rust/src/librustc/util/ppaux.rs
Daniel Micay 1008945528 remove obsolete foreach keyword
this has been replaced by `for`
2013-08-03 22:48:02 -04:00

864 lines
25 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use metadata::encoder;
use middle::ty::{ReSkolemized, ReVar};
use middle::ty::{bound_region, br_anon, br_named, br_self, br_cap_avoid};
use middle::ty::{br_fresh, ctxt, field};
use middle::ty::{mt, t, param_ty};
use middle::ty::{re_bound, re_free, re_scope, re_infer, re_static, Region,
re_empty};
use middle::ty::{ty_bool, ty_bot, ty_box, ty_struct, ty_enum};
use middle::ty::{ty_err, ty_estr, ty_evec, ty_float, ty_bare_fn, ty_closure};
use middle::ty::{ty_nil, ty_opaque_box, ty_opaque_closure_ptr, ty_param};
use middle::ty::{ty_ptr, ty_rptr, ty_self, ty_tup, ty_type, ty_uniq};
use middle::ty::{ty_trait, ty_int};
use middle::ty::{ty_uint, ty_unboxed_vec, ty_infer};
use middle::ty;
use middle::typeck;
use syntax::abi::AbiSet;
use syntax::ast_map;
use syntax::codemap::span;
use syntax::parse::token;
use syntax::print::pprust;
use syntax::{ast, ast_util};
use syntax::opt_vec;
use syntax::opt_vec::OptVec;
/// Produces a string suitable for debugging output.
pub trait Repr {
fn repr(&self, tcx: ctxt) -> ~str;
}
/// Produces a string suitable for showing to the user.
pub trait UserString {
fn user_string(&self, tcx: ctxt) -> ~str;
}
pub fn note_and_explain_region(cx: ctxt,
prefix: &str,
region: ty::Region,
suffix: &str) {
match explain_region_and_span(cx, region) {
(ref str, Some(span)) => {
cx.sess.span_note(
span,
fmt!("%s%s%s", prefix, (*str), suffix));
}
(ref str, None) => {
cx.sess.note(
fmt!("%s%s%s", prefix, (*str), suffix));
}
}
}
/// Returns a string like "the block at 27:31" that attempts to explain a
/// lifetime in a way it might plausibly be understood.
pub fn explain_region(cx: ctxt, region: ty::Region) -> ~str {
let (res, _) = explain_region_and_span(cx, region);
return res;
}
pub fn explain_region_and_span(cx: ctxt, region: ty::Region)
-> (~str, Option<span>) {
return match region {
re_scope(node_id) => {
match cx.items.find(&node_id) {
Some(&ast_map::node_block(ref blk)) => {
explain_span(cx, "block", blk.span)
}
Some(&ast_map::node_callee_scope(expr)) => {
explain_span(cx, "callee", expr.span)
}
Some(&ast_map::node_expr(expr)) => {
match expr.node {
ast::expr_call(*) => explain_span(cx, "call", expr.span),
ast::expr_method_call(*) => {
explain_span(cx, "method call", expr.span)
},
ast::expr_match(*) => explain_span(cx, "match", expr.span),
_ => explain_span(cx, "expression", expr.span)
}
}
Some(&ast_map::node_stmt(stmt)) => {
explain_span(cx, "statement", stmt.span)
}
Some(&ast_map::node_item(it, _)) if (match it.node {
ast::item_fn(*) => true, _ => false}) => {
explain_span(cx, "function body", it.span)
}
Some(_) | None => {
// this really should not happen
(fmt!("unknown scope: %d. Please report a bug.", node_id),
None)
}
}
}
re_free(ref fr) => {
let prefix = match fr.bound_region {
br_anon(idx) => fmt!("the anonymous lifetime #%u defined on",
idx + 1),
