
impl Drop for Profiler {
fn drop(&mut self) {
match self {
Profiler { label: Some(label), detail } => {
PROFILE_STACK.with(|stack| {
let mut stack = stack.borrow_mut();
let start = stack.starts.pop().unwrap();
let duration = start.elapsed();
let level = stack.starts.len();
stack.messages.push(Message { level, duration, label, detail: detail.take() });
if level == 0 {
let stdout = stderr();
let longer_than = stack.filter_data.longer_than;
// Convert to millis for comparison to avoid problems with rounding
// (otherwise we could print `0ms` despite user's `>0` filter when
// `duration` is just a few nanos).
if duration.as_millis() > longer_than.as_millis() {
print(&stack.messages, longer_than, &mut stdout.lock());
}
stack.messages.clear();
}
});
}
Profiler { label: None, .. } => (),
}
}
}
fn print(msgs: &[Message], longer_than: Duration, out: &mut impl Write) {
if msgs.is_empty() {
return;
}
let children_map = idx_to_children(msgs);
let root_idx = msgs.len() - 1;
print_for_idx(root_idx, &children_map, msgs, longer_than, out);
}
fn print_for_idx(
current_idx: usize,
children_map: &[Vec<usize>],
msgs: &[Message],
longer_than: Duration,
out: &mut impl Write,
) {
let current = &msgs[current_idx];
let current_indent = " ".repeat(current.level);
let detail = current.detail.as_ref().map(|it| format!(" @ {}", it)).unwrap_or_default();
writeln!(
out,
"{}{:5}ms - {}{}",
current_indent,
current.duration.as_millis(),
current.label,
detail,
)
.expect("printing profiling info");
let longer_than_millis = longer_than.as_millis();
let children_indices = &children_map[current_idx];
let mut accounted_for = Duration::default();
let mut short_children = BTreeMap::new(); // Use `BTreeMap` to get deterministic output.
for child_idx in children_indices.iter() {
let child = &msgs[*child_idx];
if child.duration.as_millis() > longer_than_millis {
print_for_idx(*child_idx, children_map, msgs, longer_than, out);
} else {
let pair = short_children.entry(child.label).or_insert((Duration::default(), 0));
pair.0 += child.duration;
pair.1 += 1;
}
accounted_for += child.duration;
}
for (child_msg, (duration, count)) in short_children.iter() {
let millis = duration.as_millis();
writeln!(out, " {}{:5}ms - {} ({} calls)", current_indent, millis, child_msg, count)
.expect("printing profiling info");
}
let unaccounted_millis = (current.duration - accounted_for).as_millis();
if !children_indices.is_empty()
&& unaccounted_millis > 0
&& unaccounted_millis > longer_than_millis
{
writeln!(out, " {}{:5}ms - ???", current_indent, unaccounted_millis)
.expect("printing profiling info");
}
}
/// Returns a mapping from an index in the `msgs` to the vector with the indices of its children.
///
/// This assumes that the entries in `msgs` are in the order of when the calls to `profile` finish.
/// In other words, a postorder of the call graph. In particular, the root is the last element of
/// `msgs`.
fn idx_to_children(msgs: &[Message]) -> Vec<Vec<usize>> {
// Initialize with the index of the root; `msgs` and `ancestors` should be never empty.
assert!(!msgs.is_empty());
let mut ancestors = vec![msgs.len() - 1];
let mut result: Vec<Vec<usize>> = vec![vec![]; msgs.len()];
for (idx, msg) in msgs[..msgs.len() - 1].iter().enumerate().rev() {
// We need to find the parent of the current message, i.e., the last ancestor that has a
// level lower than the current message.
while msgs[*ancestors.last().unwrap()].level >= msg.level {
ancestors.pop();
}
result[*ancestors.last().unwrap()].push(idx);
ancestors.push(idx);
}
// Note that above we visited all children from the last to the first one. Let's reverse vectors
// to get the more natural order where the first element is the first child.
for vec in result.iter_mut() {
vec.reverse();
}
result
}
/// Prints backtrace to stderr, useful for debugging.
