rust/src/librustc_trans/mir/analyze.rs

320 lines
12 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! An analysis to determine which locals require allocas and
//! which do not.
use rustc_data_structures::bitvec::BitVector;
use rustc_data_structures::indexed_vec::{Idx, IndexVec};
use rustc::middle::const_val::ConstVal;
use rustc::mir::{self, Location, TerminatorKind, Literal};
use rustc::mir::visit::{Visitor, LvalueContext};
use rustc::mir::traversal;
use rustc::ty;
use rustc::ty::layout::LayoutOf;
use type_of::LayoutLlvmExt;
use super::MirContext;
pub fn lvalue_locals<'a, 'tcx>(mircx: &MirContext<'a, 'tcx>) -> BitVector {
let mir = mircx.mir;
let mut analyzer = LocalAnalyzer::new(mircx);
analyzer.visit_mir(mir);
for (index, ty) in mir.local_decls.iter().map(|l| l.ty).enumerate() {
let ty = mircx.monomorphize(&ty);
debug!("local {} has type {:?}", index, ty);
let layout = mircx.ccx.layout_of(ty);
if layout.is_llvm_immediate() {
// These sorts of types are immediates that we can store
// in an ValueRef without an alloca.
} else if layout.is_llvm_scalar_pair() {
// We allow pairs and uses of any of their 2 fields.
} else {
// These sorts of types require an alloca. Note that
// is_llvm_immediate() may *still* be true, particularly
// for newtypes, but we currently force some types
// (e.g. structs) into an alloca unconditionally, just so
// that we don't have to deal with having two pathways
// (gep vs extractvalue etc).
analyzer.mark_as_lvalue(mir::Local::new(index));
}
}
analyzer.lvalue_locals
}
struct LocalAnalyzer<'mir, 'a: 'mir, 'tcx: 'a> {
cx: &'mir MirContext<'a, 'tcx>,
lvalue_locals: BitVector,
seen_assigned: BitVector
}
impl<'mir, 'a, 'tcx> LocalAnalyzer<'mir, 'a, 'tcx> {
fn new(mircx: &'mir MirContext<'a, 'tcx>) -> LocalAnalyzer<'mir, 'a, 'tcx> {
let mut analyzer = LocalAnalyzer {
cx: mircx,
lvalue_locals: BitVector::new(mircx.mir.local_decls.len()),
seen_assigned: BitVector::new(mircx.mir.local_decls.len())
};
// Arguments get assigned to by means of the function being called
for idx in 0..mircx.mir.arg_count {
analyzer.seen_assigned.insert(idx + 1);
}
analyzer
}
fn mark_as_lvalue(&mut self, local: mir::Local) {
debug!("marking {:?} as lvalue", local);
self.lvalue_locals.insert(local.index());
}
fn mark_assigned(&mut self, local: mir::Local) {
if !self.seen_assigned.insert(local.index()) {
self.mark_as_lvalue(local);
}
}
}
impl<'mir, 'a, 'tcx> Visitor<'tcx> for LocalAnalyzer<'mir, 'a, 'tcx> {
fn visit_assign(&mut self,
block: mir::BasicBlock,
lvalue: &mir::Lvalue<'tcx>,
rvalue: &mir::Rvalue<'tcx>,
location: Location) {
debug!("visit_assign(block={:?}, lvalue={:?}, rvalue={:?})", block, lvalue, rvalue);
if let mir::Lvalue::Local(index) = *lvalue {
self.mark_assigned(index);
if !self.cx.rvalue_creates_operand(rvalue) {
self.mark_as_lvalue(index);
}
} else {
self.visit_lvalue(lvalue, LvalueContext::Store, location);
}
self.visit_rvalue(rvalue, location);
}
fn visit_terminator_kind(&mut self,
block: mir::BasicBlock,
kind: &mir::TerminatorKind<'tcx>,
location: Location) {
match *kind {
mir::TerminatorKind::Call {
func: mir::Operand::Constant(box mir::Constant {
literal: Literal::Value {
value: &ty::Const { val: ConstVal::Function(def_id, _), .. }, ..
}, ..
}),
ref args, ..
} if Some(def_id) == self.cx.ccx.tcx().lang_items().box_free_fn() => {
// box_free(x) shares with `drop x` the property that it
// is not guaranteed to be statically dominated by the
// definition of x, so x must always be in an alloca.
if let mir::Operand::Consume(ref lvalue) = args[0] {
self.visit_lvalue(lvalue, LvalueContext::Drop, location);
}
}
_ => {}
}
self.super_terminator_kind(block, kind, location);
}
fn visit_lvalue(&mut self,
lvalue: &mir::Lvalue<'tcx>,
context: LvalueContext<'tcx>,
location: Location) {
debug!("visit_lvalue(lvalue={:?}, context={:?})", lvalue, context);
let ccx = self.cx.ccx;
if let mir::Lvalue::Projection(ref proj) = *lvalue {
// Allow uses of projections that are ZSTs or from immediate scalar fields.
if let LvalueContext::Consume = context {
let base_ty = proj.base.ty(self.cx.mir, ccx.tcx());
let base_ty = self.cx.monomorphize(&base_ty);
// ZSTs don't require any actual memory access.
