rust/src/librustc/ty/mod.rs
bors 0b1669d96c Auto merge of #57714 - matthewjasper:wellformed-unreachable, r=pnkfelix
[NLL] Clean up handling of type annotations

* Renames (Canonical)?UserTypeAnnotation -> (Canonical)?UserType so that the name CanonicalUserTypeAnnotation is free.
* Keep the inferred type associated to user type annotations in the MIR, so that it can be compared against the annotated type, even when the annotated expression gets removed from the MIR. (#54943)
* Use the inferred type to allow infallible handling of user type projections (#57531)
* Uses revisions for the tests in #56993
* Check the types of `Unevaluated` constants with no annotations (#46702)
* Some drive-by cleanup

Closes #46702
Closes #54943
Closes #57531
Closes #57731
cc #56993 leaving this open to track the underlying issue: we are not running tests with full NLL enabled on CI at the moment

r? @nikomatsakis
2019-01-25 14:25:37 +00:00

3365 lines
120 KiB
Rust

pub use self::Variance::*;
pub use self::AssociatedItemContainer::*;
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
pub use self::fold::TypeFoldable;
use hir::{map as hir_map, FreevarMap, GlobMap, TraitMap};
use hir::Node;
use hir::def::{Def, CtorKind, ExportMap};
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
use hir::map::DefPathData;
use rustc_data_structures::svh::Svh;
use ich::Fingerprint;
use ich::StableHashingContext;
use infer::canonical::Canonical;
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
use middle::resolve_lifetime::ObjectLifetimeDefault;
use mir::Mir;
use mir::interpret::{GlobalId, ErrorHandled};
use mir::GeneratorLayout;
use session::CrateDisambiguator;
use traits::{self, Reveal};
use ty;
use ty::layout::VariantIdx;
use ty::subst::{Subst, Substs};
use ty::util::{IntTypeExt, Discr};
use ty::walk::TypeWalker;
use util::captures::Captures;
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
use arena::SyncDroplessArena;
use session::DataTypeKind;
use serialize::{self, Encodable, Encoder};
use std::cell::RefCell;
use std::cmp::{self, Ordering};
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ops::Deref;
use rustc_data_structures::sync::{self, Lrc, ParallelIterator, par_iter};
use std::slice;
use std::{mem, ptr};
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
use syntax::attr;
use syntax::ext::hygiene::Mark;
use syntax::symbol::{keywords, Symbol, LocalInternedString, InternedString};
use syntax_pos::{DUMMY_SP, Span};
use smallvec;
use rustc_data_structures::indexed_vec::{Idx, IndexVec};
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
HashStable};
use hir;
pub use self::sty::{Binder, BoundTy, BoundTyKind, BoundVar, DebruijnIndex, INNERMOST};
pub use self::sty::{FnSig, GenSig, CanonicalPolyFnSig, PolyFnSig, PolyGenSig};
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
pub use self::sty::{TraitRef, TyKind, PolyTraitRef};
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const, LazyConst};
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
pub use self::sty::RegionKind;
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
pub use self::sty::RegionKind::*;
pub use self::sty::TyKind::*;
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;
pub use self::context::{TyCtxt, FreeRegionInfo, GlobalArenas, AllArenas, tls, keep_local};
pub use self::context::{Lift, TypeckTables, CtxtInterners};
pub use self::context::{
UserTypeAnnotationIndex, UserType, CanonicalUserType,
CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations,
};
pub use self::instance::{Instance, InstanceDef};
pub use self::trait_def::TraitDef;
pub use self::query::queries;
pub mod adjustment;
pub mod binding;
pub mod cast;
#[macro_use]
pub mod codec;
mod constness;
pub mod error;
mod erase_regions;
pub mod fast_reject;
pub mod fold;
pub mod inhabitedness;
pub mod item_path;
pub mod layout;
pub mod _match;
pub mod outlives;
pub mod query;
pub mod relate;
pub mod steal;
pub mod subst;
pub mod trait_def;
pub mod walk;
pub mod wf;
pub mod util;
mod context;
mod flags;
mod instance;
mod structural_impls;
mod sty;
// Data types
#[derive(Clone)]
pub struct Resolutions {
pub freevars: FreevarMap,
pub trait_map: TraitMap,
pub maybe_unused_trait_imports: NodeSet,
pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
pub export_map: ExportMap,
pub glob_map: GlobMap,
/// Extern prelude entries. The value is `true` if the entry was introduced
/// via `extern crate` item and not `--extern` option or compiler built-in.
pub extern_prelude: FxHashMap<Name, bool>,
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum AssociatedItemContainer {
TraitContainer(DefId),
ImplContainer(DefId),
}
impl AssociatedItemContainer {
/// Asserts that this is the def-id of an associated item declared
/// in a trait, and returns the trait def-id.
pub fn assert_trait(&self) -> DefId {
match *self {
TraitContainer(id) => id,
_ => bug!("associated item has wrong container type: {:?}", self)
}
}
pub fn id(&self) -> DefId {
match *self {
TraitContainer(id) => id,
ImplContainer(id) => id,
}
}
}
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
pub impl_def_id: DefId,
pub self_ty: Ty<'tcx>,
pub trait_ref: Option<TraitRef<'tcx>>,
pub predicates: Vec<Predicate<'tcx>>,
}
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct AssociatedItem {
pub def_id: DefId,
pub ident: Ident,
pub kind: AssociatedKind,
pub vis: Visibility,
pub defaultness: hir::Defaultness,
pub container: AssociatedItemContainer,
/// Whether this is a method with an explicit self
/// as its first argument, allowing method calls.
pub method_has_self_argument: bool,
}
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
pub enum AssociatedKind {
Const,
Method,
Existential,
Type
}
impl AssociatedItem {
pub fn def(&self) -> Def {
match self.kind {
AssociatedKind::Const => Def::AssociatedConst(self.def_id),
AssociatedKind::Method => Def::Method(self.def_id),
AssociatedKind::Type => Def::AssociatedTy(self.def_id),
AssociatedKind::Existential => Def::AssociatedExistential(self.def_id),
}
}
/// Tests whether the associated item admits a non-trivial implementation
/// for !
pub fn relevant_for_never<'tcx>(&self) -> bool {
match self.kind {
AssociatedKind::Existential |
AssociatedKind::Const |
AssociatedKind::Type => true,
// FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
AssociatedKind::Method => !self.method_has_self_argument,
}
}
pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
match self.kind {
ty::AssociatedKind::Method => {
// We skip the binder here because the binder would deanonymize all
// late-bound regions, and we don't want method signatures to show up
// `as for<'r> fn(&'r MyType)`. Pretty-printing handles late-bound
// regions just fine, showing `fn(&MyType)`.
tcx.fn_sig(self.def_id).skip_binder().to_string()
}
ty::AssociatedKind::Type => format!("type {};", self.ident),
ty::AssociatedKind::Existential => format!("existential type {};", self.ident),
ty::AssociatedKind::Const => {
format!("const {}: {:?};", self.ident, tcx.type_of(self.def_id))
}
}
}
}
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
pub enum Visibility {
/// Visible everywhere (including in other crates).
Public,
/// Visible only in the given crate-local module.
Restricted(DefId),
/// Not visible anywhere in the local crate. This is the visibility of private external items.
Invisible,
}
pub trait DefIdTree: Copy {
fn parent(self, id: DefId) -> Option<DefId>;
fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
if descendant.krate != ancestor.krate {
return false;
}
while descendant != ancestor {
match self.parent(descendant) {
Some(parent) => descendant = parent,
None => return false,
}
}
true
}
}
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
fn parent(self, id: DefId) -> Option<DefId> {
self.def_key(id).parent.map(|index| DefId { index: index, ..id })
}
}
impl Visibility {
pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt<'_, '_, '_>) -> Self {
match visibility.node {
hir::VisibilityKind::Public => Visibility::Public,
hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
hir::VisibilityKind::Restricted { ref path, .. } => match path.def {
// If there is no resolution, `resolve` will have already reported an error, so
// assume that the visibility is public to avoid reporting more privacy errors.
Def::Err => Visibility::Public,
def => Visibility::Restricted(def.def_id()),
},
hir::VisibilityKind::Inherited => {
Visibility::Restricted(tcx.hir().get_module_parent(id))
}
}
}
/// Returns `true` if an item with this visibility is accessible from the given block.
pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
let restriction = match self {
// Public items are visible everywhere.
Visibility::Public => return true,
// Private items from other crates are visible nowhere.
Visibility::Invisible => return false,
// Restricted items are visible in an arbitrary local module.
Visibility::Restricted(other) if other.krate != module.krate => return false,
Visibility::Restricted(module) => module,
};
tree.is_descendant_of(module, restriction)
}
/// Returns `true` if this visibility is at least as accessible as the given visibility
pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
let vis_restriction = match vis {
Visibility::Public => return self == Visibility::Public,
Visibility::Invisible => return true,
Visibility::Restricted(module) => module,
};
self.is_accessible_from(vis_restriction, tree)
}
// Returns `true` if this item is visible anywhere in the local crate.
pub fn is_visible_locally(self) -> bool {
match self {
Visibility::Public => true,
Visibility::Restricted(def_id) => def_id.is_local(),
Visibility::Invisible => false,
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, RustcDecodable, RustcEncodable, Hash)]
pub enum Variance {
Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
}
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.variances_of()` to get the variance for a *particular*
/// item.
pub struct CrateVariancesMap {
/// For each item with generics, maps to a vector of the variance
/// of its generics. If an item has no generics, it will have no
/// entry.
pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
/// An empty vector, useful for cloning.
pub empty_variance: Lrc<Vec<ty::Variance>>,
}
impl Variance {
/// `a.xform(b)` combines the variance of a context with the
/// variance of a type with the following meaning. If we are in a
/// context with variance `a`, and we encounter a type argument in
/// a position with variance `b`, then `a.xform(b)` is the new
/// variance with which the argument appears.
///
/// Example 1:
///
/// *mut Vec<i32>
///
/// Here, the "ambient" variance starts as covariant. `*mut T` is
/// invariant with respect to `T`, so the variance in which the
/// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
/// yields `Invariant`. Now, the type `Vec<T>` is covariant with
/// respect to its type argument `T`, and hence the variance of
/// the `i32` here is `Invariant.xform(Covariant)`, which results
/// (again) in `Invariant`.
///
/// Example 2:
///
/// fn(*const Vec<i32>, *mut Vec<i32)
///
/// The ambient variance is covariant. A `fn` type is
/// contravariant with respect to its parameters, so the variance
/// within which both pointer types appear is
/// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
/// T` is covariant with respect to `T`, so the variance within
/// which the first `Vec<i32>` appears is
/// `Contravariant.xform(Covariant)` or `Contravariant`. The same
/// is true for its `i32` argument. In the `*mut T` case, the
/// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
/// and hence the outermost type is `Invariant` with respect to
/// `Vec<i32>` (and its `i32` argument).
///
/// Source: Figure 1 of "Taming the Wildcards:
/// Combining Definition- and Use-Site Variance" published in PLDI'11.
pub fn xform(self, v: ty::Variance) -> ty::Variance {
match (self, v) {
// Figure 1, column 1.
(ty::Covariant, ty::Covariant) => ty::Covariant,
(ty::Covariant, ty::Contravariant) => ty::Contravariant,
(ty::Covariant, ty::Invariant) => ty::Invariant,
(ty::Covariant, ty::Bivariant) => ty::Bivariant,
// Figure 1, column 2.
