rust/src/libcore/iter.rs
2012-09-02 15:38:18 -07:00

445 lines
11 KiB
Rust

use cmp::{Eq, Ord};
/// A function used to initialize the elements of a sequence
type InitOp<T> = fn(uint) -> T;
trait BaseIter<A> {
pure fn each(blk: fn(A) -> bool);
pure fn size_hint() -> Option<uint>;
}
trait ExtendedIter<A> {
pure fn eachi(blk: fn(uint, A) -> bool);
pure fn all(blk: fn(A) -> bool) -> bool;
pure fn any(blk: fn(A) -> bool) -> bool;
pure fn foldl<B>(+b0: B, blk: fn(B, A) -> B) -> B;
}
trait EqIter<A:Eq> {
pure fn contains(x: A) -> bool;
pure fn count(x: A) -> uint;
pure fn position(f: fn(A) -> bool) -> Option<uint>;
}
trait Times {
pure fn times(it: fn() -> bool);
}
trait TimesIx{
pure fn timesi(it: fn(uint) -> bool);
}
trait CopyableIter<A:copy> {
pure fn filter_to_vec(pred: fn(A) -> bool) -> ~[A];
pure fn map_to_vec<B>(op: fn(A) -> B) -> ~[B];
pure fn to_vec() -> ~[A];
pure fn find(p: fn(A) -> bool) -> Option<A>;
}
trait CopyableOrderedIter<A:copy Ord> {
pure fn min() -> A;
pure fn max() -> A;
}
// A trait for sequences that can be by imperatively pushing elements
// onto them.
trait Buildable<A> {
/**
* Builds a buildable sequence by calling a provided function with
* an argument function that pushes an element onto the back of
* the sequence.
* This version takes an initial size for the sequence.
*
* # Arguments
*
* * size - A hint for an initial size of the sequence
* * builder - A function that will construct the sequence. It recieves
* as an argument a function that will push an element
* onto the sequence being constructed.
*/
static pure fn build_sized(size: uint,
builder: fn(push: pure fn(+A))) -> self;
}
pure fn eachi<A,IA:BaseIter<A>>(self: IA, blk: fn(uint, A) -> bool) {
let mut i = 0u;
for self.each |a| {
if !blk(i, a) { break; }
i += 1u;
}
}
pure fn all<A,IA:BaseIter<A>>(self: IA, blk: fn(A) -> bool) -> bool {
for self.each |a| {
if !blk(a) { return false; }
}
return true;
}
pure fn any<A,IA:BaseIter<A>>(self: IA, blk: fn(A) -> bool) -> bool {
for self.each |a| {
if blk(a) { return true; }
}
return false;
}
pure fn filter_to_vec<A:copy,IA:BaseIter<A>>(self: IA,
prd: fn(A) -> bool) -> ~[A] {
do vec::build_sized_opt(self.size_hint()) |push| {
for self.each |a| {
if prd(a) { push(a); }
}
}
}
pure fn map_to_vec<A:copy,B,IA:BaseIter<A>>(self: IA, op: fn(A) -> B)
-> ~[B] {
do vec::build_sized_opt(self.size_hint()) |push| {
for self.each |a| {
push(op(a));
}
}
}
pure fn flat_map_to_vec<A:copy,B:copy,IA:BaseIter<A>,IB:BaseIter<B>>(
self: IA, op: fn(A) -> IB) -> ~[B] {
do vec::build |push| {
for self.each |a| {
for op(a).each |b| {
push(b);
}
}
}
}
pure fn foldl<A,B,IA:BaseIter<A>>(self: IA, +b0: B, blk: fn(B, A) -> B) -> B {
let mut b <- b0;
for self.each |a| {
b = blk(b, a);
}
return b;
}
pure fn to_vec<A:copy,IA:BaseIter<A>>(self: IA) -> ~[A] {
foldl::<A,~[A],IA>(self, ~[], |r, a| vec::append(copy r, ~[a]))
}
pure fn contains<A:Eq,IA:BaseIter<A>>(self: IA, x: A) -> bool {
for self.each |a| {
if a == x { return true; }
}
return false;
}
pure fn count<A:Eq,IA:BaseIter<A>>(self: IA, x: A) -> uint {
do foldl(self, 0u) |count, value| {
if value == x {
count + 1u
} else {
count
}
}
}
pure fn position<A,IA:BaseIter<A>>(self: IA, f: fn(A) -> bool)
-> Option<uint> {
let mut i = 0;
for self.each |a| {
if f(a) { return Some(i); }
i += 1;
}
return None;
}
// note: 'rposition' would only make sense to provide with a bidirectional
// iter interface, such as would provide "reach" in addition to "each". as is,
// it would have to be implemented with foldr, which is too inefficient.