br_fresh(_) => fmt!("an anonymous lifetime defined on"),
_ => fmt!("the lifetime %s as defined on",
bound_region_ptr_to_str(cx, fr.bound_region))
};
match cx.items.find(&fr.scope_id) {
Some(&ast_map::node_block(ref blk)) => {
let (msg, opt_span) = explain_span(cx, "block", blk.span);
(fmt!("%s %s", prefix, msg), opt_span)
}
Some(_) | None => {
// this really should not happen
(fmt!("%s node %d", prefix, fr.scope_id), None)
}
}
}
re_static => { (~"the static lifetime", None) }
re_empty => { (~"the empty lifetime", None) }
// I believe these cases should not occur (except when debugging,
// perhaps)
re_infer(_) | re_bound(_) => {
(fmt!("lifetime %?", region), None)
}
};
fn explain_span(cx: ctxt, heading: &str, span: span)
-> (~str, Option<span>)
{
let lo = cx.sess.codemap.lookup_char_pos_adj(span.lo);
(fmt!("the %s at %u:%u", heading,
lo.line, lo.col.to_uint()), Some(span))
}
}
pub fn bound_region_ptr_to_str(cx: ctxt, br: bound_region) -> ~str {
bound_region_to_str(cx, "&", true, br)
}
pub fn bound_region_to_str(cx: ctxt,
prefix: &str, space: bool,
br: bound_region) -> ~str {
let space_str = if space { " " } else { "" };
if cx.sess.verbose() { return fmt!("%s%?%s", prefix, br, space_str); }
match br {
br_named(id) => fmt!("%s'%s%s", prefix, cx.sess.str_of(id), space_str),
br_self => fmt!("%s'self%s", prefix, space_str),
br_anon(_) => prefix.to_str(),
br_fresh(_) => prefix.to_str(),
br_cap_avoid(_, br) => bound_region_to_str(cx, prefix, space, *br)
}
}
pub fn re_scope_id_to_str(cx: ctxt, node_id: ast::NodeId) -> ~str {
match cx.items.find(&node_id) {
Some(&ast_map::node_block(ref blk)) => {
fmt!("<block at %s>",
cx.sess.codemap.span_to_str(blk.span))
}
Some(&ast_map::node_expr(expr)) => {
match expr.node {
ast::expr_call(*) => {
fmt!("<call at %s>",
cx.sess.codemap.span_to_str(expr.span))
}
ast::expr_match(*) => {
fmt!("<match at %s>",
cx.sess.codemap.span_to_str(expr.span))
}
ast::expr_assign_op(*) |
ast::expr_unary(*) |
ast::expr_binary(*) |
ast::expr_index(*) => {
fmt!("<method at %s>",
cx.sess.codemap.span_to_str(expr.span))
}
_ => {
fmt!("<expression at %s>",
cx.sess.codemap.span_to_str(expr.span))
}
}
}
None => {
fmt!("<unknown-%d>", node_id)
}
_ => { cx.sess.bug(
fmt!("re_scope refers to %s",
ast_map::node_id_to_str(cx.items, node_id,
token::get_ident_interner()))) }
}
}
// In general, if you are giving a region error message,
// you should use `explain_region()` or, better yet,
// `note_and_explain_region()`
pub fn region_ptr_to_str(cx: ctxt, region: Region) -> ~str {
region_to_str(cx, "&", true, region)
}
pub fn region_to_str(cx: ctxt, prefix: &str, space: bool, region: Region) -> ~str {
let space_str = if space { " " } else { "" };
if cx.sess.verbose() {
return fmt!("%s%?%s", prefix, region, space_str);
}
// These printouts are concise. They do not contain all the information
// the user might want to diagnose an error, but there is basically no way
// to fit that into a short string. Hence the recommendation to use
// `explain_region()` or `note_and_explain_region()`.
