rust/src/libstd/io/extensions.rs
Aaron Turon cfafc1b737 Prelude: rename and consolidate extension traits
This commit renames a number of extension traits for slices and string
slices, now that they have been refactored for DST. In many cases,
multiple extension traits could now be consolidated. Further
consolidation will be possible with generalized where clauses.

The renamings are consistent with the [new `-Prelude`
suffix](https://github.com/rust-lang/rfcs/pull/344). There are probably
a few more candidates for being renamed this way, but that is left for
API stabilization of the relevant modules.

Because this renames traits, it is a:

[breaking-change]

However, I do not expect any code that currently uses the standard
library to actually break.

Closes #17917
2014-11-06 08:03:18 -08:00

555 lines
16 KiB
Rust

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Utility mixins that apply to all Readers and Writers
#![allow(missing_docs)]
// FIXME: Not sure how this should be structured
// FIXME: Iteration should probably be considered separately
use io::{IoError, IoResult, Reader};
use io;
use iter::Iterator;
use num::Int;
use option::{Option, Some, None};
use ptr::RawPtr;
use result::{Ok, Err};
use slice::{SlicePrelude, AsSlice};
/// An iterator that reads a single byte on each iteration,
/// until `.read_byte()` returns `EndOfFile`.
///
/// # Notes about the Iteration Protocol
///
/// The `Bytes` may yield `None` and thus terminate
/// an iteration, but continue to yield elements if iteration
/// is attempted again.
///
/// # Error
///
/// Any error other than `EndOfFile` that is produced by the underlying Reader
/// is returned by the iterator and should be handled by the caller.
pub struct Bytes<'r, T:'r> {
reader: &'r mut T,
}
impl<'r, R: Reader> Bytes<'r, R> {
/// Constructs a new byte iterator from the given Reader instance.
pub fn new(r: &'r mut R) -> Bytes<'r, R> {
Bytes {
reader: r,
}
}
}
impl<'r, R: Reader> Iterator<IoResult<u8>> for Bytes<'r, R> {
#[inline]
fn next(&mut self) -> Option<IoResult<u8>> {
match self.reader.read_byte() {
Ok(x) => Some(Ok(x)),
Err(IoError { kind: io::EndOfFile, .. }) => None,
Err(e) => Some(Err(e))
}
}
}
/// Converts an 8-bit to 64-bit unsigned value to a little-endian byte
/// representation of the given size. If the size is not big enough to
/// represent the value, then the high-order bytes are truncated.
///
/// Arguments:
///
/// * `n`: The value to convert.
/// * `size`: The size of the value, in bytes. This must be 8 or less, or task
/// panic occurs. If this is less than 8, then a value of that
/// many bytes is produced. For example, if `size` is 4, then a
/// 32-bit byte representation is produced.
/// * `f`: A callback that receives the value.
///
/// This function returns the value returned by the callback, for convenience.
pub fn u64_to_le_bytes<T>(n: u64, size: uint, f: |v: &[u8]| -> T) -> T {
use mem::transmute;
// LLVM fails to properly optimize this when using shifts instead of the to_le* intrinsics
assert!(size <= 8u);
match size {
1u => f(&[n as u8]),
2u => f(unsafe { transmute::<_, [u8, ..2]>((n as u16).to_le()) }),
4u => f(unsafe { transmute::<_, [u8, ..4]>((n as u32).to_le()) }),
8u => f(unsafe { transmute::<_, [u8, ..8]>(n.to_le()) }),
_ => {
let mut bytes = vec!();
let mut i = size;
let mut n = n;
while i > 0u {
bytes.push((n & 255_u64) as u8);
n >>= 8;
i -= 1u;
}
f(bytes.as_slice())
}
}
}
/// Converts an 8-bit to 64-bit unsigned value to a big-endian byte
/// representation of the given size. If the size is not big enough to
/// represent the value, then the high-order bytes are truncated.
///
/// Arguments:
///
/// * `n`: The value to convert.
/// * `size`: The size of the value, in bytes. This must be 8 or less, or task
/// panic occurs. If this is less than 8, then a value of that