(ty::Contravariant, ty::Covariant) => ty::Contravariant,
(ty::Contravariant, ty::Contravariant) => ty::Covariant,
(ty::Contravariant, ty::Invariant) => ty::Invariant,
(ty::Contravariant, ty::Bivariant) => ty::Bivariant,
// Figure 1, column 3.
(ty::Invariant, _) => ty::Invariant,
// Figure 1, column 4.
(ty::Bivariant, _) => ty::Bivariant,
}
}
}
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct CReaderCacheKey {
pub cnum: CrateNum,
pub pos: usize,
}
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
bitflags! {
pub struct TypeFlags: u32 {
const HAS_PARAMS = 1 << 0;
const HAS_SELF = 1 << 1;
const HAS_TY_INFER = 1 << 2;
const HAS_RE_INFER = 1 << 3;
const HAS_RE_PLACEHOLDER = 1 << 4;
/// Does this have any `ReEarlyBound` regions? Used to
/// determine whether substitition is required, since those
/// represent regions that are bound in a `ty::Generics` and
/// hence may be substituted.
const HAS_RE_EARLY_BOUND = 1 << 5;
/// Does this have any region that "appears free" in the type?
/// Basically anything but `ReLateBound` and `ReErased`.
const HAS_FREE_REGIONS = 1 << 6;
/// Is an error type reachable?
const HAS_TY_ERR = 1 << 7;
const HAS_PROJECTION = 1 << 8;
// FIXME: Rename this to the actual property since it's used for generators too
const HAS_TY_CLOSURE = 1 << 9;
// `true` if there are "names" of types and regions and so forth
// that are local to a particular fn
const HAS_FREE_LOCAL_NAMES = 1 << 10;
// Present if the type belongs in a local type context.
// Only set for Infer other than Fresh.
const KEEP_IN_LOCAL_TCX = 1 << 11;
// Is there a projection that does not involve a bound region?
// Currently we can't normalize projections w/ bound regions.
const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
/// Does this have any `ReLateBound` regions? Used to check
/// if a global bound is safe to evaluate.
const HAS_RE_LATE_BOUND = 1 << 13;
const HAS_TY_PLACEHOLDER = 1 << 14;
const NEEDS_SUBST = TypeFlags::HAS_PARAMS.bits |
TypeFlags::HAS_SELF.bits |
TypeFlags::HAS_RE_EARLY_BOUND.bits;
// Flags representing the nominal content of a type,
// computed by FlagsComputation. If you add a new nominal
// flag, it should be added here too.
const NOMINAL_FLAGS = TypeFlags::HAS_PARAMS.bits |
TypeFlags::HAS_SELF.bits |
TypeFlags::HAS_TY_INFER.bits |
TypeFlags::HAS_RE_INFER.bits |
TypeFlags::HAS_RE_PLACEHOLDER.bits |
TypeFlags::HAS_RE_EARLY_BOUND.bits |
TypeFlags::HAS_FREE_REGIONS.bits |
TypeFlags::HAS_TY_ERR.bits |
TypeFlags::HAS_PROJECTION.bits |
TypeFlags::HAS_TY_CLOSURE.bits |
TypeFlags::HAS_FREE_LOCAL_NAMES.bits |
TypeFlags::KEEP_IN_LOCAL_TCX.bits |
TypeFlags::HAS_RE_LATE_BOUND.bits |
TypeFlags::HAS_TY_PLACEHOLDER.bits;
}
}
pub struct TyS<'tcx> {
pub sty: TyKind<'tcx>,
pub flags: TypeFlags,
/// This is a kind of confusing thing: it stores the smallest
/// binder such that
///
/// (a) the binder itself captures nothing but
/// (b) all the late-bound things within the type are captured
/// by some sub-binder.
///
/// So, for a type without any late-bound things, like `u32`, this
/// will be *innermost*, because that is the innermost binder that
/// captures nothing. But for a type `&'D u32`, where `'D` is a
/// late-bound region with debruijn index `D`, this would be `D + 1`
/// -- the binder itself does not capture `D`, but `D` is captured
/// by an inner binder.
///
/// We call this concept an "exclusive" binder `D` because all
/// debruijn indices within the type are contained within `0..D`
/// (exclusive).
outer_exclusive_binder: ty::DebruijnIndex,
}
// `TyS` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(target_arch = "x86_64")]
static_assert!(MEM_SIZE_OF_TY_S: ::std::mem::size_of::<TyS<'_>>() == 32);
impl<'tcx> Ord for TyS<'tcx> {
fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
self.sty.cmp(&other.sty)
}
}
impl<'tcx> PartialOrd for TyS<'tcx> {
fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
Some(self.sty.cmp(&other.sty))
}
}
impl<'tcx> PartialEq for TyS<'tcx> {
#[inline]
fn eq(&self, other: &TyS<'tcx>) -> bool {
ptr::eq(self, other)
}
}
impl<'tcx> Eq for TyS<'tcx> {}
impl<'tcx> Hash for TyS<'tcx> {
fn hash<H: Hasher>(&self, s: &mut H) {
(self as *const TyS<'_>).hash(s)
}
}
impl<'tcx> TyS<'tcx> {
pub fn is_primitive_ty(&self) -> bool {
match self.sty {
TyKind::Bool |
TyKind::Char |
TyKind::Int(_) |
TyKind::Uint(_) |
TyKind::Float(_) |
TyKind::Infer(InferTy::IntVar(_)) |
TyKind::Infer(InferTy::FloatVar(_)) |
TyKind::Infer(InferTy::FreshIntTy(_)) |
TyKind::Infer(InferTy::FreshFloatTy(_)) => true,
TyKind::Ref(_, x, _) => x.is_primitive_ty(),
_ => false,
}
}
pub fn is_suggestable(&self) -> bool {
match self.sty {
TyKind::Opaque(..) |
TyKind::FnDef(..) |
TyKind::FnPtr(..) |
TyKind::Dynamic(..) |
TyKind::Closure(..) |
TyKind::Infer(..) |
TyKind::Projection(..) => false,
_ => true,
}
}
}
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
fn hash_stable<W: StableHasherResult>(&self,
hcx: &mut StableHashingContext<'a>,
hasher: &mut StableHasher<W>) {
let ty::TyS {
ref sty,
// The other fields just provide fast access to information that is
// also contained in `sty`, so no need to hash them.
flags: _,
outer_exclusive_binder: _,
} = *self;
sty.hash_stable(hcx, hasher);
}
}
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;
extern {
/// A dummy type used to force List to by unsized without requiring fat pointers
type OpaqueListContents;
}
/// A wrapper for slices with the additional invariant
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
/// This means we can use pointer for both
/// equality comparisons and hashing.
/// Note: `Slice` was already taken by the `Ty`.
#[repr(C)]
pub struct List<T> {
len: usize,
data: [T; 0],
opaque: OpaqueListContents,
}
unsafe impl<T: Sync> Sync for List<T> {}
impl<T: Copy> List<T> {
#[inline]
fn from_arena<'tcx>(arena: &'tcx SyncDroplessArena, slice: &[T]) -> &'tcx List<T> {
assert!(!mem::needs_drop::<T>());
assert!(mem::size_of::<T>() != 0);
assert!(slice.len() != 0);
// Align up the size of the len (usize) field
let align = mem::align_of::<T>();
let align_mask = align - 1;
let offset = mem::size_of::<usize>();
let offset = (offset + align_mask) & !align_mask;
let size = offset + slice.len() * mem::size_of::<T>();
let mem = arena.alloc_raw(
size,
cmp::max(mem::align_of::<T>(), mem::align_of::<usize>()));
unsafe {
let result = &mut *(mem.as_mut_ptr() as *mut List<T>);
// Write the length
result.len = slice.len();
// Write the elements
let arena_slice = slice::from_raw_parts_mut(result.data.as_mut_ptr(), result.len);
arena_slice.copy_from_slice(slice);
result
}
}
}
impl<T: fmt::Debug> fmt::Debug for List<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<T: Encodable> Encodable for List<T> {
#[inline]
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
(**self).encode(s)
}
}
impl<T> Ord for List<T> where T: Ord {
fn cmp(&self, other: &List<T>) -> Ordering {
if self == other { Ordering::Equal } else {
<[T] as Ord>::cmp(&**self, &**other)
}
}
}
impl<T> PartialOrd for List<T> where T: PartialOrd {
fn partial_cmp(&self, other: &List<T>) -> Option<Ordering> {
if self == other { Some(Ordering::Equal) } else {
<[T] as PartialOrd>::partial_cmp(&**self, &**other)
}
}
}
impl<T: PartialEq> PartialEq for List<T> {
#[inline]
fn eq(&self, other: &List<T>) -> bool {
ptr::eq(self, other)
}
}
impl<T: Eq> Eq for List<T> {}
impl<T> Hash for List<T> {
#[inline]
fn hash<H: Hasher>(&self, s: &mut H) {
(self as *const List<T>).hash(s)
}
}
impl<T> Deref for List<T> {
type Target = [T];
#[inline(always)]
fn deref(&self) -> &[T] {
unsafe {
slice::from_raw_parts(self.data.as_ptr(), self.len)
}
}
}
impl<'a, T> IntoIterator for &'a List<T> {
type Item = &'a T;
type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
#[inline(always)]
fn into_iter(self) -> Self::IntoIter {
self[..].iter()
}
}
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx List<Ty<'tcx>> {}
impl<T> List<T> {
#[inline(always)]
pub fn empty<'a>() -> &'a List<T> {
#[repr(align(64), C)]
struct EmptySlice([u8; 64]);
static EMPTY_SLICE: EmptySlice = EmptySlice([0; 64]);
assert!(mem::align_of::<T>() <= 64);
unsafe {
&*(&EMPTY_SLICE as *const _ as *const List<T>)
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct UpvarPath {
pub hir_id: hir::HirId,
}
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct UpvarId {
pub var_path: UpvarPath,
pub closure_expr_id: LocalDefId,
}
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
pub enum BorrowKind {
/// Data must be immutable and is aliasable.
ImmBorrow,
/// Data must be immutable but not aliasable. This kind of borrow
/// cannot currently be expressed by the user and is used only in
/// implicit closure bindings. It is needed when the closure
/// is borrowing or mutating a mutable referent, e.g.:
///
/// let x: &mut isize = ...;
/// let y = || *x += 5;
///
/// If we were to try to translate this closure into a more explicit
/// form, we'd encounter an error with the code as written:
///
/// struct Env { x: & &mut isize }
/// let x: &mut isize = ...;
/// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
///
/// This is then illegal because you cannot mutate a `&mut` found
/// in an aliasable location. To solve, you'd have to translate with
/// an `&mut` borrow:
///
/// struct Env { x: & &mut isize }
/// let x: &mut isize = ...;
/// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
///
/// Now the assignment to `**env.x` is legal, but creating a
/// mutable pointer to `x` is not because `x` is not mutable. We
/// could fix this by declaring `x` as `let mut x`. This is ok in
/// user code, if awkward, but extra weird for closures, since the
/// borrow is hidden.
///
/// So we introduce a "unique imm" borrow -- the referent is
/// immutable, but not aliasable. This solves the problem. For
/// simplicity, we don't give users the way to express this
/// borrow, it's just used when translating closures.
UniqueImmBorrow,
/// Data is mutable and not aliasable.
MutBorrow
}
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
pub enum UpvarCapture<'tcx> {
/// Upvar is captured by value. This is always true when the
/// closure is labeled `move`, but can also be true in other cases
/// depending on inference.
ByValue,
/// Upvar is captured by reference.