match region {
re_scope(_) => prefix.to_str(),
re_bound(br) => bound_region_to_str(cx, prefix, space, br),
re_free(ref fr) => bound_region_to_str(cx, prefix, space, fr.bound_region),
re_infer(ReSkolemized(_, br)) => {
bound_region_to_str(cx, prefix, space, br)
}
re_infer(ReVar(_)) => prefix.to_str(),
re_static => fmt!("%s'static%s", prefix, space_str),
re_empty => fmt!("%s'<empty>%s", prefix, space_str)
}
}
fn mutability_to_str(m: ast::mutability) -> ~str {
match m {
ast::m_mutbl => ~"mut ",
ast::m_imm => ~"",
ast::m_const => ~"const "
}
}
pub fn mt_to_str(cx: ctxt, m: &mt) -> ~str {
mt_to_str_wrapped(cx, "", m, "")
}
pub fn mt_to_str_wrapped(cx: ctxt, before: &str, m: &mt, after: &str) -> ~str {
let mstr = mutability_to_str(m.mutbl);
return fmt!("%s%s%s%s", mstr, before, ty_to_str(cx, m.ty), after);
}
pub fn vstore_to_str(cx: ctxt, vs: ty::vstore) -> ~str {
match vs {
ty::vstore_fixed(n) => fmt!("%u", n),
ty::vstore_uniq => ~"~",
ty::vstore_box => ~"@",
ty::vstore_slice(r) => region_ptr_to_str(cx, r)
}
}
pub fn trait_store_to_str(cx: ctxt, s: ty::TraitStore) -> ~str {
match s {
ty::UniqTraitStore => ~"~",
ty::BoxTraitStore => ~"@",
ty::RegionTraitStore(r) => region_ptr_to_str(cx, r)
}
}
pub fn vstore_ty_to_str(cx: ctxt, mt: &mt, vs: ty::vstore) -> ~str {
match vs {
ty::vstore_fixed(_) => {
fmt!("[%s, .. %s]", mt_to_str(cx, mt), vstore_to_str(cx, vs))
}
_ => {
fmt!("%s%s", vstore_to_str(cx, vs), mt_to_str_wrapped(cx, "[", mt, "]"))
}
}
}
pub fn tys_to_str(cx: ctxt, ts: &[t]) -> ~str {
let tstrs = ts.map(|t| ty_to_str(cx, *t));
fmt!("(%s)", tstrs.connect(", "))
}
pub fn fn_sig_to_str(cx: ctxt, typ: &ty::FnSig) -> ~str {
fmt!("fn%s -> %s",
tys_to_str(cx, typ.inputs.map(|a| *a)),
ty_to_str(cx, typ.output))
}
pub fn trait_ref_to_str(cx: ctxt, trait_ref: &ty::TraitRef) -> ~str {
trait_ref.user_string(cx)
}
pub fn ty_to_str(cx: ctxt, typ: t) -> ~str {
fn fn_input_to_str(cx: ctxt, input: ty::t) -> ~str {
ty_to_str(cx, input)
}
fn bare_fn_to_str(cx: ctxt,
purity: ast::purity,
abis: AbiSet,
ident: Option<ast::ident>,
sig: &ty::FnSig)
-> ~str {
let mut s = ~"extern ";
s.push_str(abis.to_str());
s.push_char(' ');
match purity {
ast::impure_fn => {}
_ => {
s.push_str(purity.to_str());
s.push_char(' ');
}
};
s.push_str("fn");
match ident {
Some(i) => {
s.push_char(' ');
s.push_str(cx.sess.str_of(i));
}
_ => { }
}
push_sig_to_str(cx, &mut s, sig);
return s;
}
fn closure_to_str(cx: ctxt, cty: &ty::ClosureTy) -> ~str
{
let mut s = cty.sigil.to_str();
match (cty.sigil, cty.region) {
(ast::ManagedSigil, ty::re_static) |
