rust/src/librustc_codegen_llvm/common.rs
2020-01-02 13:57:04 +01:00

347 lines
12 KiB
Rust

#![allow(non_camel_case_types, non_snake_case)]
//! Code that is useful in various codegen modules.
use crate::consts;
use crate::llvm::{self, BasicBlock, Bool, ConstantInt, False, OperandBundleDef, True};
use crate::type_::Type;
use crate::type_of::LayoutLlvmExt;
use crate::value::Value;
use log::debug;
use rustc::bug;
use rustc_codegen_ssa::traits::*;
use crate::consts::const_alloc_to_llvm;
use rustc::mir::interpret::{Allocation, GlobalAlloc, Scalar};
use rustc::ty::layout::{self, HasDataLayout, LayoutOf, Size, TyLayout};
use rustc_codegen_ssa::mir::place::PlaceRef;
use libc::{c_char, c_uint};
use rustc_span::symbol::Symbol;
use syntax::ast::Mutability;
pub use crate::context::CodegenCx;
/*
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* Most "externs" are implicitly declared (automatically) as a result of a
* user declaring an extern _module_ dependency; this causes the rust driver
* to locate an extern crate, scan its compilation metadata, and emit extern
* declarations for any symbols used by the declaring crate.
*
* A "foreign" is an extern that references C (or other non-rust ABI) code.
* There is no metadata to scan for extern references so in these cases either
* a header-digester like bindgen, or manual function prototypes, have to
* serve as declarators. So these are usually given explicitly as prototype
* declarations, in rust code, with ABI attributes on them noting which ABI to
* link via.
*
* An "upcall" is a foreign call generated by the compiler (not corresponding
* to any user-written call in the code) into the runtime library, to perform
* some helper task such as bringing a task to life, allocating memory, etc.
*
*/
/// A structure representing an active landing pad for the duration of a basic
/// block.
///
/// Each `Block` may contain an instance of this, indicating whether the block
/// is part of a landing pad or not. This is used to make decision about whether
/// to emit `invoke` instructions (e.g., in a landing pad we don't continue to
/// use `invoke`) and also about various function call metadata.
///
/// For GNU exceptions (`landingpad` + `resume` instructions) this structure is
/// just a bunch of `None` instances (not too interesting), but for MSVC
/// exceptions (`cleanuppad` + `cleanupret` instructions) this contains data.
/// When inside of a landing pad, each function call in LLVM IR needs to be
/// annotated with which landing pad it's a part of. This is accomplished via
/// the `OperandBundleDef` value created for MSVC landing pads.
pub struct Funclet<'ll> {
cleanuppad: &'ll Value,
operand: OperandBundleDef<'ll>,
}
impl Funclet<'ll> {
pub fn new(cleanuppad: &'ll Value) -> Self {
Funclet { cleanuppad, operand: OperandBundleDef::new("funclet", &[cleanuppad]) }
}
pub fn cleanuppad(&self) -> &'ll Value {
self.cleanuppad
}
pub fn bundle(&self) -> &OperandBundleDef<'ll> {
&self.operand
}
}
impl BackendTypes for CodegenCx<'ll, 'tcx> {
type Value = &'ll Value;
type Function = &'ll Value;
type BasicBlock = &'ll BasicBlock;
type Type = &'ll Type;
type Funclet = Funclet<'ll>;
type DIScope = &'ll llvm::debuginfo::DIScope;
}
impl CodegenCx<'ll, 'tcx> {
