rust/src/etc/lldb_batchmode.py
2016-09-17 23:05:20 -07:00

221 lines
7.9 KiB
Python

# Copyright 2014 The Rust Project Developers. See the COPYRIGHT
# file at the top-level directory of this distribution and at
# http://rust-lang.org/COPYRIGHT.
#
# Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
# http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
# <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
# option. This file may not be copied, modified, or distributed
# except according to those terms.
# This script allows to use LLDB in a way similar to GDB's batch mode. That is, given a text file
# containing LLDB commands (one command per line), this script will execute the commands one after
# the other.
# LLDB also has the -s and -S commandline options which also execute a list of commands from a text
# file. However, this command are execute `immediately`: a the command of a `run` or `continue`
# command will be executed immediately after the `run` or `continue`, without waiting for the next
# breakpoint to be hit. This a command sequence like the following will not yield reliable results:
#
# break 11
# run
# print x
#
# Most of the time the `print` command will be executed while the program is still running will thus
# fail. Using this Python script, the above will work as expected.
from __future__ import print_function
import lldb
import os
import sys
import threading
import thread
import re
import time
# Set this to True for additional output
DEBUG_OUTPUT = False
def print_debug(s):
"""Print something if DEBUG_OUTPUT is True"""
global DEBUG_OUTPUT
if DEBUG_OUTPUT:
print("DEBUG: " + str(s))
def normalize_whitespace(s):
"""Replace newlines, tabs, multiple spaces, etc with exactly one space"""
return re.sub("\s+", " ", s)
def breakpoint_callback(frame, bp_loc, dict):
"""This callback is registered with every breakpoint and makes sure that the
frame containing the breakpoint location is selected"""
print("Hit breakpoint " + str(bp_loc))
# Select the frame and the thread containing it
frame.thread.process.SetSelectedThread(frame.thread)
frame.thread.SetSelectedFrame(frame.idx)
# Returning True means that we actually want to stop at this breakpoint
return True
# This is a list of breakpoints that are not registered with the breakpoint callback. The list is
# populated by the breakpoint listener and checked/emptied whenever a command has been executed
new_breakpoints = []
# This set contains all breakpoint ids that have already been registered with a callback, and is
# used to avoid hooking callbacks into breakpoints more than once
registered_breakpoints = set()
def execute_command(command_interpreter, command):
"""Executes a single CLI command"""
global new_breakpoints
global registered_breakpoints
res = lldb.SBCommandReturnObject()
print(command)
command_interpreter.HandleCommand(command, res)
if res.Succeeded():
if res.HasResult():
print(normalize_whitespace(res.GetOutput()), end='\n')
# If the command introduced any breakpoints, make sure to register
# them with the breakpoint
# callback
while len(new_breakpoints) > 0:
res.Clear()
breakpoint_id = new_breakpoints.pop()
if breakpoint_id in registered_breakpoints:
print_debug("breakpoint with id %s is already registered. Ignoring." %
str(breakpoint_id))
else:
print_debug("registering breakpoint callback, id = " + str(breakpoint_id))
callback_command = ("breakpoint command add -F breakpoint_callback " +
str(breakpoint_id))
command_interpreter.HandleCommand(callback_command, res)
if res.Succeeded():
print_debug("successfully registered breakpoint callback, id = " +
str(breakpoint_id))
registered_breakpoints.add(breakpoint_id)
else:
print("Error while trying to register breakpoint callback, id = " +
str(breakpoint_id))
else:
print(res.GetError())
def start_breakpoint_listener(target):
"""Listens for breakpoints being added and adds new ones to the callback
registration list"""
listener = lldb.SBListener("breakpoint listener")
def listen():
event = lldb.SBEvent()
try:
while True:
if listener.WaitForEvent(120, event):
if lldb.SBBreakpoint.EventIsBreakpointEvent(event) and \
lldb.SBBreakpoint.GetBreakpointEventTypeFromEvent(event) == \
lldb.eBreakpointEventTypeAdded:
global new_breakpoints
breakpoint = lldb.SBBreakpoint.GetBreakpointFromEvent(event)
print_debug("breakpoint added, id = " + str(breakpoint.id))
new_breakpoints.append(breakpoint.id)
except:
print_debug("breakpoint listener shutting down")
# Start the listener and let it run as a daemon
listener_thread = threading.Thread(target=listen)
listener_thread.daemon = True
listener_thread.start()
# Register the listener with the target
target.GetBroadcaster().AddListener(listener, lldb.SBTarget.eBroadcastBitBreakpointChanged)
def start_watchdog():
"""Starts a watchdog thread that will terminate the process after a certain
period of time"""
watchdog_start_time = time.clock()
watchdog_max_time = watchdog_start_time + 30
def watchdog():
while time.clock() < watchdog_max_time:
time.sleep(1)
print("TIMEOUT: lldb_batchmode.py has been running for too long. Aborting!")
thread.interrupt_main()
# Start the listener and let it run as a daemon
watchdog_thread = threading.Thread(target=watchdog)
watchdog_thread.daemon = True
watchdog_thread.start()
####################################################################################################
# ~main
####################################################################################################
if len(sys.argv) != 3:
print("usage: python lldb_batchmode.py target-path script-path")
sys.exit(1)
target_path = sys.argv[1]
script_path = sys.argv[2]
print("LLDB batch-mode script")
print("----------------------")
print("Debugger commands script is '%s'." % script_path)
print("Target executable is '%s'." % target_path)
print("Current working directory is '%s'" % os.getcwd())
# Start the timeout watchdog
start_watchdog()
# Create a new debugger instance
debugger = lldb.SBDebugger.Create()
# When we step or continue, don't return from the function until the process
# stops. We do this by setting the async mode to false.
debugger.SetAsync(False)
# Create a target from a file and arch
print("Creating a target for '%s'" % target_path)
target_error = lldb.SBError()
target = debugger.CreateTarget(target_path, None, None, True, target_error)
if not target:
print("Could not create debugging target '" + target_path + "': " +
str(target_error) + ". Aborting.", file=sys.stderr)
sys.exit(1)
# Register the breakpoint callback for every breakpoint
start_breakpoint_listener(target)
command_interpreter = debugger.GetCommandInterpreter()
try:
script_file = open(script_path, 'r')
for line in script_file:
command = line.strip()
if command == "run" or command == "r" or re.match("^process\s+launch.*", command):
# Before starting to run the program, let the thread sleep a bit, so all
# breakpoint added events can be processed
time.sleep(0.5)
if command != '':
execute_command(command_interpreter, command)
except IOError as e:
print("Could not read debugging script '%s'." % script_path, file=sys.stderr)
print(e, file=sys.stderr)
print("Aborting.", file=sys.stderr)
sys.exit(1)
finally:
debugger.Terminate()
script_file.close()