(ast::OwnedSigil, ty::re_static) => {}
(_, region) => {
s.push_str(region_to_str(cx, "", true, region));
}
}
match cty.purity {
ast::impure_fn => {}
_ => {
s.push_str(cty.purity.to_str());
s.push_char(' ');
}
};
match cty.onceness {
ast::Many => {}
ast::Once => {
s.push_str(cty.onceness.to_str());
s.push_char(' ');
}
};
s.push_str("fn");
if !cty.bounds.is_empty() {
s.push_str(":");
}
s.push_str(cty.bounds.repr(cx));
push_sig_to_str(cx, &mut s, &cty.sig);
return s;
}
fn push_sig_to_str(cx: ctxt, s: &mut ~str, sig: &ty::FnSig) {
s.push_char('(');
let strs = sig.inputs.map(|a| fn_input_to_str(cx, *a));
s.push_str(strs.connect(", "));
s.push_char(')');
if ty::get(sig.output).sty != ty_nil {
s.push_str(" -> ");
if ty::type_is_bot(sig.output) {
s.push_char('!');
} else {
s.push_str(ty_to_str(cx, sig.output));
}
}
}
fn method_to_str(cx: ctxt, m: ty::Method) -> ~str {
bare_fn_to_str(cx,
m.fty.purity,
m.fty.abis,
Some(m.ident),
&m.fty.sig) + ";"
}
fn field_to_str(cx: ctxt, f: field) -> ~str {
return fmt!("%s: %s", cx.sess.str_of(f.ident), mt_to_str(cx, &f.mt));
}
// if there is an id, print that instead of the structural type:
/*for def_id in ty::type_def_id(typ).iter() {
// note that this typedef cannot have type parameters
return ast_map::path_to_str(ty::item_path(cx, *def_id),
cx.sess.intr());
}*/
// pretty print the structural type representation:
return match ty::get(typ).sty {
ty_nil => ~"()",
ty_bot => ~"!",
ty_bool => ~"bool",
ty_int(ast::ty_i) => ~"int",
ty_int(ast::ty_char) => ~"char",
ty_int(t) => ast_util::int_ty_to_str(t),
ty_uint(ast::ty_u) => ~"uint",
ty_uint(t) => ast_util::uint_ty_to_str(t),
ty_float(ast::ty_f) => ~"float",
ty_float(t) => ast_util::float_ty_to_str(t),
ty_box(ref tm) => ~"@" + mt_to_str(cx, tm),
ty_uniq(ref tm) => ~"~" + mt_to_str(cx, tm),
ty_ptr(ref tm) => ~"*" + mt_to_str(cx, tm),
ty_rptr(r, ref tm) => {
region_ptr_to_str(cx, r) + mt_to_str(cx, tm)
}
ty_unboxed_vec(ref tm) => { fmt!("unboxed_vec<%s>", mt_to_str(cx, tm)) }
ty_type => ~"type",
ty_tup(ref elems) => {
let strs = elems.map(|elem| ty_to_str(cx, *elem));
~"(" + strs.connect(",") + ")"
}
ty_closure(ref f) => {
closure_to_str(cx, f)
}
ty_bare_fn(ref f) => {
bare_fn_to_str(cx, f.purity, f.abis, None, &f.sig)
}
ty_infer(infer_ty) => infer_ty.to_str(),
ty_err => ~"[type error]",
ty_param(param_ty {idx: id, def_id: did}) => {
let param_def = cx.ty_param_defs.find(&did.node);
let ident = match param_def {
Some(def) => {
cx.sess.str_of(def.ident).to_owned()
}
None => {
// This should not happen...