pure fn repeat(times: uint, blk: fn() -> bool) {
let mut i = 0u;
while i < times {
if !blk() { break }
i += 1u;
}
}
pure fn min<A:copy Ord,IA:BaseIter<A>>(self: IA) -> A {
match do foldl::<A,Option<A>,IA>(self, None) |a, b| {
match a {
Some(a_) if a_ < b => {
// FIXME (#2005): Not sure if this is successfully optimized to
// a move
a
}
_ => Some(b)
}
} {
Some(val) => val,
None => fail ~"min called on empty iterator"
}
}
pure fn max<A:copy,IA:BaseIter<A>>(self: IA) -> A {
match do foldl::<A,Option<A>,IA>(self, None) |a, b| {
match a {
Some(a_) if a_ > b => {
// FIXME (#2005): Not sure if this is successfully optimized to
// a move.
a
}
_ => Some(b)
}
} {
Some(val) => val,
None => fail ~"max called on empty iterator"
}
}
pure fn find<A: copy,IA:BaseIter<A>>(self: IA,
p: fn(A) -> bool) -> Option<A> {
for self.each |i| {
if p(i) { return Some(i) }
}
return None;
}
// Some functions for just building
/**
* Builds a sequence by calling a provided function with an argument
* function that pushes an element to the back of a sequence.
*
* # Arguments
*
* * builder - A function that will construct the sequence. It recieves
* as an argument a function that will push an element
* onto the sequence being constructed.
*/
#[inline(always)]
pure fn build<A,B: Buildable<A>>(builder: fn(push: pure fn(+A))) -> B {
build_sized(4, builder)
}
/**
* Builds a sequence by calling a provided function with an argument
* function that pushes an element to the back of a sequence.
* This version takes an initial size for the sequence.
*
* # Arguments
*
* * size - An option, maybe containing initial size of the sequence
* to reserve
* * builder - A function that will construct the sequence. It recieves
* as an argument a function that will push an element
* onto the sequence being constructed.
*/
#[inline(always)]
pure fn build_sized_opt<A,B: Buildable<A>>(
size: Option<uint>,
builder: fn(push: pure fn(+A))) -> B {
build_sized(size.get_default(4), builder)
}
// Functions that combine iteration and building
/// Apply a function to each element of an iterable and return the results
fn map<T,IT: BaseIter<T>,U,BU: Buildable<U>>(v: IT, f: fn(T) -> U) -> BU {
do build_sized_opt(v.size_hint()) |push| {
for v.each() |elem| {
push(f(elem));
}
}
}
/**
* Creates and initializes a generic sequence from a function
*
* Creates a generic sequence of size `n_elts` and initializes the elements
* to the value returned by the function `op`.
*/
pure fn from_fn<T,BT: Buildable<T>>(n_elts: uint, op: InitOp<T>) -> BT {
do build_sized(n_elts) |push| {
let mut i: uint = 0u;
while i < n_elts { push(op(i)); i += 1u; }
}
}
/**
* Creates and initializes a generic sequence with some element
*
* Creates an immutable vector of size `n_elts` and initializes the elements
* to the value `t`.
