2022-07-19 03:07:54 +00:00

1590 lines
58 KiB
Rust

//! Diagnostics creation and emission for `rustc`.
//!
//! This module contains the code for creating and emitting diagnostics.
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
#![feature(drain_filter)]
#![feature(backtrace)]
#![feature(if_let_guard)]
#![cfg_attr(bootstrap, feature(let_chains))]
#![feature(let_else)]
#![feature(never_type)]
#![feature(adt_const_params)]
#![feature(rustc_attrs)]
#![allow(incomplete_features)]
#![allow(rustc::potential_query_instability)]
#[macro_use]
extern crate rustc_macros;
#[macro_use]
extern crate tracing;
pub use emitter::ColorConfig;
use rustc_lint_defs::LintExpectationId;
use Level::*;
use emitter::{is_case_difference, Emitter, EmitterWriter};
use registry::Registry;
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap};
use rustc_data_structures::stable_hasher::StableHasher;
use rustc_data_structures::sync::{self, Lock, Lrc};
use rustc_data_structures::AtomicRef;
pub use rustc_error_messages::{
fallback_fluent_bundle, fluent, fluent_bundle, DiagnosticMessage, FluentBundle,
LanguageIdentifier, LazyFallbackBundle, MultiSpan, SpanLabel, SubdiagnosticMessage,
DEFAULT_LOCALE_RESOURCES,
};
pub use rustc_lint_defs::{pluralize, Applicability};
use rustc_span::source_map::SourceMap;
use rustc_span::HashStableContext;
use rustc_span::{Loc, Span};
use std::borrow::Cow;
use std::hash::Hash;
use std::num::NonZeroUsize;
use std::panic;
use std::path::Path;
use std::{error, fmt};
use termcolor::{Color, ColorSpec};
pub mod annotate_snippet_emitter_writer;
mod diagnostic;
mod diagnostic_builder;
pub mod emitter;
pub mod json;
mod lock;
pub mod registry;
mod snippet;
mod styled_buffer;
pub use snippet::Style;
pub type PResult<'a, T> = Result<T, DiagnosticBuilder<'a, ErrorGuaranteed>>;
// `PResult` is used a lot. Make sure it doesn't unintentionally get bigger.
// (See also the comment on `DiagnosticBuilder`'s `diagnostic` field.)
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
rustc_data_structures::static_assert_size!(PResult<'_, ()>, 16);
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
rustc_data_structures::static_assert_size!(PResult<'_, bool>, 24);
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, Encodable, Decodable)]
pub enum SuggestionStyle {
/// Hide the suggested code when displaying this suggestion inline.
HideCodeInline,
/// Always hide the suggested code but display the message.
HideCodeAlways,
/// Do not display this suggestion in the cli output, it is only meant for tools.
CompletelyHidden,
/// Always show the suggested code.
/// This will *not* show the code if the suggestion is inline *and* the suggested code is
/// empty.
ShowCode,
/// Always show the suggested code independently.
ShowAlways,
}
impl SuggestionStyle {
fn hide_inline(&self) -> bool {
!matches!(*self, SuggestionStyle::ShowCode)
}
}
#[derive(Clone, Debug, PartialEq, Hash, Encodable, Decodable)]
pub struct CodeSuggestion {
/// Each substitute can have multiple variants due to multiple
/// applicable suggestions
///
/// `foo.bar` might be replaced with `a.b` or `x.y` by replacing
/// `foo` and `bar` on their own:
///
/// ```ignore (illustrative)
/// vec![
/// Substitution { parts: vec![(0..3, "a"), (4..7, "b")] },
/// Substitution { parts: vec![(0..3, "x"), (4..7, "y")] },
/// ]
/// ```
///
/// or by replacing the entire span:
///
/// ```ignore (illustrative)
/// vec![
/// Substitution { parts: vec![(0..7, "a.b")] },
/// Substitution { parts: vec![(0..7, "x.y")] },
/// ]
/// ```
pub substitutions: Vec<Substitution>,
pub msg: DiagnosticMessage,
/// Visual representation of this suggestion.
pub style: SuggestionStyle,
/// Whether or not the suggestion is approximate
///
/// Sometimes we may show suggestions with placeholders,
/// which are useful for users but not useful for
/// tools like rustfix
pub applicability: Applicability,
}
#[derive(Clone, Debug, PartialEq, Hash, Encodable, Decodable)]
/// See the docs on `CodeSuggestion::substitutions`
pub struct Substitution {
pub parts: Vec<SubstitutionPart>,
}
#[derive(Clone, Debug, PartialEq, Hash, Encodable, Decodable)]
pub struct SubstitutionPart {
pub span: Span,
pub snippet: String,
}
/// Used to translate between `Span`s and byte positions within a single output line in highlighted
/// code of structured suggestions.
#[derive(Debug, Clone, Copy)]
pub struct SubstitutionHighlight {
start: usize,
end: usize,
}
impl SubstitutionPart {
pub fn is_addition(&self, sm: &SourceMap) -> bool {
!self.snippet.is_empty()
&& sm
.span_to_snippet(self.span)
.map_or(self.span.is_empty(), |snippet| snippet.trim().is_empty())
}
pub fn is_deletion(&self) -> bool {
self.snippet.trim().is_empty()
}
pub fn is_replacement(&self, sm: &SourceMap) -> bool {
!self.snippet.is_empty()
&& sm
.span_to_snippet(self.span)
.map_or(!self.span.is_empty(), |snippet| !snippet.trim().is_empty())
}
}
impl CodeSuggestion {
/// Returns the assembled code suggestions, whether they should be shown with an underline
/// and whether the substitution only differs in capitalization.
pub fn splice_lines(
&self,
sm: &SourceMap,
) -> Vec<(String, Vec<SubstitutionPart>, Vec<Vec<SubstitutionHighlight>>, bool)> {
// For the `Vec<Vec<SubstitutionHighlight>>` value, the first level of the vector
// corresponds to the output snippet's lines, while the second level corresponds to the
// substrings within that line that should be highlighted.
use rustc_span::{CharPos, Pos};
/// Append to a buffer the remainder of the line of existing source code, and return the
/// count of lines that have been added for accurate highlighting.
fn push_trailing(
buf: &mut String,
line_opt: Option<&Cow<'_, str>>,
lo: &Loc,
hi_opt: Option<&Loc>,
) -> usize {
let mut line_count = 0;
let (lo, hi_opt) = (lo.col.to_usize(), hi_opt.map(|hi| hi.col.to_usize()));
if let Some(line) = line_opt {
if let Some(lo) = line.char_indices().map(|(i, _)| i).nth(lo) {
let hi_opt = hi_opt.and_then(|hi| line.char_indices().map(|(i, _)| i).nth(hi));
match hi_opt {
Some(hi) if hi > lo => {
line_count = line[lo..hi].matches('\n').count();
buf.push_str(&line[lo..hi])
}
Some(_) => (),
None => {
line_count = line[lo..].matches('\n').count();
buf.push_str(&line[lo..])