fmt!("BUG[%?]", id)
}
};
if !cx.sess.verbose() { ident } else { fmt!("%s:%?", ident, did) }
}
ty_self(*) => ~"Self",
ty_enum(did, ref substs) | ty_struct(did, ref substs) => {
let path = ty::item_path(cx, did);
let base = ast_map::path_to_str(path, cx.sess.intr());
parameterized(cx, base, &substs.regions, substs.tps)
}
ty_trait(did, ref substs, s, mutbl, ref bounds) => {
let path = ty::item_path(cx, did);
let base = ast_map::path_to_str(path, cx.sess.intr());
let ty = parameterized(cx, base, &substs.regions, substs.tps);
let bound_sep = if bounds.is_empty() { "" } else { ":" };
let bound_str = bounds.repr(cx);
fmt!("%s%s%s%s%s", trait_store_to_str(cx, s), mutability_to_str(mutbl), ty,
bound_sep, bound_str)
}
ty_evec(ref mt, vs) => {
vstore_ty_to_str(cx, mt, vs)
}
ty_estr(vs) => fmt!("%s%s", vstore_to_str(cx, vs), "str"),
ty_opaque_box => ~"@?",
ty_opaque_closure_ptr(ast::BorrowedSigil) => ~"&closure",
ty_opaque_closure_ptr(ast::ManagedSigil) => ~"@closure",
ty_opaque_closure_ptr(ast::OwnedSigil) => ~"~closure",
}
}
pub fn parameterized(cx: ctxt,
base: &str,
regions: &ty::RegionSubsts,
tps: &[ty::t]) -> ~str {
let mut strs = ~[];
match *regions {
ty::ErasedRegions => { }
ty::NonerasedRegions(ref regions) => {
for &r in regions.iter() {
strs.push(region_to_str(cx, "", false, r))
}
}
}
for t in tps.iter() {
strs.push(ty_to_str(cx, *t))
}
if strs.len() > 0u {
fmt!("%s<%s>", base, strs.connect(","))
} else {
fmt!("%s", base)
}
}
pub fn ty_to_short_str(cx: ctxt, typ: t) -> ~str {
let mut s = encoder::encoded_ty(cx, typ);
if s.len() >= 32u { s = s.slice(0u, 32u).to_owned(); }
return s;
}
impl<T:Repr> Repr for Option<T> {
fn repr(&self, tcx: ctxt) -> ~str {
match self {
&None => ~"None",
&Some(ref t) => fmt!("Some(%s)", t.repr(tcx))
}
}
}
impl<T:Repr> Repr for @T {
fn repr(&self, tcx: ctxt) -> ~str {
(&**self).repr(tcx)
}
}
impl<T:Repr> Repr for ~T {
fn repr(&self, tcx: ctxt) -> ~str {
(&**self).repr(tcx)
}
}
fn repr_vec<T:Repr>(tcx: ctxt, v: &[T]) -> ~str {
fmt!("[%s]", v.map(|t| t.repr(tcx)).connect(","))
}
impl<'self, T:Repr> Repr for &'self [T] {
fn repr(&self, tcx: ctxt) -> ~str {
repr_vec(tcx, *self)
}
}
impl<T:Repr> Repr for OptVec<T> {
fn repr(&self, tcx: ctxt) -> ~str {
match *self {
opt_vec::Empty => ~"[]",
opt_vec::Vec(ref v) => repr_vec(tcx, *v)
}
}
}
// This is necessary to handle types like Option<~[T]>, for which
// autoderef cannot convert the &[T] handler
impl<T:Repr> Repr for ~[T] {
fn repr(&self, tcx: ctxt) -> ~str {
repr_vec(tcx, *self)
}
}
impl Repr for ty::TypeParameterDef {
fn repr(&self, tcx: ctxt) -> ~str {
fmt!("TypeParameterDef {%?, bounds: %s}",
self.def_id, self.bounds.repr(tcx))
}
}
impl Repr for ty::t {
fn repr(&self, tcx: ctxt) -> ~str {
ty_to_str(tcx, *self)
}
}
impl Repr for ty::substs {
fn repr(&self, tcx: ctxt) -> ~str {
fmt!("substs(regions=%s, self_ty=%s, tps=%s)",
self.regions.repr(tcx),
self.self_ty.repr(tcx),