ByRef(UpvarBorrow<'tcx>),
}
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
pub struct UpvarBorrow<'tcx> {
/// The kind of borrow: by-ref upvars have access to shared
/// immutable borrows, which are not part of the normal language
/// syntax.
pub kind: BorrowKind,
/// Region of the resulting reference.
pub region: ty::Region<'tcx>,
}
pub type UpvarListMap = FxHashMap<DefId, Vec<UpvarId>>;
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
pub def: Def,
pub span: Span,
pub ty: Ty<'tcx>,
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum IntVarValue {
IntType(ast::IntTy),
UintType(ast::UintTy),
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);
impl ty::EarlyBoundRegion {
pub fn to_bound_region(&self) -> ty::BoundRegion {
ty::BoundRegion::BrNamed(self.def_id, self.name)
}
/// Does this early bound region have a name? Early bound regions normally
/// always have names except when using anonymous lifetimes (`'_`).
pub fn has_name(&self) -> bool {
self.name != keywords::UnderscoreLifetime.name().as_interned_str()
}
}
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
pub enum GenericParamDefKind {
Lifetime,
Type {
has_default: bool,
object_lifetime_default: ObjectLifetimeDefault,
synthetic: Option<hir::SyntheticTyParamKind>,
}
}
#[derive(Clone, RustcEncodable, RustcDecodable)]
pub struct GenericParamDef {
pub name: InternedString,
pub def_id: DefId,
pub index: u32,
/// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
/// on generic parameter `'a`/`T`, asserts data behind the parameter
/// `'a`/`T` won't be accessed during the parent type's `Drop` impl.
pub pure_wrt_drop: bool,
pub kind: GenericParamDefKind,
}
impl GenericParamDef {
pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
if let GenericParamDefKind::Lifetime = self.kind {
ty::EarlyBoundRegion {
def_id: self.def_id,
index: self.index,
name: self.name,
}
} else {
bug!("cannot convert a non-lifetime parameter def to an early bound region")
}
}
pub fn to_bound_region(&self) -> ty::BoundRegion {
if let GenericParamDefKind::Lifetime = self.kind {
self.to_early_bound_region_data().to_bound_region()
} else {
bug!("cannot convert a non-lifetime parameter def to an early bound region")
}
}
}
#[derive(Default)]
pub struct GenericParamCount {
pub lifetimes: usize,
pub types: usize,
}
/// Information about the formal type/lifetime parameters associated
/// with an item or method. Analogous to `hir::Generics`.
///
/// The ordering of parameters is the same as in `Subst` (excluding child generics):
/// `Self` (optionally), `Lifetime` params..., `Type` params...
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
pub struct Generics {
pub parent: Option<DefId>,
pub parent_count: usize,
pub params: Vec<GenericParamDef>,
/// Reverse map to the `index` field of each `GenericParamDef`
pub param_def_id_to_index: FxHashMap<DefId, u32>,
pub has_self: bool,
pub has_late_bound_regions: Option<Span>,
}
impl<'a, 'gcx, 'tcx> Generics {
pub fn count(&self) -> usize {
self.parent_count + self.params.len()
}
pub fn own_counts(&self) -> GenericParamCount {
// We could cache this as a property of `GenericParamCount`, but
// the aim is to refactor this away entirely eventually and the
// presence of this method will be a constant reminder.
let mut own_counts: GenericParamCount = Default::default();
for param in &self.params {
match param.kind {
GenericParamDefKind::Lifetime => own_counts.lifetimes += 1,
GenericParamDefKind::Type { .. } => own_counts.types += 1,
};
}
own_counts
}
pub fn requires_monomorphization(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
for param in &self.params {
match param.kind {
GenericParamDefKind::Type { .. } => return true,
GenericParamDefKind::Lifetime => {}
}
}
if let Some(parent_def_id) = self.parent {
let parent = tcx.generics_of(parent_def_id);
parent.requires_monomorphization(tcx)
} else {
false
}
}
pub fn region_param(&'tcx self,
param: &EarlyBoundRegion,
tcx: TyCtxt<'a, 'gcx, 'tcx>)
-> &'tcx GenericParamDef
{
if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
let param = &self.params[index as usize];
match param.kind {
ty::GenericParamDefKind::Lifetime => param,
_ => bug!("expected lifetime parameter, but found another generic parameter")
}
} else {
tcx.generics_of(self.parent.expect("parent_count > 0 but no parent?"))
.region_param(param, tcx)
}
}
/// Returns the `GenericParamDef` associated with this `ParamTy`.
pub fn type_param(&'tcx self,
param: &ParamTy,
tcx: TyCtxt<'a, 'gcx, 'tcx>)
-> &'tcx GenericParamDef {
if let Some(index) = param.idx.checked_sub(self.parent_count as u32) {
let param = &self.params[index as usize];
match param.kind {
ty::GenericParamDefKind::Type {..} => param,
_ => bug!("expected type parameter, but found another generic parameter")
}
} else {
tcx.generics_of(self.parent.expect("parent_count > 0 but no parent?"))
.type_param(param, tcx)
}
}
}
/// Bounds on generics.
#[derive(Clone, Default)]
pub struct GenericPredicates<'tcx> {
pub parent: Option<DefId>,
pub predicates: Vec<(Predicate<'tcx>, Span)>,
}
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
-> InstantiatedPredicates<'tcx> {
let mut instantiated = InstantiatedPredicates::empty();
self.instantiate_into(tcx, &mut instantiated, substs);
instantiated
}
pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
-> InstantiatedPredicates<'tcx> {
InstantiatedPredicates {
predicates: self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)).collect(),
}
}
fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
instantiated: &mut InstantiatedPredicates<'tcx>,
substs: &Substs<'tcx>) {
if let Some(def_id) = self.parent {
tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
}
instantiated.predicates.extend(
self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)),
);
}
pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
-> InstantiatedPredicates<'tcx> {
let mut instantiated = InstantiatedPredicates::empty();
self.instantiate_identity_into(tcx, &mut instantiated);
instantiated
}
fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
instantiated: &mut InstantiatedPredicates<'tcx>) {
if let Some(def_id) = self.parent {
tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
}
instantiated.predicates.extend(self.predicates.iter().map(|&(p, _)| p))
}
pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
poly_trait_ref: &ty::PolyTraitRef<'tcx>)
-> InstantiatedPredicates<'tcx>
{
assert_eq!(self.parent, None);
InstantiatedPredicates {
predicates: self.predicates.iter().map(|(pred, _)| {
pred.subst_supertrait(tcx, poly_trait_ref)
}).collect()
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub enum Predicate<'tcx> {
/// Corresponds to `where Foo: Bar<A,B,C>`. `Foo` here would be
/// the `Self` type of the trait reference and `A`, `B`, and `C`
/// would be the type parameters.
Trait(PolyTraitPredicate<'tcx>),
/// where `'a: 'b`
RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
/// where `T: 'a`
TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
/// where `<T as TraitRef>::Name == X`, approximately.
/// See the `ProjectionPredicate` struct for details.
Projection(PolyProjectionPredicate<'tcx>),
/// no syntax: `T` well-formed
WellFormed(Ty<'tcx>),
/// trait must be object-safe
ObjectSafe(DefId),
/// No direct syntax. May be thought of as `where T: FnFoo<...>`
/// for some substitutions `...` and `T` being a closure type.
/// Satisfied (or refuted) once we know the closure's kind.
ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
/// `T1 <: T2`
Subtype(PolySubtypePredicate<'tcx>),
/// Constant initializer must evaluate successfully.
ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
}
/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
pub struct CratePredicatesMap<'tcx> {
/// For each struct with outlive bounds, maps to a vector of the
/// predicate of its outlive bounds. If an item has no outlives
/// bounds, it will have no entry.
pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,
/// An empty vector, useful for cloning.
pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
fn as_ref(&self) -> &Predicate<'tcx> {
self
}
}
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
/// Performs a substitution suitable for going from a
/// poly-trait-ref to supertraits that must hold if that
/// poly-trait-ref holds. This is slightly different from a normal
/// substitution in terms of what happens with bound regions. See
/// lengthy comment below for details.
pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
trait_ref: &ty::PolyTraitRef<'tcx>)
-> ty::Predicate<'tcx>
{
// The interaction between HRTB and supertraits is not entirely
// obvious. Let me walk you (and myself) through an example.
//
// Let's start with an easy case. Consider two traits:
//
// trait Foo<'a>: Bar<'a,'a> { }
// trait Bar<'b,'c> { }
//
// Now, if we have a trait reference `for<'x> T: Foo<'x>`, then
// we can deduce that `for<'x> T: Bar<'x,'x>`. Basically, if we
// knew that `Foo<'x>` (for any 'x) then we also know that
// `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
// normal substitution.
//
// In terms of why this is sound, the idea is that whenever there
// is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
// holds. So if there is an impl of `T:Foo<'a>` that applies to
// all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
// `'a`.
//
// Another example to be careful of is this:
//
// trait Foo1<'a>: for<'b> Bar1<'a,'b> { }
// trait Bar1<'b,'c> { }
//
// Here, if we have `for<'x> T: Foo1<'x>`, then what do we know?
// The answer is that we know `for<'x,'b> T: Bar1<'x,'b>`. The
// reason is similar to the previous example: any impl of
// `T:Foo1<'x>` must show that `for<'b> T: Bar1<'x, 'b>`. So
// basically we would want to collapse the bound lifetimes from
// the input (`trait_ref`) and the supertraits.
//
// To achieve this in practice is fairly straightforward. Let's
// consider the more complicated scenario:
//
// - We start out with `for<'x> T: Foo1<'x>`. In this case, `'x`
// has a De Bruijn index of 1. We want to produce `for<'x,'b> T: Bar1<'x,'b>`,
// where both `'x` and `'b` would have a DB index of 1.
// The substitution from the input trait-ref is therefore going to be
// `'a => 'x` (where `'x` has a DB index of 1).
// - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
// early-bound parameter and `'b' is a late-bound parameter with a
// DB index of 1.
// - If we replace `'a` with `'x` from the input, it too will have
// a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
// just as we wanted.
//
// There is only one catch. If we just apply the substitution `'a
// => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
// adjust the DB index because we substituting into a binder (it
// tries to be so smart...) resulting in `for<'x> for<'b>
// Bar1<'x,'b>` (we have no syntax for this, so use your
// imagination). Basically the 'x will have DB index of 2 and 'b
// will have DB index of 1. Not quite what we want. So we apply
// the substitution to the *contents* of the trait reference,
// rather than the trait reference itself (put another way, the
// substitution code expects equal binding levels in the values
// from the substitution and the value being substituted into, and
// this trick achieves that).
let substs = &trait_ref.skip_binder().substs;
match *self {
Predicate::Trait(ref binder) =>
Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
Predicate::Subtype(ref binder) =>
Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
Predicate::RegionOutlives(ref binder) =>
Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
Predicate::TypeOutlives(ref binder) =>
Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
Predicate::Projection(ref binder) =>
Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
Predicate::WellFormed(data) =>
Predicate::WellFormed(data.subst(tcx, substs)),
Predicate::ObjectSafe(trait_def_id) =>
Predicate::ObjectSafe(trait_def_id),
Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
Predicate::ConstEvaluatable(def_id, const_substs) =>
Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct TraitPredicate<'tcx> {
pub trait_ref: TraitRef<'tcx>
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;
impl<'tcx> TraitPredicate<'tcx> {
pub fn def_id(&self) -> DefId {
self.trait_ref.def_id
}
pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
self.trait_ref.input_types()
}
pub fn self_ty(&self) -> Ty<'tcx> {
self.trait_ref.self_ty()
}
}
impl<'tcx> PolyTraitPredicate<'tcx> {
pub fn def_id(&self) -> DefId {
// ok to skip binder since trait def-id does not care about regions
self.skip_binder().def_id()
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A: B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct SubtypePredicate<'tcx> {
pub a_is_expected: bool,
pub a: Ty<'tcx>,
pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T: TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T: TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
/// instances to normalize the LHS.
