rust/src/librustc/metadata/tyencode.rs
Patrick Walton ddb2466f6a librustc: Always parse macro!()/macro![] as expressions if not
followed by a semicolon.

This allows code like `vec![1i, 2, 3].len();` to work.

This breaks code that uses macros as statements without putting
semicolons after them, such as:

    fn main() {
        ...
        assert!(a == b)
        assert!(c == d)
        println(...);
    }

It also breaks code that uses macros as items without semicolons:

    local_data_key!(foo)

    fn main() {
        println("hello world")
    }

Add semicolons to fix this code. Those two examples can be fixed as
follows:

    fn main() {
        ...
        assert!(a == b);
        assert!(c == d);
        println(...);
    }

    local_data_key!(foo);

    fn main() {
        println("hello world")
    }

RFC #378.

Closes #18635.

[breaking-change]
2014-12-18 12:09:07 -05:00

447 lines
13 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Type encoding
#![allow(unused_must_use)] // as with encoding, everything is a no-fail MemWriter
#![allow(non_camel_case_types)]
use std::cell::RefCell;
use middle::region;
use middle::subst;
use middle::subst::VecPerParamSpace;
use middle::ty::ParamTy;
use middle::ty::{mod, Ty};
use util::nodemap::FnvHashMap;
use syntax::abi::Abi;
use syntax::ast;
use syntax::diagnostic::SpanHandler;
use syntax::parse::token;
use rbml::io::SeekableMemWriter;
macro_rules! mywrite { ($($arg:tt)*) => ({ write!($($arg)*); }) }
pub struct ctxt<'a, 'tcx: 'a> {
pub diag: &'a SpanHandler,
// Def -> str Callback:
pub ds: fn(ast::DefId) -> String,
// The type context.
pub tcx: &'a ty::ctxt<'tcx>,
pub abbrevs: &'a abbrev_map<'tcx>
}
// Compact string representation for Ty values. API ty_str & parse_from_str.
// Extra parameters are for converting to/from def_ids in the string rep.
// Whatever format you choose should not contain pipe characters.
pub struct ty_abbrev {
s: String
}
pub type abbrev_map<'tcx> = RefCell<FnvHashMap<Ty<'tcx>, ty_abbrev>>;
pub fn enc_ty<'a, 'tcx>(w: &mut SeekableMemWriter, cx: &ctxt<'a, 'tcx>, t: Ty<'tcx>) {
match cx.abbrevs.borrow_mut().get(&t) {
Some(a) => { w.write(a.s.as_bytes()); return; }
None => {}
}
let pos = w.tell().unwrap();
enc_sty(w, cx, &t.sty);
let end = w.tell().unwrap();
let len = end - pos;
fn estimate_sz(u: u64) -> u64 {
let mut n = u;
let mut len = 0;
while n != 0 { len += 1; n = n >> 4; }
return len;
}
let abbrev_len = 3 + estimate_sz(pos) + estimate_sz(len);
if abbrev_len < len {
// I.e. it's actually an abbreviation.
cx.abbrevs.borrow_mut().insert(t, ty_abbrev {
s: format!("#{:x}:{:x}#", pos, len)
});
}
}
fn enc_mutability(w: &mut SeekableMemWriter, mt: ast::Mutability) {
match mt {