*/
pure fn from_elem<T: copy,BT: Buildable<T>>(n_elts: uint, t: T) -> BT {
do build_sized(n_elts) |push| {
let mut i: uint = 0u;
while i < n_elts { push(t); i += 1u; }
}
}
/// Appending two generic sequences
#[inline(always)]
pure fn append<T: copy,IT: BaseIter<T>,BT: Buildable<T>>(
lhs: IT, rhs: IT) -> BT {
let size_opt = lhs.size_hint().chain(
|sz1| rhs.size_hint().map(|sz2| sz1+sz2));
do build_sized_opt(size_opt) |push| {
for lhs.each |x| { push(x); }
for rhs.each |x| { push(x); }
}
}
/// Copies a generic sequence, possibly converting it to a different
/// type of sequence.
#[inline(always)]
pure fn copy_seq<T: copy,IT: BaseIter<T>,BT: Buildable<T>>(
v: IT) -> BT {
do build_sized_opt(v.size_hint()) |push| {
for v.each |x| { push(x); }
}
}
/*
#[test]
fn test_enumerate() {
enumerate(["0", "1", "2"]) {|i,j|
assert fmt!("%u",i) == j;
}
}
#[test]
fn test_map_and_to_vec() {
let a = bind vec::iter(~[0, 1, 2], _);
let b = bind map(a, {|i| 2*i}, _);
let c = to_vec(b);
assert c == ~[0, 2, 4];
}
#[test]
fn test_map_directly_on_vec() {
let b = bind map(~[0, 1, 2], {|i| 2*i}, _);
let c = to_vec(b);
assert c == ~[0, 2, 4];
}
#[test]
fn test_filter_on_int_range() {
fn is_even(&&i: int) -> bool {
return (i % 2) == 0;
}
let l = to_vec(bind filter(bind int::range(0, 10, _), is_even, _));
assert l == ~[0, 2, 4, 6, 8];
}
#[test]
fn test_filter_on_uint_range() {
fn is_even(&&i: uint) -> bool {
return (i % 2u) == 0u;
}
let l = to_vec(bind filter(bind uint::range(0u, 10u, _), is_even, _));
assert l == ~[0u, 2u, 4u, 6u, 8u];
}
#[test]
fn test_filter_map() {
fn negativate_the_evens(&&i: int) -> Option<int> {
if i % 2 == 0 {
Some(-i)
} else {
none
}
}
let l = to_vec(bind filter_map(
bind int::range(0, 5, _), negativate_the_evens, _));
assert l == ~[0, -2, -4];
}
#[test]
fn test_flat_map_with_option() {
fn if_even(&&i: int) -> Option<int> {
if (i % 2) == 0 { Some(i) }
else { none }
}
let a = bind vec::iter(~[0, 1, 2], _);
let b = bind flat_map(a, if_even, _);
let c = to_vec(b);
assert c == ~[0, 2];
}
#[test]
fn test_flat_map_with_list() {
fn repeat(&&i: int) -> ~[int] {
let mut r = ~[];
int::range(0, i) {|_j| r += ~[i]; }
r
}
let a = bind vec::iter(~[0, 1, 2, 3], _);
let b = bind flat_map(a, repeat, _);
let c = to_vec(b);
debug!("c = %?", c);
assert c == ~[1, 2, 2, 3, 3, 3];
}
#[test]
fn test_repeat() {
let mut c = ~[], i = 0u;
repeat(5u) {||
c += ~[(i * i)];
i += 1u;
};
debug!("c = %?", c);
assert c == ~[0u, 1u, 4u, 9u, 16u];
}
#[test]
fn test_min() {
assert min(~[5, 4, 1, 2, 3]) == 1;
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_min_empty() {
min::<int, ~[int]>(~[]);
}
#[test]
fn test_max() {
assert max(~[1, 2, 4, 2, 3]) == 4;
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_max_empty() {
max::<int, ~[int]>(~[]);
}
#[test]
fn test_reversed() {
assert to_vec(bind reversed(~[1, 2, 3], _)) == ~[3, 2, 1];
}
#[test]
fn test_count() {
assert count(~[1, 2, 1, 2, 1], 1) == 3u;
}
#[test]
fn test_foldr() {
fn sub(&&a: int, &&b: int) -> int {
a - b
}
let sum = foldr(~[1, 2, 3, 4], 0, sub);
assert sum == -2;
}
*/