rust/src/librustc/middle/region.rs

522 lines
17 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
This file actually contains two passes related to regions. The first
pass builds up the `scope_map`, which describes the parent links in
the region hierarchy. The second pass infers which types must be
region parameterized.
Most of the documentation on regions can be found in
`middle/typeck/infer/region_inference.rs`
*/
use driver::session::Session;
use middle::ty::{FreeRegion};
use middle::ty;
use std::cell::RefCell;
use std::hashmap::{HashMap, HashSet};
use syntax::codemap::Span;
use syntax::{ast, visit};
use syntax::visit::{Visitor,fn_kind};
use syntax::ast::{P,Block,item,fn_decl,NodeId,Arm,Pat,Stmt,Expr,Local};
/**
The region maps encode information about region relationships.
- `scope_map` maps from:
- an expression to the expression or block encoding the maximum
(static) lifetime of a value produced by that expression. This is
generally the innermost call, statement, match, or block.
- a variable or binding id to the block in which that variable is declared.
- `free_region_map` maps from:
- a free region `a` to a list of free regions `bs` such that
`a <= b for all b in bs`
- the free region map is populated during type check as we check
each function. See the function `relate_free_regions` for
more information.
- `cleanup_scopes` includes scopes where trans cleanups occur
- this is intended to reflect the current state of trans, not
necessarily how I think things ought to work
*/
pub struct RegionMaps {
priv scope_map: RefCell<HashMap<ast::NodeId, ast::NodeId>>,
priv free_region_map: RefCell<HashMap<FreeRegion, ~[FreeRegion]>>,
priv cleanup_scopes: HashSet<ast::NodeId>
}
#[deriving(Clone)]
pub struct Context {
// Scope where variables should be parented to
var_parent: Option<ast::NodeId>,
// Innermost enclosing expression
parent: Option<ast::NodeId>,
}
struct RegionResolutionVisitor {
sess: Session,
// Generated maps:
region_maps: @mut RegionMaps,
}
impl RegionMaps {
pub fn relate_free_regions(&mut self, sub: FreeRegion, sup: FreeRegion) {
let mut free_region_map = self.free_region_map.borrow_mut();
match free_region_map.get().find_mut(&sub) {
Some(sups) => {
if !sups.iter().any(|x| x == &sup) {
sups.push(sup);
}
return;
}
None => {}
}
debug!("relate_free_regions(sub={:?}, sup={:?})", sub, sup);
free_region_map.get().insert(sub, ~[sup]);
}
pub fn record_parent(&mut self, sub: ast::NodeId, sup: ast::NodeId) {
debug!("record_parent(sub={:?}, sup={:?})", sub, sup);
assert!(sub != sup);
let mut scope_map = self.scope_map.borrow_mut();
scope_map.get().insert(sub, sup);
}
pub fn record_cleanup_scope(&mut self, scope_id: ast::NodeId) {
//! Records that a scope is a CLEANUP SCOPE. This is invoked
//! from within regionck. We wait until regionck because we do
//! not know which operators are overloaded until that point,
//! and only overloaded operators result in cleanup scopes.
self.cleanup_scopes.insert(scope_id);
}
pub fn opt_encl_scope(&self, id: ast::NodeId) -> Option<ast::NodeId> {
//! Returns the narrowest scope that encloses `id`, if any.
let scope_map = self.scope_map.borrow();
scope_map.get().find(&id).map(|x| *x)
}
pub fn encl_scope(&self, id: ast::NodeId) -> ast::NodeId {
//! Returns the narrowest scope that encloses `id`, if any.