ast::MutImmutable => (),
ast::MutMutable => mywrite!(w, "m"),
}
}
fn enc_mt<'a, 'tcx>(w: &mut SeekableMemWriter, cx: &ctxt<'a, 'tcx>,
mt: ty::mt<'tcx>) {
enc_mutability(w, mt.mutbl);
enc_ty(w, cx, mt.ty);
}
fn enc_opt<T, F>(w: &mut SeekableMemWriter, t: Option<T>, enc_f: F) where
F: FnOnce(&mut SeekableMemWriter, T),
{
match t {
None => mywrite!(w, "n"),
Some(v) => {
mywrite!(w, "s");
enc_f(w, v);
}
}
}
fn enc_vec_per_param_space<'a, 'tcx, T, F>(w: &mut SeekableMemWriter,
cx: &ctxt<'a, 'tcx>,
v: &VecPerParamSpace<T>,
mut op: F) where
F: FnMut(&mut SeekableMemWriter, &ctxt<'a, 'tcx>, &T),
{
for &space in subst::ParamSpace::all().iter() {
mywrite!(w, "[");
for t in v.get_slice(space).iter() {
op(w, cx, t);
}
mywrite!(w, "]");
}
}
pub fn enc_substs<'a, 'tcx>(w: &mut SeekableMemWriter, cx: &ctxt<'a, 'tcx>,
substs: &subst::Substs<'tcx>) {
enc_region_substs(w, cx, &substs.regions);
enc_vec_per_param_space(w, cx, &substs.types,
|w, cx, &ty| enc_ty(w, cx, ty));
}
fn enc_region_substs(w: &mut SeekableMemWriter, cx: &ctxt, substs: &subst::RegionSubsts) {
match *substs {
subst::ErasedRegions => {
mywrite!(w, "e");
}
subst::NonerasedRegions(ref regions) => {
mywrite!(w, "n");
enc_vec_per_param_space(w, cx, regions,
|w, cx, &r| enc_region(w, cx, r));
}
}
}
pub fn enc_region(w: &mut SeekableMemWriter, cx: &ctxt, r: ty::Region) {
match r {
ty::ReLateBound(id, br) => {
mywrite!(w, "b[{}|", id.depth);
enc_bound_region(w, cx, br);
mywrite!(w, "]");
}
ty::ReEarlyBound(node_id, space, index, name) => {
mywrite!(w, "B[{}|{}|{}|{}]",
node_id,
space.to_uint(),
index,
token::get_name(name));
}
ty::ReFree(ref fr) => {
mywrite!(w, "f[");
enc_scope(w, cx, fr.scope);
mywrite!(w, "|");
enc_bound_region(w, cx, fr.bound_region);
mywrite!(w, "]");
}
ty::ReScope(scope) => {
mywrite!(w, "s");
enc_scope(w, cx, scope);
mywrite!(w, "|");
}
ty::ReStatic => {
mywrite!(w, "t");
}
ty::ReEmpty => {
mywrite!(w, "e");
}
ty::ReInfer(_) => {
// these should not crop up after typeck
cx.diag.handler().bug("cannot encode region variables");
}
}
}
fn enc_scope(w: &mut SeekableMemWriter, _cx: &ctxt, scope: region::CodeExtent) {
match scope {
region::CodeExtent::Misc(node_id) => mywrite!(w, "M{}", node_id)
}
}
fn enc_bound_region(w: &mut SeekableMemWriter, cx: &ctxt, br: ty::BoundRegion) {
match br {
ty::BrAnon(idx) => {
mywrite!(w, "a{}|", idx);
}
ty::BrNamed(d, name) => {
mywrite!(w, "[{}|{}]",
(cx.ds)(d),
token::get_name(name));
}
ty::BrFresh(id) => {
mywrite!(w, "f{}|", id);
}
ty::BrEnv => {
mywrite!(w, "e|");
}
}
}
pub fn enc_trait_ref<'a, 'tcx>(w: &mut SeekableMemWriter, cx: &ctxt<'a, 'tcx>,
s: &ty::TraitRef<'tcx>) {
mywrite!(w, "{}|", (cx.ds)(s.def_id));
enc_substs(w, cx, &s.substs);
}