}
}
}
if hi_opt.is_none() {
buf.push('\n');
}
}
line_count
}
assert!(!self.substitutions.is_empty());
self.substitutions
.iter()
.filter(|subst| {
// Suggestions coming from macros can have malformed spans. This is a heavy
// handed approach to avoid ICEs by ignoring the suggestion outright.
let invalid = subst.parts.iter().any(|item| sm.is_valid_span(item.span).is_err());
if invalid {
debug!("splice_lines: suggestion contains an invalid span: {:?}", subst);
}
!invalid
})
.cloned()
.filter_map(|mut substitution| {
// Assumption: all spans are in the same file, and all spans
// are disjoint. Sort in ascending order.
substitution.parts.sort_by_key(|part| part.span.lo());
// Find the bounding span.
let lo = substitution.parts.iter().map(|part| part.span.lo()).min()?;
let hi = substitution.parts.iter().map(|part| part.span.hi()).max()?;
let bounding_span = Span::with_root_ctxt(lo, hi);
// The different spans might belong to different contexts, if so ignore suggestion.
let lines = sm.span_to_lines(bounding_span).ok()?;
assert!(!lines.lines.is_empty() || bounding_span.is_dummy());
// We can't splice anything if the source is unavailable.
if !sm.ensure_source_file_source_present(lines.file.clone()) {
return None;
}
let mut highlights = vec![];
// To build up the result, we do this for each span:
// - push the line segment trailing the previous span
// (at the beginning a "phantom" span pointing at the start of the line)
// - push lines between the previous and current span (if any)
// - if the previous and current span are not on the same line
// push the line segment leading up to the current span
// - splice in the span substitution
//
// Finally push the trailing line segment of the last span
let sf = &lines.file;
let mut prev_hi = sm.lookup_char_pos(bounding_span.lo());
prev_hi.col = CharPos::from_usize(0);
let mut prev_line =
lines.lines.get(0).and_then(|line0| sf.get_line(line0.line_index));
let mut buf = String::new();
let mut line_highlight = vec![];
// We need to keep track of the difference between the existing code and the added
// or deleted code in order to point at the correct column *after* substitution.
let mut acc = 0;
for part in &substitution.parts {
let cur_lo = sm.lookup_char_pos(part.span.lo());
if prev_hi.line == cur_lo.line {
let mut count =
push_trailing(&mut buf, prev_line.as_ref(), &prev_hi, Some(&cur_lo));
while count > 0 {
highlights.push(std::mem::take(&mut line_highlight));
acc = 0;
count -= 1;
}
} else {
acc = 0;
highlights.push(std::mem::take(&mut line_highlight));
let mut count = push_trailing(&mut buf, prev_line.as_ref(), &prev_hi, None);
while count > 0 {
highlights.push(std::mem::take(&mut line_highlight));
count -= 1;
}
// push lines between the previous and current span (if any)
for idx in prev_hi.line..(cur_lo.line - 1) {
if let Some(line) = sf.get_line(idx) {
buf.push_str(line.as_ref());
buf.push('\n');
highlights.push(std::mem::take(&mut line_highlight));
}
}
if let Some(cur_line) = sf.get_line(cur_lo.line - 1) {
let end = match cur_line.char_indices().nth(cur_lo.col.to_usize()) {
Some((i, _)) => i,
None => cur_line.len(),
};
buf.push_str(&cur_line[..end]);
}
}
// Add a whole line highlight per line in the snippet.
let len: isize = part
.snippet
.split('\n')
.next()
.unwrap_or(&part.snippet)
.chars()
.map(|c| match c {
'\t' => 4,
_ => 1,
})
.sum();
line_highlight.push(SubstitutionHighlight {
start: (cur_lo.col.0 as isize + acc) as usize,
end: (cur_lo.col.0 as isize + acc + len) as usize,
});
buf.push_str(&part.snippet);
let cur_hi = sm.lookup_char_pos(part.span.hi());
if prev_hi.line == cur_lo.line && cur_hi.line == cur_lo.line {
// Account for the difference between the width of the current code and the
// snippet being suggested, so that the *later* suggestions are correctly
// aligned on the screen.
acc += len as isize - (cur_hi.col.0 - cur_lo.col.0) as isize;
}
prev_hi = cur_hi;
prev_line = sf.get_line(prev_hi.line - 1);
for line in part.snippet.split('\n').skip(1) {
acc = 0;
highlights.push(std::mem::take(&mut line_highlight));
let end: usize = line
.chars()
.map(|c| match c {
'\t' => 4,
_ => 1,
})
.sum();
line_highlight.push(SubstitutionHighlight { start: 0, end });
}
}
highlights.push(std::mem::take(&mut line_highlight));
let only_capitalization = is_case_difference(sm, &buf, bounding_span);
// if the replacement already ends with a newline, don't print the next line
if !buf.ends_with('\n') {
push_trailing(&mut buf, prev_line.as_ref(), &prev_hi, None);
}
// remove trailing newlines
while buf.ends_with('\n') {
buf.pop();
}
Some((buf, substitution.parts, highlights, only_capitalization))
})
.collect()
}
}
pub use rustc_span::fatal_error::{FatalError, FatalErrorMarker};
/// Signifies that the compiler died with an explicit call to `.bug`
/// or `.span_bug` rather than a failed assertion, etc.
#[derive(Copy, Clone, Debug)]
pub struct ExplicitBug;
impl fmt::Display for ExplicitBug {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "parser internal bug")
}
}
impl error::Error for ExplicitBug {}
pub use diagnostic::{
AddSubdiagnostic, DecorateLint, Diagnostic, DiagnosticArg, DiagnosticArgValue, DiagnosticId,
DiagnosticStyledString, IntoDiagnosticArg, SubDiagnostic,
};
pub use diagnostic_builder::{DiagnosticBuilder, EmissionGuarantee, LintDiagnosticBuilder};
use std::backtrace::Backtrace;
/// A handler deals with errors and other compiler output.
/// Certain errors (fatal, bug, unimpl) may cause immediate exit,
/// others log errors for later reporting.
pub struct Handler {
flags: HandlerFlags,
inner: Lock<HandlerInner>,
}
/// This inner struct exists to keep it all behind a single lock;
/// this is done to prevent possible deadlocks in a multi-threaded compiler,
/// as well as inconsistent state observation.
struct HandlerInner {
flags: HandlerFlags,
/// The number of lint errors that have been emitted.
lint_err_count: usize,
/// The number of errors that have been emitted, including duplicates.