let scope_map = self.scope_map.borrow();
match scope_map.get().find(&id) {
Some(&r) => r,
None => { fail!("No enclosing scope for id {:?}", id); }
}
}
pub fn is_cleanup_scope(&self, scope_id: ast::NodeId) -> bool {
self.cleanup_scopes.contains(&scope_id)
}
pub fn cleanup_scope(&self, expr_id: ast::NodeId) -> ast::NodeId {
//! Returns the scope when temps in expr will be cleaned up
let mut id = self.encl_scope(expr_id);
while !self.cleanup_scopes.contains(&id) {
id = self.encl_scope(id);
}
return id;
}
pub fn encl_region(&self, id: ast::NodeId) -> ty::Region {
//! Returns the narrowest scope region that encloses `id`, if any.
ty::ReScope(self.encl_scope(id))
}
pub fn scopes_intersect(&self, scope1: ast::NodeId, scope2: ast::NodeId)
-> bool {
self.is_subscope_of(scope1, scope2) ||
self.is_subscope_of(scope2, scope1)
}
pub fn is_subscope_of(&self,
subscope: ast::NodeId,
superscope: ast::NodeId)
-> bool {
/*!
* Returns true if `subscope` is equal to or is lexically
* nested inside `superscope` and false otherwise.
*/
let mut s = subscope;
while superscope != s {
let scope_map = self.scope_map.borrow();
match scope_map.get().find(&s) {
None => {
debug!("is_subscope_of({:?}, {:?}, s={:?})=false",
subscope, superscope, s);
return false;
}
Some(&scope) => s = scope
}
}
debug!("is_subscope_of({:?}, {:?})=true",
subscope, superscope);
return true;
}
pub fn sub_free_region(&self, sub: FreeRegion, sup: FreeRegion) -> bool {
/*!
* Determines whether two free regions have a subregion relationship
* by walking the graph encoded in `free_region_map`. Note that
* it is possible that `sub != sup` and `sub <= sup` and `sup <= sub`
* (that is, the user can give two different names to the same lifetime).
*/
if sub == sup {
return true;
}
// Do a little breadth-first-search here. The `queue` list
// doubles as a way to detect if we've seen a particular FR
// before. Note that we expect this graph to be an *extremely
// shallow* tree.
let mut queue = ~[sub];
let mut i = 0;
while i < queue.len() {
let free_region_map = self.free_region_map.borrow();
match free_region_map.get().find(&queue[i]) {
Some(parents) => {
for parent in parents.iter() {
if *parent == sup {
return true;
}
if !queue.iter().any(|x| x == parent) {
queue.push(*parent);
}
}
}
None => {}
}
i += 1;
}
return false;
}
pub fn is_subregion_of(&self,
sub_region: ty::Region,
super_region: ty::Region)
-> bool {
/*!
* Determines whether one region is a subregion of another. This is
* intended to run *after inference* and sadly the logic is somewhat
* duplicated with the code in infer.rs.
*/
debug!("is_subregion_of(sub_region={:?}, super_region={:?})",
sub_region, super_region);
sub_region == super_region || {
match (sub_region, super_region) {
(_, ty::ReStatic) => {
true
}
(ty::ReScope(sub_scope), ty::ReScope(super_scope)) => {
self.is_subscope_of(sub_scope, super_scope)
}
(ty::ReScope(sub_scope), ty::ReFree(ref fr)) => {
self.is_subscope_of(sub_scope, fr.scope_id)
}
(ty::ReFree(sub_fr), ty::ReFree(super_fr)) => {
self.sub_free_region(sub_fr, super_fr)
}
_ => {
false
}
}
}
}
pub fn nearest_common_ancestor(&self,
scope_a: ast::NodeId,
scope_b: ast::NodeId)
-> Option<ast::NodeId> {
/*!
* Finds the nearest common ancestor (if any) of two scopes. That
* is, finds the smallest scope which is greater than or equal to
* both `scope_a` and `scope_b`.
*/
if scope_a == scope_b { return Some(scope_a); }
let a_ancestors = ancestors_of(self, scope_a);
let b_ancestors = ancestors_of(self, scope_b);
let mut a_index = a_ancestors.len() - 1u;
let mut b_index = b_ancestors.len() - 1u;
// Here, ~[ab]_ancestors is a vector going from narrow to broad.