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct ProjectionPredicate<'tcx> {
pub projection_ty: ProjectionTy<'tcx>,
pub ty: Ty<'tcx>,
}
pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;
impl<'tcx> PolyProjectionPredicate<'tcx> {
/// Returns the `DefId` of the associated item being projected.
pub fn item_def_id(&self) -> DefId {
self.skip_binder().projection_ty.item_def_id
}
#[inline]
pub fn to_poly_trait_ref(&self, tcx: TyCtxt<'_, '_, '_>) -> PolyTraitRef<'tcx> {
// Note: unlike with `TraitRef::to_poly_trait_ref()`,
// `self.0.trait_ref` is permitted to have escaping regions.
// This is because here `self` has a `Binder` and so does our
// return value, so we are preserving the number of binding
// levels.
self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
}
pub fn ty(&self) -> Binder<Ty<'tcx>> {
self.map_bound(|predicate| predicate.ty)
}
/// The `DefId` of the `TraitItem` for the associated type.
///
/// Note that this is not the `DefId` of the `TraitRef` containing this
/// associated type, which is in `tcx.associated_item(projection_def_id()).container`.
pub fn projection_def_id(&self) -> DefId {
// okay to skip binder since trait def-id does not care about regions
self.skip_binder().projection_ty.item_def_id
}
}
pub trait ToPolyTraitRef<'tcx> {
fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
ty::Binder::dummy(self.clone())
}
}
impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
}
}
pub trait ToPredicate<'tcx> {
fn to_predicate(&self) -> Predicate<'tcx>;
}
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
fn to_predicate(&self) -> Predicate<'tcx> {
ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
trait_ref: self.clone()
}))
}
}
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
fn to_predicate(&self) -> Predicate<'tcx> {
ty::Predicate::Trait(self.to_poly_trait_predicate())
}
}
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
fn to_predicate(&self) -> Predicate<'tcx> {
Predicate::RegionOutlives(self.clone())
}
}
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
fn to_predicate(&self) -> Predicate<'tcx> {
Predicate::TypeOutlives(self.clone())
}
}
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
fn to_predicate(&self) -> Predicate<'tcx> {
Predicate::Projection(self.clone())
}
}
// A custom iterator used by Predicate::walk_tys.
enum WalkTysIter<'tcx, I, J, K>
where I: Iterator<Item = Ty<'tcx>>,
J: Iterator<Item = Ty<'tcx>>,
K: Iterator<Item = Ty<'tcx>>
{
None,
One(Ty<'tcx>),
Two(Ty<'tcx>, Ty<'tcx>),
Types(I),
InputTypes(J),
ProjectionTypes(K)
}
impl<'tcx, I, J, K> Iterator for WalkTysIter<'tcx, I, J, K>
where I: Iterator<Item = Ty<'tcx>>,
J: Iterator<Item = Ty<'tcx>>,
K: Iterator<Item = Ty<'tcx>>
{
type Item = Ty<'tcx>;
fn next(&mut self) -> Option<Ty<'tcx>> {
match *self {
WalkTysIter::None => None,
WalkTysIter::One(item) => {
*self = WalkTysIter::None;
Some(item)
},
WalkTysIter::Two(item1, item2) => {
*self = WalkTysIter::One(item2);
Some(item1)
},
WalkTysIter::Types(ref mut iter) => {
iter.next()
},
WalkTysIter::InputTypes(ref mut iter) => {
iter.next()
},
WalkTysIter::ProjectionTypes(ref mut iter) => {
iter.next()
}
}
}
}
impl<'tcx> Predicate<'tcx> {
/// Iterates over the types in this predicate. Note that in all
/// cases this is skipping over a binder, so late-bound regions
/// with depth 0 are bound by the predicate.
pub fn walk_tys(&'a self) -> impl Iterator<Item = Ty<'tcx>> + 'a {
match *self {
ty::Predicate::Trait(ref data) => {
WalkTysIter::InputTypes(data.skip_binder().input_types())
}
ty::Predicate::Subtype(binder) => {
let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
WalkTysIter::Two(a, b)
}
ty::Predicate::TypeOutlives(binder) => {
WalkTysIter::One(binder.skip_binder().0)
}
ty::Predicate::RegionOutlives(..) => {
WalkTysIter::None
}
ty::Predicate::Projection(ref data) => {
let inner = data.skip_binder();
WalkTysIter::ProjectionTypes(
inner.projection_ty.substs.types().chain(Some(inner.ty)))
}
ty::Predicate::WellFormed(data) => {
WalkTysIter::One(data)
}
ty::Predicate::ObjectSafe(_trait_def_id) => {
WalkTysIter::None
}
ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
WalkTysIter::Types(closure_substs.substs.types())
}
ty::Predicate::ConstEvaluatable(_, substs) => {
WalkTysIter::Types(substs.types())
}
}
}
pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
match *self {
Predicate::Trait(ref t) => {
Some(t.to_poly_trait_ref())
}
Predicate::Projection(..) |
Predicate::Subtype(..) |
Predicate::RegionOutlives(..) |
Predicate::WellFormed(..) |
Predicate::ObjectSafe(..) |
Predicate::ClosureKind(..) |
Predicate::TypeOutlives(..) |
Predicate::ConstEvaluatable(..) => {
None
}
}
}
pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
match *self {
Predicate::TypeOutlives(data) => {
Some(data)
}
Predicate::Trait(..) |
Predicate::Projection(..) |
Predicate::Subtype(..) |
Predicate::RegionOutlives(..) |
Predicate::WellFormed(..) |
Predicate::ObjectSafe(..) |
Predicate::ClosureKind(..) |
Predicate::ConstEvaluatable(..) => {
None
}
}
}
}
/// Represents the bounds declared on a particular set of type
/// parameters. Should eventually be generalized into a flag list of
/// where clauses. You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
/// struct Foo<T,U:Bar<T>> { ... }
///
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
#[derive(Clone)]
pub struct InstantiatedPredicates<'tcx> {
pub predicates: Vec<Predicate<'tcx>>,
}
impl<'tcx> InstantiatedPredicates<'tcx> {
pub fn empty() -> InstantiatedPredicates<'tcx> {
InstantiatedPredicates { predicates: vec![] }
}
pub fn is_empty(&self) -> bool {
self.predicates.is_empty()
}
}
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. Each child then adds a new
/// set of names that are visible, in addition to those of its parent.
/// We say that the child universe "extends" the parent universe with
/// new names.
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
/// let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in an extended universe U1
/// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
/// of `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a universe U2 that extends U1, because we can
/// name it inside the fn type but not outside.
///
/// Universes are used to do type- and trait-checking around these
/// "forall" binders (also called **universal quantification**). The
/// idea is that when, in the body of `bar`, we refer to `T` as a
/// type, we aren't referring to any type in particular, but rather a
/// kind of "fresh" type that is distinct from all other types we have
/// actually declared. This is called a **placeholder** type, and we
/// use universes to talk about this. In other words, a type name in
/// universe 0 always corresponds to some "ground" type that the user
/// declared, but a type name in a non-zero universe is a placeholder
/// type -- an idealized representative of "types in general" that we
/// use for checking generic functions.
newtype_index! {
pub struct UniverseIndex {
DEBUG_FORMAT = "U{}",
}
}
impl_stable_hash_for!(struct UniverseIndex { private });
impl UniverseIndex {
pub const ROOT: UniverseIndex = UniverseIndex::from_u32_const(0);
/// Returns the "next" universe index in order -- this new index
/// is considered to extend all previous universes. This
/// corresponds to entering a `forall` quantifier. So, for
/// example, suppose we have this type in universe `U`:
///
/// ```
/// for<'a> fn(&'a u32)
/// ```
///
/// Once we "enter" into this `for<'a>` quantifier, we are in a
/// new universe that extends `U` -- in this new universe, we can
/// name the region `'a`, but that region was not nameable from
/// `U` because it was not in scope there.
pub fn next_universe(self) -> UniverseIndex {
UniverseIndex::from_u32(self.private.checked_add(1).unwrap())
}
/// Returns `true` if `self` can name a name from `other` -- in other words,
/// if the set of names in `self` is a superset of those in
/// `other` (`self >= other`).
pub fn can_name(self, other: UniverseIndex) -> bool {
self.private >= other.private
}
/// Returns `true` if `self` cannot name some names from `other` -- in other
/// words, if the set of names in `self` is a strict subset of
/// those in `other` (`self < other`).
pub fn cannot_name(self, other: UniverseIndex) -> bool {
self.private < other.private
}
}
/// The "placeholder index" fully defines a placeholder region.
/// Placeholder regions are identified by both a **universe** as well
/// as a "bound-region" within that universe. The `bound_region` is
/// basically a name -- distinct bound regions within the same
/// universe are just two regions with an unknown relationship to one
/// another.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, PartialOrd, Ord)]
pub struct Placeholder<T> {
pub universe: UniverseIndex,
pub name: T,
}
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for Placeholder<T>
where T: HashStable<StableHashingContext<'a>>
{
fn hash_stable<W: StableHasherResult>(
&self,
hcx: &mut StableHashingContext<'a>,
hasher: &mut StableHasher<W>
) {
self.universe.hash_stable(hcx, hasher);
self.name.hash_stable(hcx, hasher);
}
}
pub type PlaceholderRegion = Placeholder<BoundRegion>;
pub type PlaceholderType = Placeholder<BoundVar>;
/// When type checking, we use the `ParamEnv` to track
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct ParamEnv<'tcx> {
/// Obligations that the caller must satisfy. This is basically
/// the set of bounds on the in-scope type parameters, translated
/// into Obligations, and elaborated and normalized.
pub caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
/// Typically, this is `Reveal::UserFacing`, but during codegen we
/// want `Reveal::All` -- note that this is always paired with an
/// empty environment. To get that, use `ParamEnv::reveal()`.
pub reveal: traits::Reveal,
/// If this `ParamEnv` comes from a call to `tcx.param_env(def_id)`,
/// register that `def_id` (useful for transitioning to the chalk trait
/// solver).
pub def_id: Option<DefId>,
}
impl<'tcx> ParamEnv<'tcx> {
/// Construct a trait environment suitable for contexts where
/// there are no where clauses in scope. Hidden types (like `impl
/// Trait`) are left hidden, so this is suitable for ordinary
/// type-checking.
#[inline]
pub fn empty() -> Self {
Self::new(List::empty(), Reveal::UserFacing, None)
}
/// Construct a trait environment with no where clauses in scope
/// where the values of all `impl Trait` and other hidden types
/// are revealed. This is suitable for monomorphized, post-typeck
/// environments like codegen or doing optimizations.
///
/// N.B. If you want to have predicates in scope, use `ParamEnv::new`,
/// or invoke `param_env.with_reveal_all()`.
#[inline]
pub fn reveal_all() -> Self {
Self::new(List::empty(), Reveal::All, None)
}
/// Construct a trait environment with the given set of predicates.