let elem_ty = base_ty.projection_ty(ccx.tcx(), &proj.elem).to_ty(ccx.tcx());
let elem_ty = self.cx.monomorphize(&elem_ty);
if ccx.layout_of(elem_ty).is_zst() {
return;
}
if let mir::ProjectionElem::Field(..) = proj.elem {
let layout = ccx.layout_of(base_ty.to_ty(ccx.tcx()));
if layout.is_llvm_scalar_pair() {
// Recurse as a `Consume` instead of `Projection`,
// potentially stopping at non-operand projections,
// which would trigger `mark_as_lvalue` on locals.
self.visit_lvalue(&proj.base, LvalueContext::Consume, location);
return;
}
}
}
// A deref projection only reads the pointer, never needs the lvalue.
if let mir::ProjectionElem::Deref = proj.elem {
return self.visit_lvalue(&proj.base, LvalueContext::Consume, location);
}
}
self.super_lvalue(lvalue, context, location);
}
fn visit_local(&mut self,
&index: &mir::Local,
context: LvalueContext<'tcx>,
_: Location) {
match context {
LvalueContext::Call => {
self.mark_assigned(index);
}
LvalueContext::StorageLive |
LvalueContext::StorageDead |
LvalueContext::Validate |
LvalueContext::Consume => {}
LvalueContext::Inspect |
LvalueContext::Store |
LvalueContext::Borrow { .. } |
LvalueContext::Projection(..) => {
self.mark_as_lvalue(index);
}
LvalueContext::Drop => {
let ty = mir::Lvalue::Local(index).ty(self.cx.mir, self.cx.ccx.tcx());
let ty = self.cx.monomorphize(&ty.to_ty(self.cx.ccx.tcx()));
// Only need the lvalue if we're actually dropping it.
if self.cx.ccx.shared().type_needs_drop(ty) {
self.mark_as_lvalue(index);
}
}
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum CleanupKind {
NotCleanup,
Funclet,
Internal { funclet: mir::BasicBlock }
}
impl CleanupKind {
pub fn funclet_bb(self, for_bb: mir::BasicBlock) -> Option<mir::BasicBlock> {
match self {
CleanupKind::NotCleanup => None,
CleanupKind::Funclet => Some(for_bb),
CleanupKind::Internal { funclet } => Some(funclet),
}
}
}
pub fn cleanup_kinds<'a, 'tcx>(mir: &mir::Mir<'tcx>) -> IndexVec<mir::BasicBlock, CleanupKind> {
fn discover_masters<'tcx>(result: &mut IndexVec<mir::BasicBlock, CleanupKind>,
mir: &mir::Mir<'tcx>) {
for (bb, data) in mir.basic_blocks().iter_enumerated() {
match data.terminator().kind {
TerminatorKind::Goto { .. } |
TerminatorKind::Resume |
TerminatorKind::Return |
TerminatorKind::GeneratorDrop |
TerminatorKind::Unreachable |
TerminatorKind::SwitchInt { .. } |
TerminatorKind::Yield { .. } |
TerminatorKind::FalseEdges { .. } => {
/* nothing to do */
}
TerminatorKind::Call { cleanup: unwind, .. } |
TerminatorKind::Assert { cleanup: unwind, .. } |
TerminatorKind::DropAndReplace { unwind, .. } |
TerminatorKind::Drop { unwind, .. } => {
if let Some(unwind) = unwind {
debug!("cleanup_kinds: {:?}/{:?} registering {:?} as funclet",
bb, data, unwind);
result[unwind] = CleanupKind::Funclet;
}
}
}
}
}
fn propagate<'tcx>(result: &mut IndexVec<mir::BasicBlock, CleanupKind>,
mir: &mir::Mir<'tcx>) {
let mut funclet_succs = IndexVec::from_elem(None, mir.basic_blocks());
let mut set_successor = |funclet: mir::BasicBlock, succ| {
match funclet_succs[funclet] {
ref mut s @ None => {
debug!("set_successor: updating successor of {:?} to {:?}",
funclet, succ);
*s = Some(succ);
},
Some(s) => if s != succ {
span_bug!(mir.span, "funclet {:?} has 2 parents - {:?} and {:?}",
funclet, s, succ);
}
}
};
for (bb, data) in traversal::reverse_postorder(mir) {
let funclet = match result[bb] {
CleanupKind::NotCleanup => continue,
CleanupKind::Funclet => bb,
CleanupKind::Internal { funclet } => funclet,
};
debug!("cleanup_kinds: {:?}/{:?}/{:?} propagating funclet {:?}",
bb, data, result[bb], funclet);
for &succ in data.terminator().successors().iter() {
let kind = result[succ];
debug!("cleanup_kinds: propagating {:?} to {:?}/{:?}",
funclet, succ, kind);
match kind {
CleanupKind::NotCleanup => {
result[succ] = CleanupKind::Internal { funclet: funclet };
}
CleanupKind::Funclet => {
if funclet != succ {
set_successor(funclet, succ);
}
}
CleanupKind::Internal { funclet: succ_funclet } => {
if funclet != succ_funclet {
// `succ` has 2 different funclet going into it, so it must
// be a funclet by itself.
debug!("promoting {:?} to a funclet and updating {:?}", succ,
succ_funclet);
result[succ] = CleanupKind::Funclet;
set_successor(succ_funclet, succ);
set_successor(funclet, succ);
}
}
}
}
}
}
let mut result = IndexVec::from_elem(CleanupKind::NotCleanup, mir.basic_blocks());
discover_masters(&mut result, mir);
propagate(&mut result, mir);
debug!("cleanup_kinds: result={:?}", result);
result
}