///
/// This is not necessarily the count that's reported to the user once
/// compilation ends.
err_count: usize,
warn_count: usize,
deduplicated_err_count: usize,
emitter: Box<dyn Emitter + sync::Send>,
delayed_span_bugs: Vec<Diagnostic>,
delayed_good_path_bugs: Vec<DelayedDiagnostic>,
/// This flag indicates that an expected diagnostic was emitted and suppressed.
/// This is used for the `delayed_good_path_bugs` check.
suppressed_expected_diag: bool,
/// This set contains the `DiagnosticId` of all emitted diagnostics to avoid
/// emitting the same diagnostic with extended help (`--teach`) twice, which
/// would be unnecessary repetition.
taught_diagnostics: FxHashSet<DiagnosticId>,
/// Used to suggest rustc --explain <error code>
emitted_diagnostic_codes: FxHashSet<DiagnosticId>,
/// This set contains a hash of every diagnostic that has been emitted by
/// this handler. These hashes is used to avoid emitting the same error
/// twice.
emitted_diagnostics: FxHashSet<u128>,
/// Stashed diagnostics emitted in one stage of the compiler that may be
/// stolen by other stages (e.g. to improve them and add more information).
/// The stashed diagnostics count towards the total error count.
/// When `.abort_if_errors()` is called, these are also emitted.
stashed_diagnostics: FxIndexMap<(Span, StashKey), Diagnostic>,
/// The warning count, used for a recap upon finishing
deduplicated_warn_count: usize,
future_breakage_diagnostics: Vec<Diagnostic>,
/// The [`Self::unstable_expect_diagnostics`] should be empty when this struct is
/// dropped. However, it can have values if the compilation is stopped early
/// or is only partially executed. To avoid ICEs, like in rust#94953 we only
/// check if [`Self::unstable_expect_diagnostics`] is empty, if the expectation ids
/// have been converted.
check_unstable_expect_diagnostics: bool,
/// Expected [`Diagnostic`]s store a [`LintExpectationId`] as part of
/// the lint level. [`LintExpectationId`]s created early during the compilation
/// (before `HirId`s have been defined) are not stable and can therefore not be
/// stored on disk. This buffer stores these diagnostics until the ID has been
/// replaced by a stable [`LintExpectationId`]. The [`Diagnostic`]s are the
/// submitted for storage and added to the list of fulfilled expectations.
unstable_expect_diagnostics: Vec<Diagnostic>,
/// expected diagnostic will have the level `Expect` which additionally
/// carries the [`LintExpectationId`] of the expectation that can be
/// marked as fulfilled. This is a collection of all [`LintExpectationId`]s
/// that have been marked as fulfilled this way.
///
/// [RFC-2383]: https://rust-lang.github.io/rfcs/2383-lint-reasons.html
fulfilled_expectations: FxHashSet<LintExpectationId>,
}
/// A key denoting where from a diagnostic was stashed.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum StashKey {
ItemNoType,
}
fn default_track_diagnostic(_: &Diagnostic) {}
pub static TRACK_DIAGNOSTICS: AtomicRef<fn(&Diagnostic)> =
AtomicRef::new(&(default_track_diagnostic as fn(&_)));
#[derive(Copy, Clone, Default)]
pub struct HandlerFlags {
/// If false, warning-level lints are suppressed.
/// (rustc: see `--allow warnings` and `--cap-lints`)
pub can_emit_warnings: bool,
/// If true, error-level diagnostics are upgraded to bug-level.
/// (rustc: see `-Z treat-err-as-bug`)
pub treat_err_as_bug: Option<NonZeroUsize>,
/// If true, immediately emit diagnostics that would otherwise be buffered.
/// (rustc: see `-Z dont-buffer-diagnostics` and `-Z treat-err-as-bug`)
pub dont_buffer_diagnostics: bool,
/// If true, immediately print bugs registered with `delay_span_bug`.
/// (rustc: see `-Z report-delayed-bugs`)
pub report_delayed_bugs: bool,
/// Show macro backtraces.
/// (rustc: see `-Z macro-backtrace`)
pub macro_backtrace: bool,
/// If true, identical diagnostics are reported only once.
pub deduplicate_diagnostics: bool,
}
impl Drop for HandlerInner {
fn drop(&mut self) {
self.emit_stashed_diagnostics();
if !self.has_errors() {
let bugs = std::mem::replace(&mut self.delayed_span_bugs, Vec::new());
self.flush_delayed(bugs, "no errors encountered even though `delay_span_bug` issued");
}
// FIXME(eddyb) this explains what `delayed_good_path_bugs` are!
// They're `delayed_span_bugs` but for "require some diagnostic happened"
// instead of "require some error happened". Sadly that isn't ideal, as
// lints can be `#[allow]`'d, potentially leading to this triggering.
// Also, "good path" should be replaced with a better naming.
if !self.has_any_message() && !self.suppressed_expected_diag {
let bugs = std::mem::replace(&mut self.delayed_good_path_bugs, Vec::new());
self.flush_delayed(
bugs.into_iter().map(DelayedDiagnostic::decorate),
"no warnings or errors encountered even though `delayed_good_path_bugs` issued",
);
}
if self.check_unstable_expect_diagnostics {
assert!(
self.unstable_expect_diagnostics.is_empty(),
"all diagnostics with unstable expectations should have been converted",
);
}
}
}
impl Handler {
pub fn with_tty_emitter(
color_config: ColorConfig,
can_emit_warnings: bool,
treat_err_as_bug: Option<NonZeroUsize>,
sm: Option<Lrc<SourceMap>>,
fluent_bundle: Option<Lrc<FluentBundle>>,
fallback_bundle: LazyFallbackBundle,
) -> Self {
Self::with_tty_emitter_and_flags(
color_config,
sm,
fluent_bundle,
fallback_bundle,
HandlerFlags { can_emit_warnings, treat_err_as_bug, ..Default::default() },
)
}
pub fn with_tty_emitter_and_flags(
color_config: ColorConfig,
sm: Option<Lrc<SourceMap>>,
fluent_bundle: Option<Lrc<FluentBundle>>,
fallback_bundle: LazyFallbackBundle,
flags: HandlerFlags,
) -> Self {
let emitter = Box::new(EmitterWriter::stderr(
color_config,
sm,
fluent_bundle,
fallback_bundle,
false,
false,
None,
flags.macro_backtrace,
));
Self::with_emitter_and_flags(emitter, flags)
}
pub fn with_emitter(
can_emit_warnings: bool,
treat_err_as_bug: Option<NonZeroUsize>,
emitter: Box<dyn Emitter + sync::Send>,
) -> Self {
Handler::with_emitter_and_flags(
emitter,
HandlerFlags { can_emit_warnings, treat_err_as_bug, ..Default::default() },
)
}
pub fn with_emitter_and_flags(
emitter: Box<dyn Emitter + sync::Send>,
flags: HandlerFlags,
) -> Self {
Self {
flags,
inner: Lock::new(HandlerInner {
flags,
lint_err_count: 0,
err_count: 0,
warn_count: 0,
deduplicated_err_count: 0,
deduplicated_warn_count: 0,
emitter,
delayed_span_bugs: Vec::new(),
delayed_good_path_bugs: Vec::new(),
suppressed_expected_diag: false,
taught_diagnostics: Default::default(),
emitted_diagnostic_codes: Default::default(),
emitted_diagnostics: Default::default(),
stashed_diagnostics: Default::default(),
future_breakage_diagnostics: Vec::new(),
check_unstable_expect_diagnostics: false,
unstable_expect_diagnostics: Vec::new(),
fulfilled_expectations: Default::default(),
}),
}
}
// This is here to not allow mutation of flags;
// as of this writing it's only used in tests in librustc_middle.