#[inline]
pub fn new(
caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
reveal: Reveal,
def_id: Option<DefId>
) -> Self {
ty::ParamEnv { caller_bounds, reveal, def_id }
}
/// Returns a new parameter environment with the same clauses, but
/// which "reveals" the true results of projections in all cases
/// (even for associated types that are specializable). This is
/// the desired behavior during codegen and certain other special
/// contexts; normally though we want to use `Reveal::UserFacing`,
/// which is the default.
pub fn with_reveal_all(self) -> Self {
ty::ParamEnv { reveal: Reveal::All, ..self }
}
/// Returns this same environment but with no caller bounds.
pub fn without_caller_bounds(self) -> Self {
ty::ParamEnv { caller_bounds: List::empty(), ..self }
}
/// Creates a suitable environment in which to perform trait
/// queries on the given value. When type-checking, this is simply
/// the pair of the environment plus value. But when reveal is set to
/// All, then if `value` does not reference any type parameters, we will
/// pair it with the empty environment. This improves caching and is generally
/// invisible.
///
/// N.B., we preserve the environment when type-checking because it
/// is possible for the user to have wacky where-clauses like
/// `where Box<u32>: Copy`, which are clearly never
/// satisfiable. We generally want to behave as if they were true,
/// although the surrounding function is never reachable.
pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
match self.reveal {
Reveal::UserFacing => {
ParamEnvAnd {
param_env: self,
value,
}
}
Reveal::All => {
if value.has_placeholders()
|| value.needs_infer()
|| value.has_param_types()
|| value.has_self_ty()
{
ParamEnvAnd {
param_env: self,
value,
}
} else {
ParamEnvAnd {
param_env: self.without_caller_bounds(),
value,
}
}
}
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct ParamEnvAnd<'tcx, T> {
pub param_env: ParamEnv<'tcx>,
pub value: T,
}
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
(self.param_env, self.value)
}
}
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
where T: HashStable<StableHashingContext<'a>>
{
fn hash_stable<W: StableHasherResult>(&self,
hcx: &mut StableHashingContext<'a>,
hasher: &mut StableHasher<W>) {
let ParamEnvAnd {
ref param_env,
ref value
} = *self;
param_env.hash_stable(hcx, hasher);
value.hash_stable(hcx, hasher);
}
}
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
/// The def-id of the destructor method
pub did: DefId,
}
bitflags! {
pub struct AdtFlags: u32 {
const NO_ADT_FLAGS = 0;
const IS_ENUM = 1 << 0;
const IS_UNION = 1 << 1;
const IS_STRUCT = 1 << 2;
const HAS_CTOR = 1 << 3;
const IS_PHANTOM_DATA = 1 << 4;
const IS_FUNDAMENTAL = 1 << 5;
const IS_BOX = 1 << 6;
/// Indicates whether the type is an `Arc`.
const IS_ARC = 1 << 7;
/// Indicates whether the type is an `Rc`.
const IS_RC = 1 << 8;
/// Indicates whether the variant list of this ADT is `#[non_exhaustive]`.
/// (i.e., this flag is never set unless this ADT is an enum).
const IS_VARIANT_LIST_NON_EXHAUSTIVE = 1 << 9;
}
}
bitflags! {
pub struct VariantFlags: u32 {
const NO_VARIANT_FLAGS = 0;
/// Indicates whether the field list of this variant is `#[non_exhaustive]`.
const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
}
}
#[derive(Debug)]
pub struct VariantDef {
/// The variant's `DefId`. If this is a tuple-like struct,
/// this is the `DefId` of the struct's ctor.
pub did: DefId,
pub ident: Ident, // struct's name if this is a struct
pub discr: VariantDiscr,
pub fields: Vec<FieldDef>,
pub ctor_kind: CtorKind,
flags: VariantFlags,
}
impl<'a, 'gcx, 'tcx> VariantDef {
/// Create a new `VariantDef`.
///
/// - `did` is the DefId used for the variant - for tuple-structs, it is the constructor DefId,
/// and for everything else, it is the variant DefId.
/// - `attribute_def_id` is the DefId that has the variant's attributes.
/// this is the struct DefId for structs, and the variant DefId for variants.
///
/// Note that we *could* use the constructor DefId, because the constructor attributes
/// redirect to the base attributes, but compiling a small crate requires
/// loading the AdtDefs for all the structs in the universe (e.g., coherence for any
/// built-in trait), and we do not want to load attributes twice.
///
/// If someone speeds up attribute loading to not be a performance concern, they can
/// remove this hack and use the constructor DefId everywhere.
pub fn new(tcx: TyCtxt<'a, 'gcx, 'tcx>,
did: DefId,
ident: Ident,
discr: VariantDiscr,
fields: Vec<FieldDef>,
adt_kind: AdtKind,
ctor_kind: CtorKind,
attribute_def_id: DefId)
-> Self
{
debug!("VariantDef::new({:?}, {:?}, {:?}, {:?}, {:?}, {:?}, {:?})", did, ident, discr,
fields, adt_kind, ctor_kind, attribute_def_id);
let mut flags = VariantFlags::NO_VARIANT_FLAGS;
if adt_kind == AdtKind::Struct && tcx.has_attr(attribute_def_id, "non_exhaustive") {
debug!("found non-exhaustive field list for {:?}", did);
flags = flags | VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
}
VariantDef {
did,
ident,
discr,
fields,
ctor_kind,
flags
}
}
#[inline]
pub fn is_field_list_non_exhaustive(&self) -> bool {
self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
}
}
impl_stable_hash_for!(struct VariantDef {
did,
ident -> (ident.name),
discr,
fields,
ctor_kind,
flags
});
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
/// Explicit value for this variant, i.e., `X = 123`.
/// The `DefId` corresponds to the embedded constant.
Explicit(DefId),
/// The previous variant's discriminant plus one.
/// For efficiency reasons, the distance from the
/// last `Explicit` discriminant is being stored,
/// or `0` for the first variant, if it has none.
Relative(u32),
}
#[derive(Debug)]
pub struct FieldDef {
pub did: DefId,
pub ident: Ident,
pub vis: Visibility,
}
/// The definition of an abstract data type -- a struct or enum.
///
/// These are all interned (by `intern_adt_def`) into the `adt_defs`
/// table.
pub struct AdtDef {
pub did: DefId,
pub variants: IndexVec<self::layout::VariantIdx, VariantDef>,
flags: AdtFlags,
pub repr: ReprOptions,
}
impl PartialOrd for AdtDef {
fn partial_cmp(&self, other: &AdtDef) -> Option<Ordering> {
Some(self.cmp(&other))
}
}
/// There should be only one AdtDef for each `did`, therefore
/// it is fine to implement `Ord` only based on `did`.
impl Ord for AdtDef {
fn cmp(&self, other: &AdtDef) -> Ordering {
self.did.cmp(&other.did)
}
}
impl PartialEq for AdtDef {
// AdtDef are always interned and this is part of TyS equality
#[inline]
fn eq(&self, other: &Self) -> bool { ptr::eq(self, other) }
}
impl Eq for AdtDef {}
impl Hash for AdtDef {
#[inline]
fn hash<H: Hasher>(&self, s: &mut H) {
(self as *const AdtDef).hash(s)
}
}
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
self.did.encode(s)
}
}
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
fn hash_stable<W: StableHasherResult>(&self,
hcx: &mut StableHashingContext<'a>,
hasher: &mut StableHasher<W>) {
thread_local! {
static CACHE: RefCell<FxHashMap<usize, Fingerprint>> = Default::default();
}
let hash: Fingerprint = CACHE.with(|cache| {
let addr = self as *const AdtDef as usize;
*cache.borrow_mut().entry(addr).or_insert_with(|| {
let ty::AdtDef {
did,
ref variants,
ref flags,
ref repr,
} = *self;
let mut hasher = StableHasher::new();
did.hash_stable(hcx, &mut hasher);
variants.hash_stable(hcx, &mut hasher);
flags.hash_stable(hcx, &mut hasher);
repr.hash_stable(hcx, &mut hasher);
hasher.finish()
})
});
hash.hash_stable(hcx, hasher);
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum AdtKind { Struct, Union, Enum }
impl Into<DataTypeKind> for AdtKind {
fn into(self) -> DataTypeKind {
match self {
AdtKind::Struct => DataTypeKind::Struct,
AdtKind::Union => DataTypeKind::Union,
AdtKind::Enum => DataTypeKind::Enum,
}
}
}
bitflags! {
#[derive(RustcEncodable, RustcDecodable, Default)]
pub struct ReprFlags: u8 {
const IS_C = 1 << 0;
const IS_SIMD = 1 << 1;
const IS_TRANSPARENT = 1 << 2;
// Internal only for now. If true, don't reorder fields.
const IS_LINEAR = 1 << 3;
// Any of these flags being set prevent field reordering optimisation.
const IS_UNOPTIMISABLE = ReprFlags::IS_C.bits |
ReprFlags::IS_SIMD.bits |
ReprFlags::IS_LINEAR.bits;
}
}
impl_stable_hash_for!(struct ReprFlags {
bits
});
/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Debug, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
pub int: Option<attr::IntType>,
pub align: u32,
pub pack: u32,
pub flags: ReprFlags,
}
impl_stable_hash_for!(struct ReprOptions {
align,
pack,
int,
flags
});
impl ReprOptions {
pub fn new(tcx: TyCtxt<'_, '_, '_>, did: DefId) -> ReprOptions {
let mut flags = ReprFlags::empty();
let mut size = None;
let mut max_align = 0;
let mut min_pack = 0;
for attr in tcx.get_attrs(did).iter() {
for r in attr::find_repr_attrs(&tcx.sess.parse_sess, attr) {
flags.insert(match r {
attr::ReprC => ReprFlags::IS_C,
attr::ReprPacked(pack) => {
min_pack = if min_pack > 0 {
cmp::min(pack, min_pack)
} else {
pack
};
ReprFlags::empty()
},
attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
attr::ReprSimd => ReprFlags::IS_SIMD,
attr::ReprInt(i) => {
size = Some(i);
ReprFlags::empty()
},
attr::ReprAlign(align) => {
max_align = cmp::max(align, max_align);
ReprFlags::empty()
},
});
}
}
// This is here instead of layout because the choice must make it into metadata.
if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
flags.insert(ReprFlags::IS_LINEAR);
}
ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
}
#[inline]
pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
#[inline]
pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
#[inline]
pub fn packed(&self) -> bool { self.pack > 0 }
#[inline]
pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
#[inline]
pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }
pub fn discr_type(&self) -> attr::IntType {
self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
}
/// Returns `true` if this `#[repr()]` should inhabit "smart enum
/// layout" optimizations, such as representing `Foo<&T>` as a
/// single pointer.
pub fn inhibit_enum_layout_opt(&self) -> bool {
self.c() || self.int.is_some()
}
/// Returns `true` if this `#[repr()]` should inhibit struct field reordering
/// optimizations, such as with repr(C), repr(packed(1)), or repr(<int>).
pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
self.flags.intersects(ReprFlags::IS_UNOPTIMISABLE) || self.pack == 1 ||
self.int.is_some()
}
/// Returns true if this `#[repr()]` should inhibit union abi optimisations
pub fn inhibit_union_abi_opt(&self) -> bool {
self.c()
}
}
impl<'a, 'gcx, 'tcx> AdtDef {
fn new(tcx: TyCtxt<'_, '_, '_>,
did: DefId,
kind: AdtKind,
variants: IndexVec<VariantIdx, VariantDef>,
repr: ReprOptions) -> Self {
debug!("AdtDef::new({:?}, {:?}, {:?}, {:?})", did, kind, variants, repr);
let mut flags = AdtFlags::NO_ADT_FLAGS;
if kind == AdtKind::Enum && tcx.has_attr(did, "non_exhaustive") {
debug!("found non-exhaustive variant list for {:?}", did);
flags = flags | AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE;
}
flags |= match kind {
AdtKind::Enum => AdtFlags::IS_ENUM,
AdtKind::Union => AdtFlags::IS_UNION,
AdtKind::Struct => AdtFlags::IS_STRUCT,
};
if let AdtKind::Struct = kind {
let variant_def = &variants[VariantIdx::new(0)];
let def_key = tcx.def_key(variant_def.did);
match def_key.disambiguated_data.data {
DefPathData::StructCtor => flags |= AdtFlags::HAS_CTOR,
_ => (),
}
}
let attrs = tcx.get_attrs(did);
if attr::contains_name(&attrs, "fundamental") {
flags |= AdtFlags::IS_FUNDAMENTAL;
}
if Some(did) == tcx.lang_items().phantom_data() {
flags |= AdtFlags::IS_PHANTOM_DATA;
}
if Some(did) == tcx.lang_items().owned_box() {
flags |= AdtFlags::IS_BOX;
}
if Some(did) == tcx.lang_items().arc() {
flags |= AdtFlags::IS_ARC;
}
if Some(did) == tcx.lang_items().rc() {
flags |= AdtFlags::IS_RC;
}
AdtDef {
did,
variants,
flags,
repr,
}
}
#[inline]
pub fn is_struct(&self) -> bool {
self.flags.contains(AdtFlags::IS_STRUCT)
}
#[inline]
pub fn is_union(&self) -> bool {
self.flags.contains(AdtFlags::IS_UNION)
}
#[inline]
pub fn is_enum(&self) -> bool {
self.flags.contains(AdtFlags::IS_ENUM)
}
#[inline]
pub fn is_variant_list_non_exhaustive(&self) -> bool {
self.flags.contains(AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE)
}
/// Returns the kind of the ADT.