pub fn enc_trait_store(w: &mut SeekableMemWriter, cx: &ctxt, s: ty::TraitStore) {
match s {
ty::UniqTraitStore => mywrite!(w, "~"),
ty::RegionTraitStore(re, m) => {
mywrite!(w, "&");
enc_region(w, cx, re);
enc_mutability(w, m);
}
}
}
fn enc_sty<'a, 'tcx>(w: &mut SeekableMemWriter, cx: &ctxt<'a, 'tcx>,
st: &ty::sty<'tcx>) {
match *st {
ty::ty_bool => mywrite!(w, "b"),
ty::ty_char => mywrite!(w, "c"),
ty::ty_int(t) => {
match t {
ast::TyI => mywrite!(w, "i"),
ast::TyI8 => mywrite!(w, "MB"),
ast::TyI16 => mywrite!(w, "MW"),
ast::TyI32 => mywrite!(w, "ML"),
ast::TyI64 => mywrite!(w, "MD")
}
}
ty::ty_uint(t) => {
match t {
ast::TyU => mywrite!(w, "u"),
ast::TyU8 => mywrite!(w, "Mb"),
ast::TyU16 => mywrite!(w, "Mw"),
ast::TyU32 => mywrite!(w, "Ml"),
ast::TyU64 => mywrite!(w, "Md")
}
}
ty::ty_float(t) => {
match t {
ast::TyF32 => mywrite!(w, "Mf"),
ast::TyF64 => mywrite!(w, "MF"),
}
}
ty::ty_enum(def, ref substs) => {
mywrite!(w, "t[{}|", (cx.ds)(def));
enc_substs(w, cx, substs);
mywrite!(w, "]");
}
ty::ty_trait(box ty::TyTrait { ref principal,
ref bounds }) => {
mywrite!(w, "x[");
enc_trait_ref(w, cx, principal);
enc_existential_bounds(w, cx, bounds);
mywrite!(w, "]");
}
ty::ty_tup(ref ts) => {
mywrite!(w, "T[");
for t in ts.iter() { enc_ty(w, cx, *t); }
mywrite!(w, "]");
}
ty::ty_uniq(typ) => { mywrite!(w, "~"); enc_ty(w, cx, typ); }
ty::ty_ptr(mt) => { mywrite!(w, "*"); enc_mt(w, cx, mt); }
ty::ty_rptr(r, mt) => {
mywrite!(w, "&");
enc_region(w, cx, r);
enc_mt(w, cx, mt);
}
ty::ty_vec(t, sz) => {
mywrite!(w, "V");
enc_ty(w, cx, t);
mywrite!(w, "/");
match sz {
Some(n) => mywrite!(w, "{}|", n),
None => mywrite!(w, "|"),
}
}
ty::ty_str => {
mywrite!(w, "v");
}
ty::ty_closure(ref f) => {
mywrite!(w, "f");
enc_closure_ty(w, cx, &**f);
}
ty::ty_bare_fn(ref f) => {
mywrite!(w, "F");
enc_bare_fn_ty(w, cx, f);
}
ty::ty_infer(_) => {
cx.diag.handler().bug("cannot encode inference variable types");
}
ty::ty_param(ParamTy {space, idx: id, def_id: did}) => {
mywrite!(w, "p{}|{}|{}|", (cx.ds)(did), id, space.to_uint())
}
ty::ty_struct(def, ref substs) => {
mywrite!(w, "a[{}|", (cx.ds)(def));
enc_substs(w, cx, substs);
mywrite!(w, "]");
}
ty::ty_unboxed_closure(def, region, ref substs) => {
mywrite!(w, "k[{}|", (cx.ds)(def));
enc_region(w, cx, region);
enc_substs(w, cx, substs);
mywrite!(w, "]");
}
ty::ty_err => {
mywrite!(w, "e");
}
ty::ty_open(_) => {
cx.diag.handler().bug("unexpected type in enc_sty (ty_open)");
}
}
}
fn enc_unsafety(w: &mut SeekableMemWriter, p: ast::Unsafety) {
match p {
ast::Unsafety::Normal => mywrite!(w, "n"),
ast::Unsafety::Unsafe => mywrite!(w, "u"),
}
}
fn enc_abi(w: &mut SeekableMemWriter, abi: Abi) {
mywrite!(w, "[");
mywrite!(w, "{}", abi.name());
mywrite!(w, "]")
}