self.tps.repr(tcx))
}
}
impl Repr for ty::RegionSubsts {
fn repr(&self, tcx: ctxt) -> ~str {
match *self {
ty::ErasedRegions => ~"erased",
ty::NonerasedRegions(ref regions) => regions.repr(tcx)
}
}
}
impl Repr for ty::ParamBounds {
fn repr(&self, tcx: ctxt) -> ~str {
let mut res = ~[];
do self.builtin_bounds.each |b| {
res.push(match b {
ty::BoundStatic => ~"'static",
ty::BoundSend => ~"Send",
ty::BoundFreeze => ~"Freeze",
ty::BoundSized => ~"Sized",
});
true
};
for t in self.trait_bounds.iter() {
res.push(t.repr(tcx));
}
res.connect("+")
}
}
impl Repr for ty::TraitRef {
fn repr(&self, tcx: ctxt) -> ~str {
trait_ref_to_str(tcx, self)
}
}
impl Repr for ast::expr {
fn repr(&self, tcx: ctxt) -> ~str {
fmt!("expr(%d: %s)",
self.id,
pprust::expr_to_str(self, tcx.sess.intr()))
}
}
impl Repr for ast::pat {
fn repr(&self, tcx: ctxt) -> ~str {
fmt!("pat(%d: %s)",
self.id,
pprust::pat_to_str(self, tcx.sess.intr()))
}
}
impl Repr for ty::bound_region {
fn repr(&self, tcx: ctxt) -> ~str {
bound_region_ptr_to_str(tcx, *self)
}
}
impl Repr for ty::Region {
fn repr(&self, tcx: ctxt) -> ~str {
region_to_str(tcx, "", false, *self)
}
}
impl Repr for ast::def_id {
fn repr(&self, tcx: ctxt) -> ~str {
// Unfortunately, there seems to be no way to attempt to print
// a path for a def-id, so I'll just make a best effort for now
// and otherwise fallback to just printing the crate/node pair
if self.crate == ast::LOCAL_CRATE {
match tcx.items.find(&self.node) {
Some(&ast_map::node_item(*)) |
Some(&ast_map::node_foreign_item(*)) |
Some(&ast_map::node_method(*)) |
Some(&ast_map::node_trait_method(*)) |
Some(&ast_map::node_variant(*)) |
Some(&ast_map::node_struct_ctor(*)) => {
return fmt!("%?:%s", *self, ty::item_path_str(tcx, *self));
}
_ => {}
}
}
return fmt!("%?", *self);
}
}
impl Repr for ty::ty_param_bounds_and_ty {
fn repr(&self, tcx: ctxt) -> ~str {
fmt!("ty_param_bounds_and_ty {generics: %s, ty: %s}",
self.generics.repr(tcx),
self.ty.repr(tcx))
}
}
impl Repr for ty::Generics {
fn repr(&self, tcx: ctxt) -> ~str {
fmt!("Generics {type_param_defs: %s, region_param: %?}",
self.type_param_defs.repr(tcx),
self.region_param)
}
}
impl Repr for ty::Method {
fn repr(&self, tcx: ctxt) -> ~str {
fmt!("method {ident: %s, generics: %s, transformed_self_ty: %s, \
fty: %s, explicit_self: %s, vis: %s, def_id: %s}",
self.ident.repr(tcx),
self.generics.repr(tcx),
self.transformed_self_ty.repr(tcx),
self.fty.repr(tcx),
self.explicit_self.repr(tcx),
self.vis.repr(tcx),
self.def_id.repr(tcx))
}
}
impl Repr for ast::ident {
fn repr(&self, _tcx: ctxt) -> ~str {
token::ident_to_str(self).to_owned()
}
}
impl Repr for ast::explicit_self_ {
fn repr(&self, _tcx: ctxt) -> ~str {
fmt!("%?", *self)
}
}
impl Repr for ast::visibility {
fn repr(&self, _tcx: ctxt) -> ~str {
fmt!("%?", *self)
}
}
impl Repr for ty::BareFnTy {
fn repr(&self, tcx: ctxt) -> ~str {
fmt!("BareFnTy {purity: %?, abis: %s, sig: %s}",