#[inline]
pub fn adt_kind(&self) -> AdtKind {
if self.is_enum() {
AdtKind::Enum
} else if self.is_union() {
AdtKind::Union
} else {
AdtKind::Struct
}
}
pub fn descr(&self) -> &'static str {
match self.adt_kind() {
AdtKind::Struct => "struct",
AdtKind::Union => "union",
AdtKind::Enum => "enum",
}
}
#[inline]
pub fn variant_descr(&self) -> &'static str {
match self.adt_kind() {
AdtKind::Struct => "struct",
AdtKind::Union => "union",
AdtKind::Enum => "variant",
}
}
/// If this function returns `true`, it implies that `is_struct` must return `true`.
#[inline]
pub fn has_ctor(&self) -> bool {
self.flags.contains(AdtFlags::HAS_CTOR)
}
/// Returns whether this type is `#[fundamental]` for the purposes
/// of coherence checking.
#[inline]
pub fn is_fundamental(&self) -> bool {
self.flags.contains(AdtFlags::IS_FUNDAMENTAL)
}
/// Returns `true` if this is PhantomData<T>.
#[inline]
pub fn is_phantom_data(&self) -> bool {
self.flags.contains(AdtFlags::IS_PHANTOM_DATA)
}
/// Returns `true` if this is `Arc<T>`.
pub fn is_arc(&self) -> bool {
self.flags.contains(AdtFlags::IS_ARC)
}
/// Returns `true` if this is `Rc<T>`.
pub fn is_rc(&self) -> bool {
self.flags.contains(AdtFlags::IS_RC)
}
/// Returns `true` if this is Box<T>.
#[inline]
pub fn is_box(&self) -> bool {
self.flags.contains(AdtFlags::IS_BOX)
}
/// Returns whether this type has a destructor.
pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
self.destructor(tcx).is_some()
}
/// Asserts this is a struct or union and returns its unique variant.
pub fn non_enum_variant(&self) -> &VariantDef {
assert!(self.is_struct() || self.is_union());
&self.variants[VariantIdx::new(0)]
}
#[inline]
pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Lrc<GenericPredicates<'gcx>> {
tcx.predicates_of(self.did)
}
/// Returns an iterator over all fields contained
/// by this ADT.
#[inline]
pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
self.variants.iter().flat_map(|v| v.fields.iter())
}
pub fn is_payloadfree(&self) -> bool {
!self.variants.is_empty() &&
self.variants.iter().all(|v| v.fields.is_empty())
}
pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
self.variants
.iter()
.find(|v| v.did == vid)
.expect("variant_with_id: unknown variant")
}
pub fn variant_index_with_id(&self, vid: DefId) -> VariantIdx {
self.variants
.iter_enumerated()
.find(|(_, v)| v.did == vid)
.expect("variant_index_with_id: unknown variant")
.0
}
pub fn variant_of_def(&self, def: Def) -> &VariantDef {
match def {
Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) |
Def::SelfCtor(..) => self.non_enum_variant(),
_ => bug!("unexpected def {:?} in variant_of_def", def)
}
}
#[inline]
pub fn eval_explicit_discr(
&self,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
expr_did: DefId,
) -> Option<Discr<'tcx>> {
let param_env = ParamEnv::empty();
let repr_type = self.repr.discr_type();
let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
let instance = ty::Instance::new(expr_did, substs);
let cid = GlobalId {
instance,
promoted: None
};
match tcx.const_eval(param_env.and(cid)) {
Ok(val) => {
// FIXME: Find the right type and use it instead of `val.ty` here
if let Some(b) = val.assert_bits(tcx.global_tcx(), param_env.and(val.ty)) {
trace!("discriminants: {} ({:?})", b, repr_type);
Some(Discr {
val: b,
ty: val.ty,
})
} else {
info!("invalid enum discriminant: {:#?}", val);
::mir::interpret::struct_error(
tcx.at(tcx.def_span(expr_did)),
"constant evaluation of enum discriminant resulted in non-integer",
).emit();
None
}
}
Err(ErrorHandled::Reported) => {
if !expr_did.is_local() {
span_bug!(tcx.def_span(expr_did),
"variant discriminant evaluation succeeded \
in its crate but failed locally");
}
None
}
Err(ErrorHandled::TooGeneric) => span_bug!(
tcx.def_span(expr_did),
"enum discriminant depends on generic arguments",
),
}
}
#[inline]
pub fn discriminants(
&'a self,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
) -> impl Iterator<Item=(VariantIdx, Discr<'tcx>)> + Captures<'gcx> + 'a {
let repr_type = self.repr.discr_type();
let initial = repr_type.initial_discriminant(tcx.global_tcx());
let mut prev_discr = None::<Discr<'tcx>>;
self.variants.iter_enumerated().map(move |(i, v)| {
let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
if let VariantDiscr::Explicit(expr_did) = v.discr {
if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
discr = new_discr;
}
}
prev_discr = Some(discr);
(i, discr)
})
}
/// Compute the discriminant value used by a specific variant.
/// Unlike `discriminants`, this is (amortized) constant-time,
/// only doing at most one query for evaluating an explicit
/// discriminant (the last one before the requested variant),
/// assuming there are no constant-evaluation errors there.
pub fn discriminant_for_variant(&self,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
variant_index: VariantIdx)
-> Discr<'tcx> {
let (val, offset) = self.discriminant_def_for_variant(variant_index);
let explicit_value = val
.and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
.unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
explicit_value.checked_add(tcx, offset as u128).0
}
/// Yields a DefId for the discriminant and an offset to add to it
/// Alternatively, if there is no explicit discriminant, returns the
/// inferred discriminant directly
pub fn discriminant_def_for_variant(
&self,
variant_index: VariantIdx,
) -> (Option<DefId>, u32) {
let mut explicit_index = variant_index.as_u32();
let expr_did;
loop {
match self.variants[VariantIdx::from_u32(explicit_index)].discr {
ty::VariantDiscr::Relative(0) => {
expr_did = None;
break;
},
ty::VariantDiscr::Relative(distance) => {
explicit_index -= distance;
}
ty::VariantDiscr::Explicit(did) => {
expr_did = Some(did);
break;
}
}
}
(expr_did, variant_index.as_u32() - explicit_index)
}
pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
tcx.adt_destructor(self.did)
}
/// Returns a list of types such that `Self: Sized` if and only
/// if that type is Sized, or `TyErr` if this type is recursive.
///
/// Oddly enough, checking that the sized-constraint is Sized is
/// actually more expressive than checking all members:
/// the Sized trait is inductive, so an associated type that references
/// Self would prevent its containing ADT from being Sized.
///
/// Due to normalization being eager, this applies even if
/// the associated type is behind a pointer, e.g., issue #31299.
pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
match tcx.try_adt_sized_constraint(DUMMY_SP, self.did) {
Ok(tys) => tys,
Err(mut bug) => {
debug!("adt_sized_constraint: {:?} is recursive", self);
// This should be reported as an error by `check_representable`.
//
// Consider the type as Sized in the meanwhile to avoid
// further errors. Delay our `bug` diagnostic here to get
// emitted later as well in case we accidentally otherwise don't
// emit an error.
bug.delay_as_bug();
tcx.intern_type_list(&[tcx.types.err])
}
}
}
fn sized_constraint_for_ty(&self,
tcx: TyCtxt<'a, 'tcx, 'tcx>,
ty: Ty<'tcx>)
-> Vec<Ty<'tcx>> {
let result = match ty.sty {
Bool | Char | Int(..) | Uint(..) | Float(..) |
RawPtr(..) | Ref(..) | FnDef(..) | FnPtr(_) |
Array(..) | Closure(..) | Generator(..) | Never => {
vec![]
}
Str |
Dynamic(..) |
Slice(_) |
Foreign(..) |
Error |
GeneratorWitness(..) => {
// these are never sized - return the target type
vec![ty]
}
Tuple(ref tys) => {
match tys.last() {
None => vec![],
Some(ty) => self.sized_constraint_for_ty(tcx, ty)
}
}
Adt(adt, substs) => {
// recursive case
let adt_tys = adt.sized_constraint(tcx);
debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
ty, adt_tys);
adt_tys.iter()
.map(|ty| ty.subst(tcx, substs))
.flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
.collect()
}
Projection(..) | Opaque(..) => {
// must calculate explicitly.
// FIXME: consider special-casing always-Sized projections
vec![ty]
}
UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
Param(..) => {
// perf hack: if there is a `T: Sized` bound, then
// we know that `T` is Sized and do not need to check
// it on the impl.
let sized_trait = match tcx.lang_items().sized_trait() {
Some(x) => x,
_ => return vec![ty]
};
let sized_predicate = Binder::dummy(TraitRef {
def_id: sized_trait,
substs: tcx.mk_substs_trait(ty, &[])
}).to_predicate();
let predicates = &tcx.predicates_of(self.did).predicates;
if predicates.iter().any(|(p, _)| *p == sized_predicate) {
vec![]
} else {
vec![ty]
}
}
Placeholder(..) |
Bound(..) |
Infer(..) => {
bug!("unexpected type `{:?}` in sized_constraint_for_ty",
ty)
}
};
debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
result
}
}
impl<'a, 'gcx, 'tcx> FieldDef {
pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
tcx.type_of(self.did).subst(tcx, subst)
}
}
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desugaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub enum ClosureKind {
// Warning: Ordering is significant here! The ordering is chosen
// because the trait Fn is a subtrait of FnMut and so in turn, and
// hence we order it so that Fn < FnMut < FnOnce.
Fn,
FnMut,
FnOnce,
}
impl<'a, 'tcx> ClosureKind {
// This is the initial value used when doing upvar inference.
pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;
pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
match *self {
ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
ClosureKind::FnMut => {
tcx.require_lang_item(FnMutTraitLangItem)
}
ClosureKind::FnOnce => {
tcx.require_lang_item(FnOnceTraitLangItem)
}
}
}
/// Returns `true` if this a type that impls this closure kind
/// must also implement `other`.
pub fn extends(self, other: ty::ClosureKind) -> bool {
match (self, other) {
(ClosureKind::Fn, ClosureKind::Fn) => true,
(ClosureKind::Fn, ClosureKind::FnMut) => true,
(ClosureKind::Fn, ClosureKind::FnOnce) => true,
(ClosureKind::FnMut, ClosureKind::FnMut) => true,
(ClosureKind::FnMut, ClosureKind::FnOnce) => true,
(ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
_ => false,
}
}
/// Returns the representative scalar type for this closure kind.