pub fn can_emit_warnings(&self) -> bool {
self.flags.can_emit_warnings
}
/// Resets the diagnostic error count as well as the cached emitted diagnostics.
///
/// NOTE: *do not* call this function from rustc. It is only meant to be called from external
/// tools that want to reuse a `Parser` cleaning the previously emitted diagnostics as well as
/// the overall count of emitted error diagnostics.
pub fn reset_err_count(&self) {
let mut inner = self.inner.borrow_mut();
inner.err_count = 0;
inner.warn_count = 0;
inner.deduplicated_err_count = 0;
inner.deduplicated_warn_count = 0;
// actually free the underlying memory (which `clear` would not do)
inner.delayed_span_bugs = Default::default();
inner.delayed_good_path_bugs = Default::default();
inner.taught_diagnostics = Default::default();
inner.emitted_diagnostic_codes = Default::default();
inner.emitted_diagnostics = Default::default();
inner.stashed_diagnostics = Default::default();
}
/// Stash a given diagnostic with the given `Span` and `StashKey` as the key for later stealing.
pub fn stash_diagnostic(&self, span: Span, key: StashKey, diag: Diagnostic) {
let mut inner = self.inner.borrow_mut();
// FIXME(Centril, #69537): Consider reintroducing panic on overwriting a stashed diagnostic
// if/when we have a more robust macro-friendly replacement for `(span, key)` as a key.
// See the PR for a discussion.
inner.stashed_diagnostics.insert((span, key), diag);
}
/// Steal a previously stashed diagnostic with the given `Span` and `StashKey` as the key.
pub fn steal_diagnostic(&self, span: Span, key: StashKey) -> Option<DiagnosticBuilder<'_, ()>> {
self.inner
.borrow_mut()
.stashed_diagnostics
.remove(&(span, key))
.map(|diag| DiagnosticBuilder::new_diagnostic(self, diag))
}
/// Emit all stashed diagnostics.
pub fn emit_stashed_diagnostics(&self) -> Option<ErrorGuaranteed> {
self.inner.borrow_mut().emit_stashed_diagnostics()
}
/// Construct a builder at the `Warning` level at the given `span` and with the `msg`.
///
/// Attempting to `.emit()` the builder will only emit if either:
/// * `can_emit_warnings` is `true`
/// * `is_force_warn` was set in `DiagnosticId::Lint`
#[rustc_lint_diagnostics]
pub fn struct_span_warn(
&self,
span: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
) -> DiagnosticBuilder<'_, ()> {
let mut result = self.struct_warn(msg);
result.set_span(span);
result
}
/// Construct a builder at the `Warning` level at the given `span` and with the `msg`.
/// The `id` is used for lint emissions which should also fulfill a lint expectation.
///
/// Attempting to `.emit()` the builder will only emit if either:
/// * `can_emit_warnings` is `true`
/// * `is_force_warn` was set in `DiagnosticId::Lint`
pub fn struct_span_warn_with_expectation(
&self,
span: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
id: LintExpectationId,
) -> DiagnosticBuilder<'_, ()> {
let mut result = self.struct_warn_with_expectation(msg, id);
result.set_span(span);
result
}
/// Construct a builder at the `Allow` level at the given `span` and with the `msg`.
#[rustc_lint_diagnostics]
pub fn struct_span_allow(
&self,
span: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
) -> DiagnosticBuilder<'_, ()> {
let mut result = self.struct_allow(msg);
result.set_span(span);
result
}
/// Construct a builder at the `Warning` level at the given `span` and with the `msg`.
/// Also include a code.
#[rustc_lint_diagnostics]
pub fn struct_span_warn_with_code(
&self,
span: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) -> DiagnosticBuilder<'_, ()> {
let mut result = self.struct_span_warn(span, msg);
result.code(code);
result
}
/// Construct a builder at the `Warning` level with the `msg`.
///
/// Attempting to `.emit()` the builder will only emit if either:
/// * `can_emit_warnings` is `true`
/// * `is_force_warn` was set in `DiagnosticId::Lint`
#[rustc_lint_diagnostics]
pub fn struct_warn(&self, msg: impl Into<DiagnosticMessage>) -> DiagnosticBuilder<'_, ()> {
DiagnosticBuilder::new(self, Level::Warning(None), msg)
}
/// Construct a builder at the `Warning` level with the `msg`. The `id` is used for
/// lint emissions which should also fulfill a lint expectation.
///
/// Attempting to `.emit()` the builder will only emit if either:
/// * `can_emit_warnings` is `true`
/// * `is_force_warn` was set in `DiagnosticId::Lint`
pub fn struct_warn_with_expectation(
&self,
msg: impl Into<DiagnosticMessage>,
id: LintExpectationId,
) -> DiagnosticBuilder<'_, ()> {
DiagnosticBuilder::new(self, Level::Warning(Some(id)), msg)
}
/// Construct a builder at the `Allow` level with the `msg`.
#[rustc_lint_diagnostics]
pub fn struct_allow(&self, msg: impl Into<DiagnosticMessage>) -> DiagnosticBuilder<'_, ()> {
DiagnosticBuilder::new(self, Level::Allow, msg)
}
/// Construct a builder at the `Expect` level with the `msg`.
#[rustc_lint_diagnostics]
pub fn struct_expect(
&self,
msg: impl Into<DiagnosticMessage>,
id: LintExpectationId,
) -> DiagnosticBuilder<'_, ()> {
DiagnosticBuilder::new(self, Level::Expect(id), msg)
}
/// Construct a builder at the `Error` level at the given `span` and with the `msg`.