pub fn const_array(&self, ty: &'ll Type, elts: &[&'ll Value]) -> &'ll Value {
unsafe {
return llvm::LLVMConstArray(ty, elts.as_ptr(), elts.len() as c_uint);
}
}
pub fn const_vector(&self, elts: &[&'ll Value]) -> &'ll Value {
unsafe {
return llvm::LLVMConstVector(elts.as_ptr(), elts.len() as c_uint);
}
}
pub fn const_bytes(&self, bytes: &[u8]) -> &'ll Value {
bytes_in_context(self.llcx, bytes)
}
fn const_cstr(&self, s: Symbol, null_terminated: bool) -> &'ll Value {
unsafe {
if let Some(&llval) = self.const_cstr_cache.borrow().get(&s) {
return llval;
}
let s_str = s.as_str();
let sc = llvm::LLVMConstStringInContext(
self.llcx,
s_str.as_ptr() as *const c_char,
s_str.len() as c_uint,
!null_terminated as Bool,
);
let sym = self.generate_local_symbol_name("str");
let g = self.define_global(&sym[..], self.val_ty(sc)).unwrap_or_else(|| {
bug!("symbol `{}` is already defined", sym);
});
llvm::LLVMSetInitializer(g, sc);
llvm::LLVMSetGlobalConstant(g, True);
llvm::LLVMRustSetLinkage(g, llvm::Linkage::InternalLinkage);
self.const_cstr_cache.borrow_mut().insert(s, g);
g
}
}
pub fn const_get_elt(&self, v: &'ll Value, idx: u64) -> &'ll Value {
unsafe {
assert_eq!(idx as c_uint as u64, idx);
let us = &[idx as c_uint];
let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint);
debug!("const_get_elt(v={:?}, idx={}, r={:?})", v, idx, r);
r
}
}
}
impl ConstMethods<'tcx> for CodegenCx<'ll, 'tcx> {
fn const_null(&self, t: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMConstNull(t) }
}
fn const_undef(&self, t: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMGetUndef(t) }
}
fn const_int(&self, t: &'ll Type, i: i64) -> &'ll Value {
unsafe { llvm::LLVMConstInt(t, i as u64, True) }
}
fn const_uint(&self, t: &'ll Type, i: u64) -> &'ll Value {
unsafe { llvm::LLVMConstInt(t, i, False) }
}
fn const_uint_big(&self, t: &'ll Type, u: u128) -> &'ll Value {
unsafe {
let words = [u as u64, (u >> 64) as u64];
llvm::LLVMConstIntOfArbitraryPrecision(t, 2, words.as_ptr())
}
}
fn const_bool(&self, val: bool) -> &'ll Value {
self.const_uint(self.type_i1(), val as u64)
}
fn const_i32(&self, i: i32) -> &'ll Value {
self.const_int(self.type_i32(), i as i64)
}
fn const_u32(&self, i: u32) -> &'ll Value {
self.const_uint(self.type_i32(), i as u64)
}
fn const_u64(&self, i: u64) -> &'ll Value {
self.const_uint(self.type_i64(), i)
}
fn const_usize(&self, i: u64) -> &'ll Value {
let bit_size = self.data_layout().pointer_size.bits();
if bit_size < 64 {
// make sure it doesn't overflow
assert!(i < (1 << bit_size));
}
self.const_uint(self.isize_ty, i)
}
fn const_u8(&self, i: u8) -> &'ll Value {
self.const_uint(self.type_i8(), i as u64)
}
fn const_real(&self, t: &'ll Type, val: f64) -> &'ll Value {
unsafe { llvm::LLVMConstReal(t, val) }
}
fn const_str(&self, s: Symbol) -> (&'ll Value, &'ll Value) {
let len = s.as_str().len();
let cs = consts::ptrcast(
self.const_cstr(s, false),
self.type_ptr_to(self.layout_of(self.tcx.mk_str()).llvm_type(self)),
);
(cs, self.const_usize(len as u64))
}
fn const_struct(&self, elts: &[&'ll Value], packed: bool) -> &'ll Value {
struct_in_context(self.llcx, elts, packed)
}
fn const_to_opt_uint(&self, v: &'ll Value) -> Option<u64> {
try_as_const_integral(v).map(|v| unsafe { llvm::LLVMConstIntGetZExtValue(v) })
