Ulrik Sverdrup 11e3de39d9 Add fast path for ASCII in UTF-8 validation
This speeds up the ascii case (and long stretches of ascii in otherwise
mixed UTF-8 data) when checking UTF-8 validity.

Benchmark results suggest that on purely ASCII input, we can improve
throughput (megabytes verified / second) by a factor of 13 to 14!
On xml and mostly english language input (en.wikipedia xml dump),
throughput increases by a factor 7.

On mostly non-ASCII input, performance increases slightly or is the
same.

The UTF-8 validation is rewritten to use indexed access; since all
access is preceded by a (mandatory for validation) length check, they
are statically elided by llvm and this formulation is in fact the best
for performance. A previous version had losses due to slice to iterator
conversions.

A large credit to Björn Steinbrink who improved this patch immensely,
writing this second version.

Benchmark results on x86-64 (Sandy Bridge) compiled with -C opt-level=3.

Old code is `regular`, this PR is called `fast`.

Datasets:

- `ascii` is just ascii (2.5 kB)
- `cyr` is cyrillic script with ascii spaces (5 kB)
- `dewik10` is 10MB of a de.wikipedia xml dump
- `enwik10` is 100MB of an en.wikipedia xml dump
- `jawik10` is 10MB of a ja.wikipedia xml dump

```
test from_utf8_ascii_fast        ... bench:         140 ns/iter (+/- 4) = 18221 MB/s
test from_utf8_ascii_regular     ... bench:       1,932 ns/iter (+/- 19) = 1320 MB/s
test from_utf8_cyr_fast          ... bench:      10,025 ns/iter (+/- 245) = 511 MB/s
test from_utf8_cyr_regular       ... bench:      12,250 ns/iter (+/- 437) = 418 MB/s
test from_utf8_dewik10_fast      ... bench:   6,017,909 ns/iter (+/- 105,755) = 1740 MB/s
test from_utf8_dewik10_regular   ... bench:  11,669,493 ns/iter (+/- 264,045) = 891 MB/s
test from_utf8_enwik8_fast       ... bench:  14,085,692 ns/iter (+/- 1,643,316) = 7000 MB/s
test from_utf8_enwik8_regular    ... bench:  93,657,410 ns/iter (+/- 5,353,353) = 1000 MB/s
test from_utf8_jawik10_fast      ... bench:  29,154,073 ns/iter (+/- 4,659,534) = 340 MB/s
test from_utf8_jawik10_regular   ... bench:  29,112,917 ns/iter (+/- 2,475,123) = 340 MB/s
```

Co-authored-by: Björn Steinbrink <bsteinbr@gmail.com>
2016-01-12 21:57:04 +01:00

The Rust Programming Language

This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.

Quick Start

Read "Installing Rust" from The Book.

Building from Source

  1. Make sure you have installed the dependencies:

    • g++ 4.7 or clang++ 3.x
    • python 2.6 or later (but not 3.x)
    • GNU make 3.81 or later
    • curl
    • git
  2. Clone the source with git:

    $ git clone https://github.com/rust-lang/rust.git
    $ cd rust
    
  1. Build and install:

    $ ./configure
    $ make && make install
    

    Note: You may need to use sudo make install if you do not normally have permission to modify the destination directory. The install locations can be adjusted by passing a --prefix argument to configure. Various other options are also supported pass --help for more information on them.

    When complete, make install will place several programs into /usr/local/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. This install does not include Cargo, Rust's package manager, which you may also want to build.

Building on Windows

MSYS2 can be used to easily build Rust on Windows:

  1. Grab the latest MSYS2 installer and go through the installer.

  2. From the MSYS2 terminal, install the mingw64 toolchain and other required tools.

    # Update package mirrors (may be needed if you have a fresh install of MSYS2)
    $ pacman -Sy pacman-mirrors
    
    # Choose one based on platform: 
    # *** see the note below ***
    $ pacman -S mingw-w64-i686-toolchain
    $ pacman -S mingw-w64-x86_64-toolchain
    
    # Make git available in MSYS2 (if not already available on path)
    $ pacman -S git
    
    $ pacman -S base-devel
    
  3. Run mingw32_shell.bat or mingw64_shell.bat from wherever you installed MSYS2 (i.e. C:\msys), depending on whether you want 32-bit or 64-bit Rust.

  4. Navigate to Rust's source code, configure and build it:

    $ ./configure
    $ make && make install
    

Note: gcc versions >= 5 currently have issues building LLVM on Windows resulting in a segmentation fault when building Rust. In order to avoid this it may be necessary to obtain an earlier version of gcc such as 4.9.x.
Msys's pacman will install the latest version, so for the time being it is recommended to skip gcc toolchain installation step above and use Mingw-Builds project's installer instead. Be sure to add gcc bin directory to the path before running configure.
For more information on this see issue #28260.

Building Documentation

If youd like to build the documentation, its almost the same:

./configure
$ make docs

Building the documentation requires building the compiler, so the above details will apply. Once you have the compiler built, you can

$ make docs NO_REBUILD=1

To make sure you dont re-build the compiler because you made a change to some documentation.

The generated documentation will appear in a top-level doc directory, created by the make rule.

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

Platform \ Architecture x86 x86_64
Windows (7, 8, Server 2008 R2)
Linux (2.6.18 or later)
OSX (10.7 Lion or later)

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Rust currently needs between 600MiB and 1.5GiB to build, depending on platform. If it hits swap, it will take a very long time to build.

There is more advice about hacking on Rust in CONTRIBUTING.md.

Getting Help

The Rust community congregates in a few places:

Contributing

To contribute to Rust, please see CONTRIBUTING.

Rust has an IRC culture and most real-time collaboration happens in a variety of channels on Mozilla's IRC network, irc.mozilla.org. The most popular channel is #rust, a venue for general discussion about Rust, and a good place to ask for help.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.

Description
No description provided
Readme 1.4 GiB
Languages
Rust 96.2%
RenderScript 0.7%
JavaScript 0.6%
Shell 0.6%
Fluent 0.4%
Other 1.3%