#[rustc_lint_diagnostics]
pub fn struct_span_err(
&self,
span: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
let mut result = self.struct_err(msg);
result.set_span(span);
result
}
/// Construct a builder at the `Error` level at the given `span`, with the `msg`, and `code`.
#[rustc_lint_diagnostics]
pub fn struct_span_err_with_code(
&self,
span: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
let mut result = self.struct_span_err(span, msg);
result.code(code);
result
}
/// Construct a builder at the `Error` level with the `msg`.
// FIXME: This method should be removed (every error should have an associated error code).
#[rustc_lint_diagnostics]
pub fn struct_err(
&self,
msg: impl Into<DiagnosticMessage>,
) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
DiagnosticBuilder::new_guaranteeing_error::<_, { Level::Error { lint: false } }>(self, msg)
}
/// This should only be used by `rustc_middle::lint::struct_lint_level`. Do not use it for hard errors.
#[doc(hidden)]
pub fn struct_err_lint(&self, msg: impl Into<DiagnosticMessage>) -> DiagnosticBuilder<'_, ()> {
DiagnosticBuilder::new(self, Level::Error { lint: true }, msg)
}
/// Construct a builder at the `Error` level with the `msg` and the `code`.
#[rustc_lint_diagnostics]
pub fn struct_err_with_code(
&self,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
let mut result = self.struct_err(msg);
result.code(code);
result
}
/// Construct a builder at the `Warn` level with the `msg` and the `code`.
#[rustc_lint_diagnostics]
pub fn struct_warn_with_code(
&self,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) -> DiagnosticBuilder<'_, ()> {
let mut result = self.struct_warn(msg);
result.code(code);
result
}
/// Construct a builder at the `Fatal` level at the given `span` and with the `msg`.
#[rustc_lint_diagnostics]
pub fn struct_span_fatal(
&self,
span: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
) -> DiagnosticBuilder<'_, !> {
let mut result = self.struct_fatal(msg);
result.set_span(span);
result
}
/// Construct a builder at the `Fatal` level at the given `span`, with the `msg`, and `code`.
#[rustc_lint_diagnostics]
pub fn struct_span_fatal_with_code(
&self,
span: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) -> DiagnosticBuilder<'_, !> {
let mut result = self.struct_span_fatal(span, msg);
result.code(code);
result
}
/// Construct a builder at the `Error` level with the `msg`.
#[rustc_lint_diagnostics]
pub fn struct_fatal(&self, msg: impl Into<DiagnosticMessage>) -> DiagnosticBuilder<'_, !> {
DiagnosticBuilder::new_fatal(self, msg)
}
/// Construct a builder at the `Help` level with the `msg`.
#[rustc_lint_diagnostics]
pub fn struct_help(&self, msg: impl Into<DiagnosticMessage>) -> DiagnosticBuilder<'_, ()> {
DiagnosticBuilder::new(self, Level::Help, msg)
}
/// Construct a builder at the `Note` level with the `msg`.
#[rustc_lint_diagnostics]
pub fn struct_note_without_error(
&self,
msg: impl Into<DiagnosticMessage>,
) -> DiagnosticBuilder<'_, ()> {
DiagnosticBuilder::new(self, Level::Note, msg)
}
#[rustc_lint_diagnostics]
pub fn span_fatal(&self, span: impl Into<MultiSpan>, msg: impl Into<DiagnosticMessage>) -> ! {
self.emit_diag_at_span(Diagnostic::new(Fatal, msg), span);
FatalError.raise()
}
#[rustc_lint_diagnostics]
pub fn span_fatal_with_code(
&self,
span: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) -> ! {
self.emit_diag_at_span(Diagnostic::new_with_code(Fatal, Some(code), msg), span);
FatalError.raise()
}
#[rustc_lint_diagnostics]
pub fn span_err(
&self,
span: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
) -> ErrorGuaranteed {
self.emit_diag_at_span(Diagnostic::new(Error { lint: false }, msg), span).unwrap()
}
#[rustc_lint_diagnostics]
pub fn span_err_with_code(
&self,
span: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) {
self.emit_diag_at_span(
Diagnostic::new_with_code(Error { lint: false }, Some(code), msg),
span,
);
}
#[rustc_lint_diagnostics]
pub fn span_warn(&self, span: impl Into<MultiSpan>, msg: impl Into<DiagnosticMessage>) {
self.emit_diag_at_span(Diagnostic::new(Warning(None), msg), span);
}
#[rustc_lint_diagnostics]
pub fn span_warn_with_code(
&self,
span: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
code: DiagnosticId,
) {
self.emit_diag_at_span(Diagnostic::new_with_code(Warning(None), Some(code), msg), span);
}
pub fn span_bug(&self, span: impl Into<MultiSpan>, msg: impl Into<DiagnosticMessage>) -> ! {
self.inner.borrow_mut().span_bug(span, msg)
}
#[track_caller]
pub fn delay_span_bug(
&self,
span: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
) -> ErrorGuaranteed {
self.inner.borrow_mut().delay_span_bug(span, msg)
}
// FIXME(eddyb) note the comment inside `impl Drop for HandlerInner`, that's
// where the explanation of what "good path" is (also, it should be renamed).
pub fn delay_good_path_bug(&self, msg: impl Into<DiagnosticMessage>) {
self.inner.borrow_mut().delay_good_path_bug(msg)
}
pub fn span_bug_no_panic(&self, span: impl Into<MultiSpan>, msg: impl Into<DiagnosticMessage>) {
self.emit_diag_at_span(Diagnostic::new(Bug, msg), span);
}
pub fn span_note_without_error(
&self,
span: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
) {
self.emit_diag_at_span(Diagnostic::new(Note, msg), span);
}
pub fn span_note_diag(
&self,
span: Span,
msg: impl Into<DiagnosticMessage>,
) -> DiagnosticBuilder<'_, ()> {
let mut db = DiagnosticBuilder::new(self, Note, msg);
db.set_span(span);
db
}
// NOTE: intentionally doesn't raise an error so rustc_codegen_ssa only reports fatal errors in the main thread
pub fn fatal(&self, msg: impl Into<DiagnosticMessage>) -> FatalError {
self.inner.borrow_mut().fatal(msg)
}
pub fn err(&self, msg: impl Into<DiagnosticMessage>) -> ErrorGuaranteed {
self.inner.borrow_mut().err(msg)
}
pub fn warn(&self, msg: impl Into<DiagnosticMessage>) {
let mut db = DiagnosticBuilder::new(self, Warning(None), msg);
db.emit();
}
pub fn note_without_error(&self, msg: impl Into<DiagnosticMessage>) {
DiagnosticBuilder::new(self, Note, msg).emit();
}
pub fn bug(&self, msg: impl Into<DiagnosticMessage>) -> ! {
self.inner.borrow_mut().bug(msg)
}
#[inline]
pub fn err_count(&self) -> usize {
self.inner.borrow().err_count()
}
pub fn has_errors(&self) -> Option<ErrorGuaranteed> {
if self.inner.borrow().has_errors() { Some(ErrorGuaranteed(())) } else { None }
}
pub fn has_errors_or_lint_errors(&self) -> Option<ErrorGuaranteed> {
if self.inner.borrow().has_errors_or_lint_errors() {
Some(ErrorGuaranteed(()))
} else {
None
}
}
pub fn has_errors_or_delayed_span_bugs(&self) -> bool {
self.inner.borrow().has_errors_or_delayed_span_bugs()
}
pub fn print_error_count(&self, registry: &Registry) {
self.inner.borrow_mut().print_error_count(registry)
}
pub fn take_future_breakage_diagnostics(&self) -> Vec<Diagnostic> {
std::mem::take(&mut self.inner.borrow_mut().future_breakage_diagnostics)
}
pub fn abort_if_errors(&self) {
self.inner.borrow_mut().abort_if_errors()
}
/// `true` if we haven't taught a diagnostic with this code already.