}
fn const_to_opt_u128(&self, v: &'ll Value, sign_ext: bool) -> Option<u128> {
try_as_const_integral(v).and_then(|v| unsafe {
let (mut lo, mut hi) = (0u64, 0u64);
let success = llvm::LLVMRustConstInt128Get(v, sign_ext, &mut hi, &mut lo);
success.then_some(hi_lo_to_u128(lo, hi))
})
}
fn scalar_to_backend(
&self,
cv: Scalar,
layout: &layout::Scalar,
llty: &'ll Type,
) -> &'ll Value {
let bitsize = if layout.is_bool() { 1 } else { layout.value.size(self).bits() };
match cv {
Scalar::Raw { size: 0, .. } => {
assert_eq!(0, layout.value.size(self).bytes());
self.const_undef(self.type_ix(0))
}
Scalar::Raw { data, size } => {
assert_eq!(size as u64, layout.value.size(self).bytes());
let llval = self.const_uint_big(self.type_ix(bitsize), data);
if layout.value == layout::Pointer {
unsafe { llvm::LLVMConstIntToPtr(llval, llty) }
} else {
self.const_bitcast(llval, llty)
}
}
Scalar::Ptr(ptr) => {
let alloc_kind = self.tcx.alloc_map.lock().get(ptr.alloc_id);
let base_addr = match alloc_kind {
Some(GlobalAlloc::Memory(alloc)) => {
let init = const_alloc_to_llvm(self, alloc);
if alloc.mutability == Mutability::Mut {
self.static_addr_of_mut(init, alloc.align, None)
} else {
self.static_addr_of(init, alloc.align, None)
}
}
Some(GlobalAlloc::Function(fn_instance)) => self.get_fn_addr(fn_instance),
Some(GlobalAlloc::Static(def_id)) => {
assert!(self.tcx.is_static(def_id));
self.get_static(def_id)
}
None => bug!("missing allocation {:?}", ptr.alloc_id),
};
let llval = unsafe {
llvm::LLVMConstInBoundsGEP(
self.const_bitcast(base_addr, self.type_i8p()),
&self.const_usize(ptr.offset.bytes()),
1,
)
};
if layout.value != layout::Pointer {
unsafe { llvm::LLVMConstPtrToInt(llval, llty) }
} else {
self.const_bitcast(llval, llty)
}
}
}
}
fn from_const_alloc(
&self,
layout: TyLayout<'tcx>,
alloc: &Allocation,
offset: Size,
) -> PlaceRef<'tcx, &'ll Value> {
assert_eq!(alloc.align, layout.align.abi);
let llty = self.type_ptr_to(layout.llvm_type(self));
let llval = if layout.size == Size::ZERO {
let llval = self.const_usize(alloc.align.bytes());
unsafe { llvm::LLVMConstIntToPtr(llval, llty) }
} else {
let init = const_alloc_to_llvm(self, alloc);
let base_addr = self.static_addr_of(init, alloc.align, None);
let llval = unsafe {
llvm::LLVMConstInBoundsGEP(
self.const_bitcast(base_addr, self.type_i8p()),
&self.const_usize(offset.bytes()),
1,
)
};
self.const_bitcast(llval, llty)
};
PlaceRef::new_sized(llval, layout)
}
fn const_ptrcast(&self, val: &'ll Value, ty: &'ll Type) -> &'ll Value {
consts::ptrcast(val, ty)
}
}
pub fn val_ty(v: &'ll Value) -> &'ll Type {
unsafe { llvm::LLVMTypeOf(v) }
}
pub fn bytes_in_context(llcx: &'ll llvm::Context, bytes: &[u8]) -> &'ll Value {
unsafe {
let ptr = bytes.as_ptr() as *const c_char;
return llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True);
}
}
pub fn struct_in_context(llcx: &'a llvm::Context, elts: &[&'a Value], packed: bool) -> &'a Value {
unsafe {
llvm::LLVMConstStructInContext(llcx, elts.as_ptr(), elts.len() as c_uint, packed as Bool)
}
}
#[inline]
fn hi_lo_to_u128(lo: u64, hi: u64) -> u128 {
((hi as u128) << 64) | (lo as u128)
}
fn try_as_const_integral(v: &'ll Value) -> Option<&'ll ConstantInt> {
unsafe { llvm::LLVMIsAConstantInt(v) }
}