fn enc_onceness(w: &mut SeekableMemWriter, o: ast::Onceness) {
match o {
ast::Once => mywrite!(w, "o"),
ast::Many => mywrite!(w, "m")
}
}
pub fn enc_bare_fn_ty<'a, 'tcx>(w: &mut SeekableMemWriter, cx: &ctxt<'a, 'tcx>,
ft: &ty::BareFnTy<'tcx>) {
enc_unsafety(w, ft.unsafety);
enc_abi(w, ft.abi);
enc_fn_sig(w, cx, &ft.sig);
}
pub fn enc_closure_ty<'a, 'tcx>(w: &mut SeekableMemWriter, cx: &ctxt<'a, 'tcx>,
ft: &ty::ClosureTy<'tcx>) {
enc_unsafety(w, ft.unsafety);
enc_onceness(w, ft.onceness);
enc_trait_store(w, cx, ft.store);
enc_existential_bounds(w, cx, &ft.bounds);
enc_fn_sig(w, cx, &ft.sig);
enc_abi(w, ft.abi);
}
fn enc_fn_sig<'a, 'tcx>(w: &mut SeekableMemWriter, cx: &ctxt<'a, 'tcx>,
fsig: &ty::FnSig<'tcx>) {
mywrite!(w, "[");
for ty in fsig.inputs.iter() {
enc_ty(w, cx, *ty);
}
mywrite!(w, "]");
if fsig.variadic {
mywrite!(w, "V");
} else {
mywrite!(w, "N");
}
match fsig.output {
ty::FnConverging(result_type) => {
enc_ty(w, cx, result_type);
}
ty::FnDiverging => {
mywrite!(w, "z");
}
}
}
pub fn enc_builtin_bounds(w: &mut SeekableMemWriter, _cx: &ctxt, bs: &ty::BuiltinBounds) {
for bound in bs.iter() {
match bound {
ty::BoundSend => mywrite!(w, "S"),
ty::BoundSized => mywrite!(w, "Z"),
ty::BoundCopy => mywrite!(w, "P"),
ty::BoundSync => mywrite!(w, "T"),
}
}
mywrite!(w, ".");
}
pub fn enc_existential_bounds(w: &mut SeekableMemWriter, cx: &ctxt, bs: &ty::ExistentialBounds) {
enc_region(w, cx, bs.region_bound);
enc_builtin_bounds(w, cx, &bs.builtin_bounds);
}
pub fn enc_bounds<'a, 'tcx>(w: &mut SeekableMemWriter, cx: &ctxt<'a, 'tcx>,
bs: &ty::ParamBounds<'tcx>) {
enc_builtin_bounds(w, cx, &bs.builtin_bounds);
for &r in bs.region_bounds.iter() {
mywrite!(w, "R");
enc_region(w, cx, r);
}
for tp in bs.trait_bounds.iter() {
mywrite!(w, "I");
enc_trait_ref(w, cx, &**tp);
}
mywrite!(w, ".");
}
pub fn enc_type_param_def<'a, 'tcx>(w: &mut SeekableMemWriter, cx: &ctxt<'a, 'tcx>,
v: &ty::TypeParameterDef<'tcx>) {
mywrite!(w, "{}:{}|{}|{}|",
token::get_name(v.name), (cx.ds)(v.def_id),
v.space.to_uint(), v.index);
enc_opt(w, v.associated_with, |w, did| mywrite!(w, "{}", (cx.ds)(did)));
mywrite!(w, "|");
enc_bounds(w, cx, &v.bounds);
enc_opt(w, v.default, |w, t| enc_ty(w, cx, t));
}
pub fn enc_predicate<'a, 'tcx>(w: &mut SeekableMemWriter,
cx: &ctxt<'a, 'tcx>,
p: &ty::Predicate<'tcx>)
{
match *p {
ty::Predicate::Trait(ref trait_ref) => {
mywrite!(w, "t");
enc_trait_ref(w, cx, &**trait_ref);
}
ty::Predicate::Equate(a, b) => {
mywrite!(w, "e");
enc_ty(w, cx, a);
enc_ty(w, cx, b);
}
ty::Predicate::RegionOutlives(a, b) => {
mywrite!(w, "r");
enc_region(w, cx, a);
enc_region(w, cx, b);
}
ty::Predicate::TypeOutlives(a, b) => {
mywrite!(w, "o");
enc_ty(w, cx, a);
enc_region(w, cx, b);
}
}
}