// The end of each vector will be the item where the scope is
// defined; if there are any common ancestors, then the tails of
// the vector will be the same. So basically we want to walk
// backwards from the tail of each vector and find the first point
// where they diverge. If one vector is a suffix of the other,
// then the corresponding scope is a superscope of the other.
if a_ancestors[a_index] != b_ancestors[b_index] {
return None;
}
loop {
// Loop invariant: a_ancestors[a_index] == b_ancestors[b_index]
// for all indices between a_index and the end of the array
if a_index == 0u { return Some(scope_a); }
if b_index == 0u { return Some(scope_b); }
a_index -= 1u;
b_index -= 1u;
if a_ancestors[a_index] != b_ancestors[b_index] {
return Some(a_ancestors[a_index + 1u]);
}
}
fn ancestors_of(this: &RegionMaps, scope: ast::NodeId)
-> ~[ast::NodeId]
{
// debug!("ancestors_of(scope={})", scope);
let mut result = ~[scope];
let mut scope = scope;
loop {
let scope_map = this.scope_map.borrow();
match scope_map.get().find(&scope) {
None => return result,
Some(&superscope) => {
result.push(superscope);
scope = superscope;
}
}
// debug!("ancestors_of_loop(scope={})", scope);
}
}
}
}
/// Records the current parent (if any) as the parent of `child_id`.
fn parent_to_expr(visitor: &mut RegionResolutionVisitor,
cx: Context, child_id: ast::NodeId, sp: Span) {
debug!("region::parent_to_expr(span={:?})",
visitor.sess.codemap.span_to_str(sp));
for parent_id in cx.parent.iter() {
visitor.region_maps.record_parent(child_id, *parent_id);
}
}
fn resolve_block(visitor: &mut RegionResolutionVisitor,
blk: ast::P<ast::Block>,
cx: Context) {
// Record the parent of this block.
parent_to_expr(visitor, cx, blk.id, blk.span);
// Descend.
let new_cx = Context {var_parent: Some(blk.id),
parent: Some(blk.id)};
visit::walk_block(visitor, blk, new_cx);
}
fn resolve_arm(visitor: &mut RegionResolutionVisitor,
arm: &ast::Arm,
cx: Context) {
visit::walk_arm(visitor, arm, cx);
}
fn resolve_pat(visitor: &mut RegionResolutionVisitor,
pat: &ast::Pat,
cx: Context) {
assert_eq!(cx.var_parent, cx.parent);
parent_to_expr(visitor, cx, pat.id, pat.span);
visit::walk_pat(visitor, pat, cx);
}
fn resolve_stmt(visitor: &mut RegionResolutionVisitor,
stmt: @ast::Stmt,
cx: Context) {
match stmt.node {
ast::StmtDecl(..) => {
visit::walk_stmt(visitor, stmt, cx);
}
ast::StmtExpr(_, stmt_id) |
ast::StmtSemi(_, stmt_id) => {
parent_to_expr(visitor, cx, stmt_id, stmt.span);
let expr_cx = Context {parent: Some(stmt_id), ..cx};
visit::walk_stmt(visitor, stmt, expr_cx);
}
ast::StmtMac(..) => visitor.sess.bug("unexpanded macro")
}
}
fn resolve_expr(visitor: &mut RegionResolutionVisitor,
expr: @ast::Expr,
cx: Context) {
parent_to_expr(visitor, cx, expr.id, expr.span);
let mut new_cx = cx;
new_cx.parent = Some(expr.id);
match expr.node {
ast::ExprAssignOp(..) | ast::ExprIndex(..) | ast::ExprBinary(..) |
ast::ExprUnary(..) | ast::ExprCall(..) | ast::ExprMethodCall(..) => {
// FIXME(#6268) Nested method calls
//
// The lifetimes for a call or method call look as follows:
//
// call.id
// - arg0.id
// - ...