#[cfg(feature = "backtrace")]
pub fn print_backtrace() {
let bt = backtrace::Backtrace::new();
eprintln!("{:?}", bt);
}
#[cfg(not(feature = "backtrace"))]
pub fn print_backtrace() {
eprintln!(
r#"enable the backtrace feature:
ra_prof = {{ path = "../ra_prof", features = [ "backtrace"] }}
"#
);
}
thread_local!(static IN_SCOPE: RefCell<bool> = RefCell::new(false));
/// Allows to check if the current code is withing some dynamic scope, can be
/// useful during debugging to figure out why a function is called.
pub struct Scope {
prev: bool,
}
impl Scope {
pub fn enter() -> Scope {
let prev = IN_SCOPE.with(|slot| std::mem::replace(&mut *slot.borrow_mut(), true));
Scope { prev }
}
pub fn is_active() -> bool {
IN_SCOPE.with(|slot| *slot.borrow())
}
}
impl Drop for Scope {
fn drop(&mut self) {
IN_SCOPE.with(|slot| *slot.borrow_mut() = self.prev);
}
}
/// A wrapper around google_cpu_profiler.
///
/// Usage:
/// 1. Install gpref_tools (https://github.com/gperftools/gperftools), probably packaged with your Linux distro.
/// 2. Build with `cpu_profiler` feature.
/// 3. Tun the code, the *raw* output would be in the `./out.profile` file.
/// 4. Install pprof for visualization (https://github.com/google/pprof).
/// 5. Use something like `pprof -svg target/release/rust-analyzer ./out.profile` to see the results.
///
/// For example, here's how I run profiling on NixOS:
///
/// ```bash
/// $ nix-shell -p gperftools --run \
/// 'cargo run --release -p rust-analyzer -- parse < ~/projects/rustbench/parser.rs > /dev/null'
/// ```
#[derive(Debug)]
pub struct CpuProfiler {
_private: (),
}
pub fn cpu_profiler() -> CpuProfiler {
#[cfg(feature = "cpu_profiler")]
{
google_cpu_profiler::start("./out.profile".as_ref())
}
#[cfg(not(feature = "cpu_profiler"))]
{
eprintln!("cpu_profiler feature is disabled")
}
CpuProfiler { _private: () }
}
impl Drop for CpuProfiler {
fn drop(&mut self) {
#[cfg(feature = "cpu_profiler")]
{
google_cpu_profiler::stop()
}
}
}
pub fn memory_usage() -> MemoryUsage {
MemoryUsage::current()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_basic_profile() {
let s = vec!["profile1".to_string(), "profile2".to_string()];
let f = Filter::new(2, s, Duration::new(0, 0));
set_filter(f);
profiling_function1();
}
fn profiling_function1() {
let _p = profile("profile1");
profiling_function2();
}
fn profiling_function2() {
let _p = profile("profile2");
}
#[test]
fn test_longer_than() {
let mut result = vec![];
let msgs = vec![
Message { level: 1, duration: Duration::from_nanos(3), label: "bar", detail: None },
Message { level: 1, duration: Duration::from_nanos(2), label: "bar", detail: None },
Message { level: 0, duration: Duration::from_millis(1), label: "foo", detail: None },
];
print(&msgs, Duration::from_millis(0), &mut result);
// The calls to `bar` are so short that they'll be rounded to 0ms and should get collapsed
// when printing.
assert_eq!(
std::str::from_utf8(&result).unwrap(),
" 1ms - foo\n 0ms - bar (2 calls)\n"
);
}
#[test]
fn test_unaccounted_for_topmost() {
let mut result = vec![];
let msgs = vec![
Message { level: 1, duration: Duration::from_millis(2), label: "bar", detail: None },
Message { level: 0, duration: Duration::from_millis(5), label: "foo", detail: None },
];
print(&msgs, Duration::from_millis(0), &mut result);
assert_eq!(
std::str::from_utf8(&result).unwrap().lines().collect::<Vec<_>>(),
vec![
" 5ms - foo",
" 2ms - bar",
" 3ms - ???",
// Dummy comment to improve formatting
]
);
}
#[test]
fn test_unaccounted_for_multiple_levels() {
let mut result = vec![];
let msgs = vec![
Message { level: 2, duration: Duration::from_millis(3), label: "baz", detail: None },
Message { level: 1, duration: Duration::from_millis(5), label: "bar", detail: None },
Message { level: 2, duration: Duration::from_millis(2), label: "baz", detail: None },
Message { level: 1, duration: Duration::from_millis(4), label: "bar", detail: None },
Message { level: 0, duration: Duration::from_millis(9), label: "foo", detail: None },
];
print(&msgs, Duration::from_millis(0), &mut result);
assert_eq!(
std::str::from_utf8(&result).unwrap().lines().collect::<Vec<_>>(),
vec![
" 9ms - foo",
" 5ms - bar",
" 3ms - baz",
" 2ms - ???",
" 4ms - bar",
" 2ms - baz",
" 2ms - ???",
]
);
}
}