rust/src/libstd/io/timer.rs
Alex Crichton 4538369566 std: Expose that LocalIo may not always be available
It is not the case that all programs will always be able to acquire an instance
of the LocalIo borrow, so this commit exposes this limitation by returning
Option<LocalIo> from LocalIo::borrow().

At the same time, a helper method LocalIo::maybe_raise() has been added in order
to encapsulate the functionality of raising on io_error if there is on local I/O
available.
2013-12-24 14:42:00 -08:00

158 lines
4.4 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
Synchronous Timers
This module exposes the functionality to create timers, block the current task,
and create ports which will receive notifications after a period of time.
# Example
```rust,ignore
use std::io::Timer;
let mut timer = Timer::new().unwrap();
timer.sleep(10); // block the task for awhile
let timeout = timer.oneshot(10);
// do some work
timeout.recv(); // wait for the timeout to expire
let periodic = timer.periodic(10);
loop {
periodic.recv();
// this loop is only executed once every 10ms
}
```
*/
use comm::Port;
use option::Option;
use rt::rtio::{IoFactory, LocalIo, RtioTimer};
pub struct Timer {
priv obj: ~RtioTimer
}
/// Sleep the current task for `msecs` milliseconds.
pub fn sleep(msecs: u64) {
let mut timer = Timer::new().expect("timer::sleep: could not create a Timer");
timer.sleep(msecs)
}
impl Timer {
/// Creates a new timer which can be used to put the current task to sleep
/// for a number of milliseconds, or to possibly create channels which will
/// get notified after an amount of time has passed.
pub fn new() -> Option<Timer> {
LocalIo::maybe_raise(|io| io.timer_init().map(|t| Timer { obj: t }))
}
/// Blocks the current task for `msecs` milliseconds.
///
/// Note that this function will cause any other ports for this timer to be
/// invalidated (the other end will be closed).
pub fn sleep(&mut self, msecs: u64) {
self.obj.sleep(msecs);
}
/// Creates a oneshot port which will have a notification sent when `msecs`
/// milliseconds has elapsed. This does *not* block the current task, but
/// instead returns immediately.
///
/// Note that this invalidates any previous port which has been created by
/// this timer, and that the returned port will be invalidated once the
/// timer is destroyed (when it falls out of scope).
pub fn oneshot(&mut self, msecs: u64) -> Port<()> {
self.obj.oneshot(msecs)
}
/// Creates a port which will have a continuous stream of notifications
/// being sent every `msecs` milliseconds. This does *not* block the
/// current task, but instead returns immediately. The first notification
/// will not be received immediately, but rather after `msec` milliseconds
/// have passed.
///
/// Note that this invalidates any previous port which has been created by
/// this timer, and that the returned port will be invalidated once the
/// timer is destroyed (when it falls out of scope).
pub fn periodic(&mut self, msecs: u64) -> Port<()> {
self.obj.period(msecs)
}
}
#[cfg(test)]
mod test {
use prelude::*;
use super::*;
#[test]
fn test_io_timer_sleep_simple() {
let mut timer = Timer::new().unwrap();
timer.sleep(1);
}
#[test]
fn test_io_timer_sleep_oneshot() {
let mut timer = Timer::new().unwrap();
timer.oneshot(1).recv();
}
#[test]
fn test_io_timer_sleep_oneshot_forget() {
let mut timer = Timer::new().unwrap();
timer.oneshot(100000000000);
}
#[test]
fn oneshot_twice() {
let mut timer = Timer::new().unwrap();
let port1 = timer.oneshot(10000);
let port = timer.oneshot(1);
port.recv();
assert_eq!(port1.try_recv(), None);
}
#[test]
fn test_io_timer_oneshot_then_sleep() {
let mut timer = Timer::new().unwrap();
let port = timer.oneshot(100000000000);
timer.sleep(1); // this should invalidate the port
assert_eq!(port.try_recv(), None);
}
#[test]
fn test_io_timer_sleep_periodic() {
let mut timer = Timer::new().unwrap();
let port = timer.periodic(1);
port.recv();
port.recv();
port.recv();
}
#[test]
fn test_io_timer_sleep_periodic_forget() {
let mut timer = Timer::new().unwrap();
timer.periodic(100000000000);
}
#[test]
fn test_io_timer_sleep_standalone() {
sleep(1)
}
}