// - argN.id
// - call.callee_id
//
// The idea is that call.callee_id represents *the time when
// the invoked function is actually running* and call.id
// represents *the time to prepare the arguments and make the
// call*. See the section "Borrows in Calls" borrowck/doc.rs
// for an extended explanantion of why this distinction is
// important.
//
// parent_to_expr(new_cx, expr.callee_id);
}
ast::ExprMatch(..) => {
new_cx.var_parent = Some(expr.id);
}
_ => {}
};
visit::walk_expr(visitor, expr, new_cx);
}
fn resolve_local(visitor: &mut RegionResolutionVisitor,
local: @ast::Local,
cx: Context) {
assert_eq!(cx.var_parent, cx.parent);
parent_to_expr(visitor, cx, local.id, local.span);
visit::walk_local(visitor, local, cx);
}
fn resolve_item(visitor: &mut RegionResolutionVisitor,
item: @ast::item,
cx: Context) {
// Items create a new outer block scope as far as we're concerned.
let new_cx = Context {var_parent: None, parent: None, ..cx};
visit::walk_item(visitor, item, new_cx);
}
fn resolve_fn(visitor: &mut RegionResolutionVisitor,
fk: &visit::fn_kind,
decl: &ast::fn_decl,
body: ast::P<ast::Block>,
sp: Span,
id: ast::NodeId,
cx: Context) {
debug!("region::resolve_fn(id={:?}, \
span={:?}, \
body.id={:?}, \
cx.parent={:?})",
id,
visitor.sess.codemap.span_to_str(sp),
body.id,
cx.parent);
// The arguments and `self` are parented to the body of the fn.
let decl_cx = Context {parent: Some(body.id),
var_parent: Some(body.id),
..cx};
match *fk {
visit::fk_method(_, _, method) => {
visitor.region_maps.record_parent(method.self_id, body.id);
}
_ => {}
}
visit::walk_fn_decl(visitor, decl, decl_cx);
// The body of the fn itself is either a root scope (top-level fn)
// or it continues with the inherited scope (closures).
let body_cx = match *fk {
visit::fk_item_fn(..) |
visit::fk_method(..) => {
Context {parent: None, var_parent: None, ..cx}
}
visit::fk_fn_block(..) => {
cx
}
};
visitor.visit_block(body, body_cx);
}
impl Visitor<Context> for RegionResolutionVisitor {
fn visit_block(&mut self, b:P<Block>, cx:Context) {
resolve_block(self, b, cx);
}
fn visit_item(&mut self, i:@item, cx:Context) {
resolve_item(self, i, cx);
}
fn visit_fn(&mut self, fk:&fn_kind, fd:&fn_decl, b:P<Block>, s:Span, n:NodeId, cx:Context) {
resolve_fn(self, fk, fd, b, s, n, cx);
}
fn visit_arm(&mut self, a:&Arm, cx:Context) {
resolve_arm(self, a, cx);
}
fn visit_pat(&mut self, p:&Pat, cx:Context) {
resolve_pat(self, p, cx);
}
fn visit_stmt(&mut self, s:@Stmt, cx:Context) {
resolve_stmt(self, s, cx);
}
fn visit_expr(&mut self, ex:@Expr, cx:Context) {
resolve_expr(self, ex, cx);
}
fn visit_local(&mut self, l:@Local, cx:Context) {
resolve_local(self, l, cx);
}
}
pub fn resolve_crate(sess: Session,
crate: &ast::Crate) -> @mut RegionMaps
{
let region_maps = @mut RegionMaps {
scope_map: RefCell::new(HashMap::new()),
free_region_map: RefCell::new(HashMap::new()),
cleanup_scopes: HashSet::new(),
};
let cx = Context {parent: None,
var_parent: None};
let mut visitor = RegionResolutionVisitor {
sess: sess,
region_maps: region_maps,
};
visit::walk_crate(&mut visitor, crate, cx);
return region_maps;
}