/// See `TyS::to_opt_closure_kind` for more details.
pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
match self {
ty::ClosureKind::Fn => tcx.types.i8,
ty::ClosureKind::FnMut => tcx.types.i16,
ty::ClosureKind::FnOnce => tcx.types.i32,
}
}
}
impl<'tcx> TyS<'tcx> {
/// Iterator that walks `self` and any types reachable from
/// `self`, in depth-first order. Note that just walks the types
/// that appear in `self`, it does not descend into the fields of
/// structs or variants. For example:
///
/// ```notrust
/// isize => { isize }
/// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
/// [isize] => { [isize], isize }
/// ```
pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
TypeWalker::new(self)
}
/// Iterator that walks the immediate children of `self`. Hence
/// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
/// (but not `i32`, like `walk`).
pub fn walk_shallow(&'tcx self) -> smallvec::IntoIter<walk::TypeWalkerArray<'tcx>> {
walk::walk_shallow(self)
}
/// Walks `ty` and any types appearing within `ty`, invoking the
/// callback `f` on each type. If the callback returns false, then the
/// children of the current type are ignored.
///
/// Note: prefer `ty.walk()` where possible.
pub fn maybe_walk<F>(&'tcx self, mut f: F)
where F: FnMut(Ty<'tcx>) -> bool
{
let mut walker = self.walk();
while let Some(ty) = walker.next() {
if !f(ty) {
walker.skip_current_subtree();
}
}
}
}
impl BorrowKind {
pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
match m {
hir::MutMutable => MutBorrow,
hir::MutImmutable => ImmBorrow,
}
}
/// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
/// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
/// mutability that is stronger than necessary so that it at least *would permit* the borrow in
/// question.
pub fn to_mutbl_lossy(self) -> hir::Mutability {
match self {
MutBorrow => hir::MutMutable,
ImmBorrow => hir::MutImmutable,
// We have no type corresponding to a unique imm borrow, so
// use `&mut`. It gives all the capabilities of an `&uniq`
// and hence is a safe "over approximation".
UniqueImmBorrow => hir::MutMutable,
}
}
pub fn to_user_str(&self) -> &'static str {
match *self {
MutBorrow => "mutable",
ImmBorrow => "immutable",
UniqueImmBorrow => "uniquely immutable",
}
}
}
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
Owned(Lrc<[ast::Attribute]>),
Borrowed(&'gcx [ast::Attribute])
}
impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
type Target = [ast::Attribute];
fn deref(&self) -> &[ast::Attribute] {
match self {
&Attributes::Owned(ref data) => &data,
&Attributes::Borrowed(data) => data
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub enum ImplOverlapKind {
/// These impls are always allowed to overlap.
Permitted,
/// These impls are allowed to overlap, but that raises
/// an issue #33140 future-compatibility warning.
///
/// Some background: in Rust 1.0, the trait-object types `Send + Sync` (today's
/// `dyn Send + Sync`) and `Sync + Send` (now `dyn Sync + Send`) were different.
///
/// The widely-used version 0.1.0 of the crate `traitobject` had accidentally relied
/// that difference, making what reduces to the following set of impls:
///
/// ```
/// trait Trait {}
/// impl Trait for dyn Send + Sync {}
/// impl Trait for dyn Sync + Send {}
/// ```
///
/// Obviously, once we made these types be identical, that code causes a coherence
/// error and a fairly big headache for us. However, luckily for us, the trait
/// `Trait` used in this case is basically a marker trait, and therefore having
/// overlapping impls for it is sound.
///
/// To handle this, we basically regard the trait as a marker trait, with an additional
/// future-compatibility warning. To avoid accidentally "stabilizing" this feature,
/// it has the following restrictions:
///
/// 1. The trait must indeed be a marker-like trait (i.e., no items), and must be
/// positive impls.
/// 2. The trait-ref of both impls must be equal.
/// 3. The trait-ref of both impls must be a trait object type consisting only of
/// marker traits.
/// 4. Neither of the impls can have any where-clauses.
///
/// Once `traitobject` 0.1.0 is no longer an active concern, this hack can be removed.
Issue33140
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
self.typeck_tables_of(self.hir().body_owner_def_id(body))
}
/// Returns an iterator of the def-ids for all body-owners in this
/// crate. If you would prefer to iterate over the bodies
/// themselves, you can do `self.hir().krate().body_ids.iter()`.
pub fn body_owners(
self,
) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
self.hir().krate()
.body_ids
.iter()
.map(move |&body_id| self.hir().body_owner_def_id(body_id))
}
pub fn par_body_owners<F: Fn(DefId) + sync::Sync + sync::Send>(self, f: F) {
par_iter(&self.hir().krate().body_ids).for_each(|&body_id| {
f(self.hir().body_owner_def_id(body_id))
});
}
pub fn expr_span(self, id: NodeId) -> Span {
match self.hir().find(id) {
Some(Node::Expr(e)) => {
e.span
}
Some(f) => {
bug!("Node id {} is not an expr: {:?}", id, f);
}
None => {
bug!("Node id {} is not present in the node map", id);
}
}
}
pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
self.associated_items(id)
.filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
.collect()
}
pub fn trait_relevant_for_never(self, did: DefId) -> bool {
self.associated_items(did).any(|item| {
item.relevant_for_never()
})
}
pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
let is_associated_item = if let Some(node_id) = self.hir().as_local_node_id(def_id) {
match self.hir().get(node_id) {
Node::TraitItem(_) | Node::ImplItem(_) => true,
_ => false,
}
} else {
match self.describe_def(def_id).expect("no def for def-id") {
Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
_ => false,
}
};
if is_associated_item {
Some(self.associated_item(def_id))
} else {
None
}
}
fn associated_item_from_trait_item_ref(self,
parent_def_id: DefId,
parent_vis: &hir::Visibility,
trait_item_ref: &hir::TraitItemRef)
-> AssociatedItem {
let def_id = self.hir().local_def_id(trait_item_ref.id.node_id);
let (kind, has_self) = match trait_item_ref.kind {
hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
hir::AssociatedItemKind::Method { has_self } => {
(ty::AssociatedKind::Method, has_self)
}
hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
hir::AssociatedItemKind::Existential => bug!("only impls can have existentials"),
};
AssociatedItem {
ident: trait_item_ref.ident,
kind,
// Visibility of trait items is inherited from their traits.
vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
defaultness: trait_item_ref.defaultness,
def_id,
container: TraitContainer(parent_def_id),
method_has_self_argument: has_self
}
}
fn associated_item_from_impl_item_ref(self,
parent_def_id: DefId,
impl_item_ref: &hir::ImplItemRef)
-> AssociatedItem {
let def_id = self.hir().local_def_id(impl_item_ref.id.node_id);
let (kind, has_self) = match impl_item_ref.kind {
hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
hir::AssociatedItemKind::Method { has_self } => {
(ty::AssociatedKind::Method, has_self)
}
hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
hir::AssociatedItemKind::Existential => (ty::AssociatedKind::Existential, false),
};
AssociatedItem {
ident: impl_item_ref.ident,
kind,
// Visibility of trait impl items doesn't matter.
vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
defaultness: impl_item_ref.defaultness,
def_id,
container: ImplContainer(parent_def_id),
method_has_self_argument: has_self
}
}
pub fn field_index(self, node_id: NodeId, tables: &TypeckTables<'_>) -> usize {
let hir_id = self.hir().node_to_hir_id(node_id);
tables.field_indices().get(hir_id).cloned().expect("no index for a field")
}
pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
variant.fields.iter().position(|field| {
self.adjust_ident(ident, variant.did, DUMMY_NODE_ID).0 == field.ident.modern()
})
}
pub fn associated_items(
self,
def_id: DefId,
) -> AssociatedItemsIterator<'a, 'gcx, 'tcx> {
// Ideally, we would use `-> impl Iterator` here, but it falls
// afoul of the conservative "capture [restrictions]" we put
// in place, so we use a hand-written iterator.
//
// [restrictions]: https://github.com/rust-lang/rust/issues/34511#issuecomment-373423999
AssociatedItemsIterator {
tcx: self,
def_ids: self.associated_item_def_ids(def_id),
next_index: 0,
}
}
/// Returns `true` if the impls are the same polarity and the trait either
/// has no items or is annotated #[marker] and prevents item overrides.
pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId)
-> Option<ImplOverlapKind>
{
let is_legit = if self.features().overlapping_marker_traits {
let trait1_is_empty = self.impl_trait_ref(def_id1)
.map_or(false, |trait_ref| {
self.associated_item_def_ids(trait_ref.def_id).is_empty()
});
let trait2_is_empty = self.impl_trait_ref(def_id2)
.map_or(false, |trait_ref| {
self.associated_item_def_ids(trait_ref.def_id).is_empty()
});
self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
&& trait1_is_empty
&& trait2_is_empty
} else {
let is_marker_impl = |def_id: DefId| -> bool {
let trait_ref = self.impl_trait_ref(def_id);
trait_ref.map_or(false, |tr| self.trait_def(tr.def_id).is_marker)
};
self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
&& is_marker_impl(def_id1)
&& is_marker_impl(def_id2)
};
if is_legit {
debug!("impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted)",
def_id1, def_id2);
Some(ImplOverlapKind::Permitted)
} else {
if let Some(self_ty1) = self.issue33140_self_ty(def_id1) {
if let Some(self_ty2) = self.issue33140_self_ty(def_id2) {
if self_ty1 == self_ty2 {
debug!("impls_are_allowed_to_overlap({:?}, {:?}) - issue #33140 HACK",
def_id1, def_id2);
return Some(ImplOverlapKind::Issue33140);
} else {
debug!("impls_are_allowed_to_overlap({:?}, {:?}) - found {:?} != {:?}",
def_id1, def_id2, self_ty1, self_ty2);
}
}
}
debug!("impls_are_allowed_to_overlap({:?}, {:?}) = None",
def_id1, def_id2);
None
}
}
// Returns `ty::VariantDef` if `def` refers to a struct,
// or variant or their constructors, panics otherwise.
pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
match def {
Def::Variant(did) | Def::VariantCtor(did, ..) => {
let enum_did = self.parent_def_id(did).unwrap();
self.adt_def(enum_did).variant_with_id(did)
}
Def::Struct(did) | Def::Union(did) => {
self.adt_def(did).non_enum_variant()
}
Def::StructCtor(ctor_did, ..) => {
let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
self.adt_def(did).non_enum_variant()
}
_ => bug!("expect_variant_def used with unexpected def {:?}", def)
}
}
/// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
let def_key = self.def_key(variant_def.did);
match def_key.disambiguated_data.data {
// for enum variants and tuple structs, the def-id of the ADT itself
// is the *parent* of the variant
DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },
// otherwise, for structs and unions, they share a def-id
_ => variant_def.did,
}
}
pub fn item_name(self, id: DefId) -> InternedString {
if id.index == CRATE_DEF_INDEX {
self.original_crate_name(id.krate).as_interned_str()
} else {
let def_key = self.def_key(id);
// The name of a StructCtor is that of its struct parent.
if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
self.item_name(DefId {
krate: id.krate,
index: def_key.parent.unwrap()
})
} else {
def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
bug!("item_name: no name for {:?}", self.def_path(id));
})
}
}
}
/// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
-> &'gcx Mir<'gcx>
{
match instance {
ty::InstanceDef::Item(did) => {
self.optimized_mir(did)
}
ty::InstanceDef::VtableShim(..) |
ty::InstanceDef::Intrinsic(..) |
ty::InstanceDef::FnPtrShim(..) |
ty::InstanceDef::Virtual(..) |
ty::InstanceDef::ClosureOnceShim { .. } |
ty::InstanceDef::DropGlue(..) |
ty::InstanceDef::CloneShim(..) => {
self.mir_shims(instance)
}
}
}
/// Given the DefId of an item, returns its MIR, borrowed immutably.