self.purity,
self.abis.to_str(),
self.sig.repr(tcx))
}
}
impl Repr for ty::FnSig {
fn repr(&self, tcx: ctxt) -> ~str {
fn_sig_to_str(tcx, self)
}
}
impl Repr for typeck::method_map_entry {
fn repr(&self, tcx: ctxt) -> ~str {
fmt!("method_map_entry {self_arg: %s, \
explicit_self: %s, \
origin: %s}",
self.self_ty.repr(tcx),
self.explicit_self.repr(tcx),
self.origin.repr(tcx))
}
}
impl Repr for typeck::method_origin {
fn repr(&self, tcx: ctxt) -> ~str {
match self {
&typeck::method_static(def_id) => {
fmt!("method_static(%s)", def_id.repr(tcx))
}
&typeck::method_param(ref p) => {
p.repr(tcx)
}
&typeck::method_trait(def_id, n, st) => {
fmt!("method_trait(%s, %?, %s)", def_id.repr(tcx), n,
st.repr(tcx))
}
}
}
}
impl Repr for typeck::method_param {
fn repr(&self, tcx: ctxt) -> ~str {
fmt!("method_param(%s,%?,%?,%?)",
self.trait_id.repr(tcx),
self.method_num,
self.param_num,
self.bound_num)
}
}
impl Repr for ty::RegionVid {
fn repr(&self, _tcx: ctxt) -> ~str {
fmt!("%?", *self)
}
}
impl Repr for ty::TraitStore {
fn repr(&self, tcx: ctxt) -> ~str {
match self {
&ty::BoxTraitStore => ~"@Trait",
&ty::UniqTraitStore => ~"~Trait",
&ty::RegionTraitStore(r) => fmt!("&%s Trait", r.repr(tcx))
}
}
}
impl Repr for ty::vstore {
fn repr(&self, tcx: ctxt) -> ~str {
vstore_to_str(tcx, *self)
}
}
impl Repr for ast_map::path_elt {
fn repr(&self, tcx: ctxt) -> ~str {
match *self {
ast_map::path_mod(id) => id.repr(tcx),
ast_map::path_name(id) => id.repr(tcx)
}
}
}
impl Repr for ty::BuiltinBound {
fn repr(&self, _tcx: ctxt) -> ~str {
fmt!("%?", *self)
}
}
impl UserString for ty::BuiltinBound {
fn user_string(&self, _tcx: ctxt) -> ~str {
match *self {
ty::BoundStatic => ~"'static",
ty::BoundSend => ~"Send",
ty::BoundFreeze => ~"Freeze",
ty::BoundSized => ~"Sized",
}
}
}
impl Repr for ty::BuiltinBounds {
fn repr(&self, tcx: ctxt) -> ~str {
self.user_string(tcx)
}
}
impl Repr for span {
fn repr(&self, tcx: ctxt) -> ~str {
tcx.sess.codemap.span_to_str(*self)
}
}
impl<A:UserString> UserString for @A {
fn user_string(&self, tcx: ctxt) -> ~str {
let this: &A = &**self;
this.user_string(tcx)
}
}
impl UserString for ty::BuiltinBounds {
fn user_string(&self, tcx: ctxt) -> ~str {
if self.is_empty() { ~"<no-bounds>" } else {
let mut result = ~[];
do self.each |bb| {
result.push(bb.user_string(tcx));
true
};
result.connect("+")
}
}
}
impl UserString for ty::TraitRef {
fn user_string(&self, tcx: ctxt) -> ~str {
let path = ty::item_path(tcx, self.def_id);
let base = ast_map::path_to_str(path, tcx.sess.intr());
if tcx.sess.verbose() && self.substs.self_ty.is_some() {
let mut all_tps = self.substs.tps.clone();
for &t in self.substs.self_ty.iter() { all_tps.push(t); }
parameterized(tcx, base, &self.substs.regions, all_tps)
} else {
parameterized(tcx, base, &self.substs.regions, self.substs.tps)
}
}
}
impl UserString for ty::t {
fn user_string(&self, tcx: ctxt) -> ~str {
ty_to_str(tcx, *self)
}
}