/// The caller must then teach the user about such a diagnostic.
///
/// Used to suppress emitting the same error multiple times with extended explanation when
/// calling `-Zteach`.
pub fn must_teach(&self, code: &DiagnosticId) -> bool {
self.inner.borrow_mut().must_teach(code)
}
pub fn force_print_diagnostic(&self, db: Diagnostic) {
self.inner.borrow_mut().force_print_diagnostic(db)
}
pub fn emit_diagnostic(&self, diagnostic: &mut Diagnostic) -> Option<ErrorGuaranteed> {
self.inner.borrow_mut().emit_diagnostic(diagnostic)
}
fn emit_diag_at_span(
&self,
mut diag: Diagnostic,
sp: impl Into<MultiSpan>,
) -> Option<ErrorGuaranteed> {
let mut inner = self.inner.borrow_mut();
inner.emit_diagnostic(diag.set_span(sp))
}
pub fn emit_artifact_notification(&self, path: &Path, artifact_type: &str) {
self.inner.borrow_mut().emit_artifact_notification(path, artifact_type)
}
pub fn emit_future_breakage_report(&self, diags: Vec<Diagnostic>) {
self.inner.borrow_mut().emitter.emit_future_breakage_report(diags)
}
pub fn emit_unused_externs(
&self,
lint_level: rustc_lint_defs::Level,
loud: bool,
unused_externs: &[&str],
) {
let mut inner = self.inner.borrow_mut();
if loud && lint_level.is_error() {
inner.bump_err_count();
}
inner.emit_unused_externs(lint_level, unused_externs)
}
pub fn update_unstable_expectation_id(
&self,
unstable_to_stable: &FxHashMap<LintExpectationId, LintExpectationId>,
) {
let mut inner = self.inner.borrow_mut();
let diags = std::mem::take(&mut inner.unstable_expect_diagnostics);
inner.check_unstable_expect_diagnostics = true;
if !diags.is_empty() {
inner.suppressed_expected_diag = true;
for mut diag in diags.into_iter() {
diag.update_unstable_expectation_id(unstable_to_stable);
// Here the diagnostic is given back to `emit_diagnostic` where it was first
// intercepted. Now it should be processed as usual, since the unstable expectation
// id is now stable.
inner.emit_diagnostic(&mut diag);
}
}
inner
.stashed_diagnostics
.values_mut()
.for_each(|diag| diag.update_unstable_expectation_id(unstable_to_stable));
inner
.future_breakage_diagnostics
.iter_mut()
.for_each(|diag| diag.update_unstable_expectation_id(unstable_to_stable));
}
/// This methods steals all [`LintExpectationId`]s that are stored inside
/// [`HandlerInner`] and indicate that the linked expectation has been fulfilled.
#[must_use]
pub fn steal_fulfilled_expectation_ids(&self) -> FxHashSet<LintExpectationId> {
assert!(
self.inner.borrow().unstable_expect_diagnostics.is_empty(),
"`HandlerInner::unstable_expect_diagnostics` should be empty at this point",
);
std::mem::take(&mut self.inner.borrow_mut().fulfilled_expectations)
}
}
impl HandlerInner {
fn must_teach(&mut self, code: &DiagnosticId) -> bool {
self.taught_diagnostics.insert(code.clone())
}
fn force_print_diagnostic(&mut self, mut db: Diagnostic) {
self.emitter.emit_diagnostic(&mut db);
}
/// Emit all stashed diagnostics.
fn emit_stashed_diagnostics(&mut self) -> Option<ErrorGuaranteed> {
let diags = self.stashed_diagnostics.drain(..).map(|x| x.1).collect::<Vec<_>>();
let mut reported = None;
for mut diag in diags {
if diag.is_error() {
reported = Some(ErrorGuaranteed(()));
}
self.emit_diagnostic(&mut diag);
}
reported
}
// FIXME(eddyb) this should ideally take `diagnostic` by value.
fn emit_diagnostic(&mut self, diagnostic: &mut Diagnostic) -> Option<ErrorGuaranteed> {
// The `LintExpectationId` can be stable or unstable depending on when it was created.
// Diagnostics created before the definition of `HirId`s are unstable and can not yet
// be stored. Instead, they are buffered until the `LintExpectationId` is replaced by
// a stable one by the `LintLevelsBuilder`.
if let Some(LintExpectationId::Unstable { .. }) = diagnostic.level.get_expectation_id() {
self.unstable_expect_diagnostics.push(diagnostic.clone());
return None;
}
if diagnostic.level == Level::DelayedBug {
// FIXME(eddyb) this should check for `has_errors` and stop pushing
// once *any* errors were emitted (and truncate `delayed_span_bugs`
// when an error is first emitted, also), but maybe there's a case
// in which that's not sound? otherwise this is really inefficient.
self.delayed_span_bugs.push(diagnostic.clone());
if !self.flags.report_delayed_bugs {
return Some(ErrorGuaranteed::unchecked_claim_error_was_emitted());
}
}
if diagnostic.has_future_breakage() {
self.future_breakage_diagnostics.push(diagnostic.clone());
}
if let Some(expectation_id) = diagnostic.level.get_expectation_id() {
self.suppressed_expected_diag = true;
self.fulfilled_expectations.insert(expectation_id);
}
if matches!(diagnostic.level, Warning(_))
&& !self.flags.can_emit_warnings
&& !diagnostic.is_force_warn()
{
if diagnostic.has_future_breakage() {
(*TRACK_DIAGNOSTICS)(diagnostic);
}
return None;
}
(*TRACK_DIAGNOSTICS)(diagnostic);
if matches!(diagnostic.level, Level::Expect(_) | Level::Allow) {
return None;
}
if let Some(ref code) = diagnostic.code {
self.emitted_diagnostic_codes.insert(code.clone());
}
let already_emitted = |this: &mut Self| {
let mut hasher = StableHasher::new();
diagnostic.hash(&mut hasher);
let diagnostic_hash = hasher.finish();
!this.emitted_diagnostics.insert(diagnostic_hash)
};
// Only emit the diagnostic if we've been asked to deduplicate or
// haven't already emitted an equivalent diagnostic.