/// Returns None if there is no MIR for the DefId
pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
if self.is_mir_available(did) {
Some(self.optimized_mir(did))
} else {
None
}
}
/// Get the attributes of a definition.
pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
if let Some(id) = self.hir().as_local_node_id(did) {
Attributes::Borrowed(self.hir().attrs(id))
} else {
Attributes::Owned(self.item_attrs(did))
}
}
/// Determine whether an item is annotated with an attribute.
pub fn has_attr(self, did: DefId, attr: &str) -> bool {
attr::contains_name(&self.get_attrs(did), attr)
}
/// Returns `true` if this is an `auto trait`.
pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
self.trait_def(trait_def_id).has_auto_impl
}
pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
}
/// Given the def-id of an impl, return the def_id of the trait it implements.
/// If it implements no trait, return `None`.
pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
self.impl_trait_ref(def_id).map(|tr| tr.def_id)
}
/// If the given defid describes a method belonging to an impl, return the
/// def-id of the impl that the method belongs to. Otherwise, return `None`.
pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
let item = if def_id.krate != LOCAL_CRATE {
if let Some(Def::Method(_)) = self.describe_def(def_id) {
Some(self.associated_item(def_id))
} else {
None
}
} else {
self.opt_associated_item(def_id)
};
item.and_then(|trait_item|
match trait_item.container {
TraitContainer(_) => None,
ImplContainer(def_id) => Some(def_id),
}
)
}
/// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
/// with the name of the crate containing the impl.
pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
if impl_did.is_local() {
let node_id = self.hir().as_local_node_id(impl_did).unwrap();
Ok(self.hir().span(node_id))
} else {
Err(self.crate_name(impl_did.krate))
}
}
// Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
// supposed definition name (`def_name`). The method also needs `DefId` of the supposed
// definition's parent/scope to perform comparison.
pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
self.adjust_ident(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.modern()
}
pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
ident = ident.modern();
let target_expansion = match scope.krate {
LOCAL_CRATE => self.hir().definitions().expansion_that_defined(scope.index),
_ => Mark::root(),
};
let scope = match ident.span.adjust(target_expansion) {
Some(actual_expansion) =>
self.hir().definitions().parent_module_of_macro_def(actual_expansion),
None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
None => self.hir().get_module_parent(block),
};
(ident, scope)
}
}
pub struct AssociatedItemsIterator<'a, 'gcx: 'tcx, 'tcx: 'a> {
tcx: TyCtxt<'a, 'gcx, 'tcx>,
def_ids: Lrc<Vec<DefId>>,
next_index: usize,
}
impl Iterator for AssociatedItemsIterator<'_, '_, '_> {
type Item = AssociatedItem;
fn next(&mut self) -> Option<AssociatedItem> {
let def_id = self.def_ids.get(self.next_index)?;
self.next_index += 1;
Some(self.tcx.associated_item(*def_id))
}
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
F: FnOnce(&[hir::Freevar]) -> T,
{
let def_id = self.hir().local_def_id(fid);
match self.freevars(def_id) {
None => f(&[]),
Some(d) => f(&d),
}
}
}
fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> AssociatedItem {
let id = tcx.hir().as_local_node_id(def_id).unwrap();
let parent_id = tcx.hir().get_parent(id);
let parent_def_id = tcx.hir().local_def_id(parent_id);
let parent_item = tcx.hir().expect_item(parent_id);
match parent_item.node {
hir::ItemKind::Impl(.., ref impl_item_refs) => {
if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
impl_item_ref);
debug_assert_eq!(assoc_item.def_id, def_id);
return assoc_item;
}
}
hir::ItemKind::Trait(.., ref trait_item_refs) => {
if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
&parent_item.vis,
trait_item_ref);
debug_assert_eq!(assoc_item.def_id, def_id);
return assoc_item;
}
}
_ => { }
}
span_bug!(parent_item.span,
"unexpected parent of trait or impl item or item not found: {:?}",
parent_item.node)
}
/// Calculates the Sized-constraint.
///
/// In fact, there are only a few options for the types in the constraint:
/// - an obviously-unsized type
/// - a type parameter or projection whose Sizedness can't be known
/// - a tuple of type parameters or projections, if there are multiple
/// such.
/// - a Error, if a type contained itself. The representability
/// check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
def_id: DefId)
-> &'tcx [Ty<'tcx>] {
let def = tcx.adt_def(def_id);
let result = tcx.mk_type_list(def.variants.iter().flat_map(|v| {
v.fields.last()
}).flat_map(|f| {
def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
}));
debug!("adt_sized_constraint: {:?} => {:?}", def, result);
result
}
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
def_id: DefId)
-> Lrc<Vec<DefId>> {
let id = tcx.hir().as_local_node_id(def_id).unwrap();
let item = tcx.hir().expect_item(id);
let vec: Vec<_> = match item.node {
hir::ItemKind::Trait(.., ref trait_item_refs) => {
trait_item_refs.iter()
.map(|trait_item_ref| trait_item_ref.id)
.map(|id| tcx.hir().local_def_id(id.node_id))
.collect()
}
hir::ItemKind::Impl(.., ref impl_item_refs) => {
impl_item_refs.iter()
.map(|impl_item_ref| impl_item_ref.id)
.map(|id| tcx.hir().local_def_id(id.node_id))
.collect()
}
hir::ItemKind::TraitAlias(..) => vec![],
_ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
};
Lrc::new(vec)
}
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
tcx.hir().span_if_local(def_id).unwrap()
}
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
tcx.opt_associated_item(def_id)
.and_then(|associated_item| {
match associated_item.container {
TraitContainer(def_id) => Some(def_id),
ImplContainer(_) => None
}
})
}
/// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition.
pub fn is_impl_trait_defn(tcx: TyCtxt<'_, '_, '_>, def_id: DefId) -> Option<DefId> {
if let Some(node_id) = tcx.hir().as_local_node_id(def_id) {
if let Node::Item(item) = tcx.hir().get(node_id) {
if let hir::ItemKind::Existential(ref exist_ty) = item.node {
return exist_ty.impl_trait_fn;
}
}
}
None
}
/// See `ParamEnv` struct definition for details.
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
def_id: DefId)
-> ParamEnv<'tcx>
{
// The param_env of an impl Trait type is its defining function's param_env
if let Some(parent) = is_impl_trait_defn(tcx, def_id) {
return param_env(tcx, parent);
}
// Compute the bounds on Self and the type parameters.
let InstantiatedPredicates { predicates } =
tcx.predicates_of(def_id).instantiate_identity(tcx);
// Finally, we have to normalize the bounds in the environment, in
// case they contain any associated type projections. This process
// can yield errors if the put in illegal associated types, like
// `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
// report these errors right here; this doesn't actually feel
// right to me, because constructing the environment feels like a
// kind of a "idempotent" action, but I'm not sure where would be
// a better place. In practice, we construct environments for
// every fn once during type checking, and we'll abort if there
// are any errors at that point, so after type checking you can be
// sure that this will succeed without errors anyway.
let unnormalized_env = ty::ParamEnv::new(
tcx.intern_predicates(&predicates),
traits::Reveal::UserFacing,
if tcx.sess.opts.debugging_opts.chalk { Some(def_id) } else { None }
);
let body_id = tcx.hir().as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
tcx.hir().maybe_body_owned_by(id).map_or(id, |body| body.node_id)
});
let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
crate_num: CrateNum) -> CrateDisambiguator {
assert_eq!(crate_num, LOCAL_CRATE);
tcx.sess.local_crate_disambiguator()
}
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
crate_num: CrateNum) -> Symbol {
assert_eq!(crate_num, LOCAL_CRATE);
tcx.crate_name.clone()
}
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
crate_num: CrateNum)
-> Svh {
assert_eq!(crate_num, LOCAL_CRATE);
tcx.hir().crate_hash
}
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
instance_def: InstanceDef<'tcx>)
-> usize {
match instance_def {
InstanceDef::Item(..) |
InstanceDef::DropGlue(..) => {
let mir = tcx.instance_mir(instance_def);
mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
},
// Estimate the size of other compiler-generated shims to be 1.
_ => 1
}
}
/// If `def_id` is an issue 33140 hack impl, return its self type. Otherwise
/// return None.
///
/// See ImplOverlapKind::Issue33140 for more details.
fn issue33140_self_ty<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
def_id: DefId)
-> Option<Ty<'tcx>>
{
debug!("issue33140_self_ty({:?})", def_id);
let trait_ref = tcx.impl_trait_ref(def_id).unwrap_or_else(|| {
bug!("issue33140_self_ty called on inherent impl {:?}", def_id)
});
debug!("issue33140_self_ty({:?}), trait-ref={:?}", def_id, trait_ref);
let is_marker_like =
tcx.impl_polarity(def_id) == hir::ImplPolarity::Positive &&
tcx.associated_item_def_ids(trait_ref.def_id).is_empty();
// Check whether these impls would be ok for a marker trait.
if !is_marker_like {
debug!("issue33140_self_ty - not marker-like!");
return None;
}
// impl must be `impl Trait for dyn Marker1 + Marker2 + ...`
if trait_ref.substs.len() != 1 {
debug!("issue33140_self_ty - impl has substs!");
return None;
}
let predicates = tcx.predicates_of(def_id);
if predicates.parent.is_some() || !predicates.predicates.is_empty() {
debug!("issue33140_self_ty - impl has predicates {:?}!", predicates);
return None;
}
let self_ty = trait_ref.self_ty();
let self_ty_matches = match self_ty.sty {
ty::Dynamic(ref data, ty::ReStatic) => data.principal().is_none(),
_ => false
};
if self_ty_matches {
debug!("issue33140_self_ty - MATCHES!");
Some(self_ty)
} else {
debug!("issue33140_self_ty - non-matching self type");
None
}
}
pub fn provide(providers: &mut ty::query::Providers<'_>) {
context::provide(providers);
erase_regions::provide(providers);
layout::provide(providers);
util::provide(providers);
constness::provide(providers);
*providers = ty::query::Providers {
associated_item,
associated_item_def_ids,
adt_sized_constraint,
def_span,
param_env,
trait_of_item,
crate_disambiguator,
original_crate_name,
crate_hash,
trait_impls_of: trait_def::trait_impls_of_provider,
instance_def_size_estimate,
issue33140_self_ty,
..*providers
};
}
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
#[derive(Clone, Debug, Default)]
pub struct CrateInherentImpls {
pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
pub struct SymbolName {
// FIXME: we don't rely on interning or equality here - better have
// this be a `&'tcx str`.
pub name: InternedString
}
impl_stable_hash_for!(struct self::SymbolName {
name
});
impl SymbolName {
pub fn new(name: &str) -> SymbolName {
SymbolName {
name: Symbol::intern(name).as_interned_str()
}
}
pub fn as_str(&self) -> LocalInternedString {
self.name.as_str()
}
}
impl fmt::Display for SymbolName {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&self.name, fmt)
}
}
impl fmt::Debug for SymbolName {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&self.name, fmt)
}
}