if !(self.flags.deduplicate_diagnostics && already_emitted(self)) {
debug!(?diagnostic);
debug!(?self.emitted_diagnostics);
let already_emitted_sub = |sub: &mut SubDiagnostic| {
debug!(?sub);
if sub.level != Level::OnceNote {
return false;
}
let mut hasher = StableHasher::new();
sub.hash(&mut hasher);
let diagnostic_hash = hasher.finish();
debug!(?diagnostic_hash);
!self.emitted_diagnostics.insert(diagnostic_hash)
};
diagnostic.children.drain_filter(already_emitted_sub).for_each(|_| {});
self.emitter.emit_diagnostic(&diagnostic);
if diagnostic.is_error() {
self.deduplicated_err_count += 1;
} else if let Warning(_) = diagnostic.level {
self.deduplicated_warn_count += 1;
}
}
if diagnostic.is_error() {
if matches!(diagnostic.level, Level::Error { lint: true }) {
self.bump_lint_err_count();
} else {
self.bump_err_count();
}
Some(ErrorGuaranteed::unchecked_claim_error_was_emitted())
} else {
self.bump_warn_count();
None
}
}
fn emit_artifact_notification(&mut self, path: &Path, artifact_type: &str) {
self.emitter.emit_artifact_notification(path, artifact_type);
}
fn emit_unused_externs(&mut self, lint_level: rustc_lint_defs::Level, unused_externs: &[&str]) {
self.emitter.emit_unused_externs(lint_level, unused_externs);
}
fn treat_err_as_bug(&self) -> bool {
self.flags
.treat_err_as_bug
.map_or(false, |c| self.err_count() + self.lint_err_count >= c.get())
}
fn print_error_count(&mut self, registry: &Registry) {
self.emit_stashed_diagnostics();
let warnings = match self.deduplicated_warn_count {
0 => String::new(),
1 => "1 warning emitted".to_string(),
count => format!("{count} warnings emitted"),
};
let errors = match self.deduplicated_err_count {
0 => String::new(),
1 => "aborting due to previous error".to_string(),
count => format!("aborting due to {count} previous errors"),
};
if self.treat_err_as_bug() {
return;
}
match (errors.len(), warnings.len()) {
(0, 0) => return,
(0, _) => self.emitter.emit_diagnostic(&Diagnostic::new(
Level::Warning(None),
DiagnosticMessage::Str(warnings),
)),
(_, 0) => {
let _ = self.fatal(&errors);
}
(_, _) => {
let _ = self.fatal(&format!("{}; {}", &errors, &warnings));
}
}
let can_show_explain = self.emitter.should_show_explain();
let are_there_diagnostics = !self.emitted_diagnostic_codes.is_empty();
if can_show_explain && are_there_diagnostics {
let mut error_codes = self
.emitted_diagnostic_codes
.iter()
.filter_map(|x| match &x {
DiagnosticId::Error(s)
if registry.try_find_description(s).map_or(false, |o| o.is_some()) =>
{
Some(s.clone())
}
_ => None,
})
.collect::<Vec<_>>();
if !error_codes.is_empty() {
error_codes.sort();
if error_codes.len() > 1 {
let limit = if error_codes.len() > 9 { 9 } else { error_codes.len() };
self.failure(&format!(
"Some errors have detailed explanations: {}{}",
error_codes[..limit].join(", "),
if error_codes.len() > 9 { "..." } else { "." }
));
self.failure(&format!(
"For more information about an error, try \
`rustc --explain {}`.",
&error_codes[0]
));
} else {
self.failure(&format!(
"For more information about this error, try \
`rustc --explain {}`.",
&error_codes[0]
));
}
}
}
}
#[inline]
fn err_count(&self) -> usize {
self.err_count + self.stashed_diagnostics.len()
}
fn has_errors(&self) -> bool {
self.err_count() > 0
}
fn has_errors_or_lint_errors(&self) -> bool {
self.has_errors() || self.lint_err_count > 0
}
fn has_errors_or_delayed_span_bugs(&self) -> bool {
self.has_errors() || !self.delayed_span_bugs.is_empty()
}
fn has_any_message(&self) -> bool {
self.err_count() > 0 || self.lint_err_count > 0 || self.warn_count > 0
}
fn abort_if_errors(&mut self) {
self.emit_stashed_diagnostics();
if self.has_errors() {
FatalError.raise();
}
}
fn span_bug(&mut self, sp: impl Into<MultiSpan>, msg: impl Into<DiagnosticMessage>) -> ! {
self.emit_diag_at_span(Diagnostic::new(Bug, msg), sp);
panic::panic_any(ExplicitBug);
}
fn emit_diag_at_span(&mut self, mut diag: Diagnostic, sp: impl Into<MultiSpan>) {
self.emit_diagnostic(diag.set_span(sp));
}
#[track_caller]
fn delay_span_bug(
&mut self,
sp: impl Into<MultiSpan>,
msg: impl Into<DiagnosticMessage>,
) -> ErrorGuaranteed {
// This is technically `self.treat_err_as_bug()` but `delay_span_bug` is called before
// incrementing `err_count` by one, so we need to +1 the comparing.
// FIXME: Would be nice to increment err_count in a more coherent way.
if self.flags.treat_err_as_bug.map_or(false, |c| self.err_count() + 1 >= c.get()) {
// FIXME: don't abort here if report_delayed_bugs is off
self.span_bug(sp, msg);
}
let mut diagnostic = Diagnostic::new(Level::DelayedBug, msg);
diagnostic.set_span(sp.into());
diagnostic.note(&format!("delayed at {}", std::panic::Location::caller()));
self.emit_diagnostic(&mut diagnostic).unwrap()
}
// FIXME(eddyb) note the comment inside `impl Drop for HandlerInner`, that's
// where the explanation of what "good path" is (also, it should be renamed).
fn delay_good_path_bug(&mut self, msg: impl Into<DiagnosticMessage>) {
let mut diagnostic = Diagnostic::new(Level::DelayedBug, msg);
if self.flags.report_delayed_bugs {
self.emit_diagnostic(&mut diagnostic);
}
let backtrace = std::backtrace::Backtrace::force_capture();
self.delayed_good_path_bugs.push(DelayedDiagnostic::with_backtrace(diagnostic, backtrace));
}
fn failure(&mut self, msg: impl Into<DiagnosticMessage>) {
self.emit_diagnostic(&mut Diagnostic::new(FailureNote, msg));
}
fn fatal(&mut self, msg: impl Into<DiagnosticMessage>) -> FatalError {
self.emit(Fatal, msg);
FatalError
}
fn err(&mut self, msg: impl Into<DiagnosticMessage>) -> ErrorGuaranteed {
self.emit(Error { lint: false }, msg)
}
/// Emit an error; level should be `Error` or `Fatal`.
fn emit(&mut self, level: Level, msg: impl Into<DiagnosticMessage>) -> ErrorGuaranteed {
if self.treat_err_as_bug() {
self.bug(msg);
}
self.emit_diagnostic(&mut Diagnostic::new(level, msg)).unwrap()
}
fn bug(&mut self, msg: impl Into<DiagnosticMessage>) -> ! {
self.emit_diagnostic(&mut Diagnostic::new(Bug, msg));
panic::panic_any(ExplicitBug);
}
fn flush_delayed(
&mut self,
bugs: impl IntoIterator<Item = Diagnostic>,
explanation: impl Into<DiagnosticMessage> + Copy,
) {
let mut no_bugs = true;
for mut bug in bugs {
if no_bugs {
// Put the overall explanation before the `DelayedBug`s, to
// frame them better (e.g. separate warnings from them).
self.emit_diagnostic(&mut Diagnostic::new(Bug, explanation));
no_bugs = false;
}
// "Undelay" the `DelayedBug`s (into plain `Bug`s).
if bug.level != Level::DelayedBug {
// NOTE(eddyb) not panicking here because we're already producing
// an ICE, and the more information the merrier.
bug.note(&format!(
"`flushed_delayed` got diagnostic with level {:?}, \
instead of the expected `DelayedBug`",
bug.level,
));
}
bug.level = Level::Bug;
self.emit_diagnostic(&mut bug);
}
// Panic with `ExplicitBug` to avoid "unexpected panic" messages.
if !no_bugs {
panic::panic_any(ExplicitBug);
}
}
fn bump_lint_err_count(&mut self) {
self.lint_err_count += 1;
self.panic_if_treat_err_as_bug();
}
fn bump_err_count(&mut self) {
self.err_count += 1;
self.panic_if_treat_err_as_bug();
}
fn bump_warn_count(&mut self) {
self.warn_count += 1;
}
fn panic_if_treat_err_as_bug(&self) {
if self.treat_err_as_bug() {
match (
self.err_count() + self.lint_err_count,
self.flags.treat_err_as_bug.map(|c| c.get()).unwrap_or(0),
) {
(1, 1) => panic!("aborting due to `-Z treat-err-as-bug=1`"),
(0 | 1, _) => {}
(count, as_bug) => panic!(
"aborting after {} errors due to `-Z treat-err-as-bug={}`",
count, as_bug,
),
}
}
}
}
struct DelayedDiagnostic {
inner: Diagnostic,
note: Backtrace,
}
impl DelayedDiagnostic {
fn with_backtrace(diagnostic: Diagnostic, backtrace: Backtrace) -> Self {
DelayedDiagnostic { inner: diagnostic, note: backtrace }
}
fn decorate(mut self) -> Diagnostic {
self.inner.note(&format!("delayed at {}", self.note));
self.inner
}
}
#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug, Encodable, Decodable)]
pub enum Level {
Bug,
DelayedBug,
Fatal,
Error {
/// If this error comes from a lint, don't abort compilation even when abort_if_errors() is called.
lint: bool,
},
/// This [`LintExpectationId`] is used for expected lint diagnostics, which should
/// also emit a warning due to the `force-warn` flag. In all other cases this should
/// be `None`.
Warning(Option<LintExpectationId>),
Note,
/// A note that is only emitted once.
OnceNote,
Help,
FailureNote,
Allow,
Expect(LintExpectationId),
}
impl fmt::Display for Level {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.to_str().fmt(f)
}
}
impl Level {
fn color(self) -> ColorSpec {
let mut spec = ColorSpec::new();
match self {
Bug | DelayedBug | Fatal | Error { .. } => {
spec.set_fg(Some(Color::Red)).set_intense(true);
}
Warning(_) => {
spec.set_fg(Some(Color::Yellow)).set_intense(cfg!(windows));
}
Note | OnceNote => {
spec.set_fg(Some(Color::Green)).set_intense(true);
}
Help => {
spec.set_fg(Some(Color::Cyan)).set_intense(true);
}
FailureNote => {}
Allow | Expect(_) => unreachable!(),
}
spec
}
pub fn to_str(self) -> &'static str {
match self {
Bug | DelayedBug => "error: internal compiler error",
Fatal | Error { .. } => "error",
Warning(_) => "warning",
Note | OnceNote => "note",
Help => "help",
FailureNote => "failure-note",
Allow => panic!("Shouldn't call on allowed error"),
Expect(_) => panic!("Shouldn't call on expected error"),
}
}
pub fn is_failure_note(&self) -> bool {
matches!(*self, FailureNote)
}
pub fn get_expectation_id(&self) -> Option<LintExpectationId> {
match self {
Level::Expect(id) | Level::Warning(Some(id)) => Some(*id),
_ => None,
}
}
}
// FIXME(eddyb) this doesn't belong here AFAICT, should be moved to callsite.
pub fn add_elided_lifetime_in_path_suggestion(
source_map: &SourceMap,
diag: &mut Diagnostic,
n: usize,
path_span: Span,
incl_angl_brckt: bool,
insertion_span: Span,
) {
diag.span_label(path_span, format!("expected lifetime parameter{}", pluralize!(n)));
if !source_map.is_span_accessible(insertion_span) {
// Do not try to suggest anything if generated by a proc-macro.
return;
}
let anon_lts = vec!["'_"; n].join(", ");
let suggestion =
if incl_angl_brckt { format!("<{}>", anon_lts) } else { format!("{}, ", anon_lts) };
diag.span_suggestion_verbose(
insertion_span.shrink_to_hi(),
&format!("indicate the anonymous lifetime{}", pluralize!(n)),
suggestion,
Applicability::MachineApplicable,
);
}
/// Useful type to use with `Result<>` indicate that an error has already
/// been reported to the user, so no need to continue checking.
#[derive(Clone, Copy, Debug, Encodable, Decodable, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[derive(HashStable_Generic)]
pub struct ErrorGuaranteed(());
impl ErrorGuaranteed {
/// To be used only if you really know what you are doing... ideally, we would find a way to
/// eliminate all calls to this method.
pub fn unchecked_claim_error_was_emitted() -> Self {
ErrorGuaranteed(())
}
}