/// many bytes is produced. For example, if `size` is 4, then a
/// 32-bit byte representation is produced.
/// * `f`: A callback that receives the value.
///
/// This function returns the value returned by the callback, for convenience.
pub fn u64_to_be_bytes<T>(n: u64, size: uint, f: |v: &[u8]| -> T) -> T {
use mem::transmute;
// LLVM fails to properly optimize this when using shifts instead of the to_be* intrinsics
assert!(size <= 8u);
match size {
1u => f(&[n as u8]),
2u => f(unsafe { transmute::<_, [u8, ..2]>((n as u16).to_be()) }),
4u => f(unsafe { transmute::<_, [u8, ..4]>((n as u32).to_be()) }),
8u => f(unsafe { transmute::<_, [u8, ..8]>(n.to_be()) }),
_ => {
let mut bytes = vec!();
let mut i = size;
while i > 0u {
let shift = (i - 1u) * 8u;
bytes.push((n >> shift) as u8);
i -= 1u;
}
f(bytes.as_slice())
}
}
}
/// Extracts an 8-bit to 64-bit unsigned big-endian value from the given byte
/// buffer and returns it as a 64-bit value.
///
/// Arguments:
///
/// * `data`: The buffer in which to extract the value.
/// * `start`: The offset at which to extract the value.
/// * `size`: The size of the value in bytes to extract. This must be 8 or
/// less, or task panic occurs. If this is less than 8, then only
/// that many bytes are parsed. For example, if `size` is 4, then a
/// 32-bit value is parsed.
pub fn u64_from_be_bytes(data: &[u8], start: uint, size: uint) -> u64 {
use ptr::{copy_nonoverlapping_memory};
use slice::SlicePrelude;
assert!(size <= 8u);
if data.len() - start < size {
panic!("index out of bounds");
}
let mut buf = [0u8, ..8];
unsafe {
let ptr = data.as_ptr().offset(start as int);
let out = buf.as_mut_ptr();
copy_nonoverlapping_memory(out.offset((8 - size) as int), ptr, size);
(*(out as *const u64)).to_be()
}
}
#[cfg(test)]
mod test {
use prelude::*;
use io;
use io::{MemReader, MemWriter, BytesReader};
struct InitialZeroByteReader {
count: int,
}
impl Reader for InitialZeroByteReader {
fn read(&mut self, buf: &mut [u8]) -> io::IoResult<uint> {
if self.count == 0 {
self.count = 1;
Ok(0)
} else {
buf[0] = 10;
Ok(1)
}
}
}
struct EofReader;
impl Reader for EofReader {
fn read(&mut self, _: &mut [u8]) -> io::IoResult<uint> {
Err(io::standard_error(io::EndOfFile))
}
}
struct ErroringReader;
impl Reader for ErroringReader {
fn read(&mut self, _: &mut [u8]) -> io::IoResult<uint> {
Err(io::standard_error(io::InvalidInput))
}
}
struct PartialReader {
count: int,
}
impl Reader for PartialReader {
fn read(&mut self, buf: &mut [u8]) -> io::IoResult<uint> {
if self.count == 0 {
self.count = 1;
buf[0] = 10;
buf[1] = 11;
Ok(2)
} else {
buf[0] = 12;
buf[1] = 13;
Ok(2)
}
}
}
struct ErroringLaterReader {
count: int,
}
impl Reader for ErroringLaterReader {
fn read(&mut self, buf: &mut [u8]) -> io::IoResult<uint> {
if self.count == 0 {
self.count = 1;
buf[0] = 10;
Ok(1)
} else {
Err(io::standard_error(io::InvalidInput))
}
}
}
struct ThreeChunkReader {
count: int,
}
impl Reader for ThreeChunkReader {
fn read(&mut self, buf: &mut [u8]) -> io::IoResult<uint> {
if self.count == 0 {
self.count = 1;
buf[0] = 10;
buf[1] = 11;
Ok(2)
} else if self.count == 1 {
self.count = 2;
buf[0] = 12;
buf[1] = 13;
Ok(2)
} else {
Err(io::standard_error(io::EndOfFile))
}
}
}
#[test]
fn read_byte() {
let mut reader = MemReader::new(vec!(10));
let byte = reader.read_byte();
assert!(byte == Ok(10));
}
#[test]
fn read_byte_0_bytes() {
let mut reader = InitialZeroByteReader {
count: 0,
};
let byte = reader.read_byte();
assert!(byte == Ok(10));
}
#[test]
fn read_byte_eof() {
let mut reader = EofReader;
let byte = reader.read_byte();
assert!(byte.is_err());
}
#[test]
fn read_byte_error() {
let mut reader = ErroringReader;
let byte = reader.read_byte();
assert!(byte.is_err());
}
#[test]
fn bytes_0_bytes() {
let mut reader = InitialZeroByteReader {
count: 0,
};
let byte = reader.bytes().next();
assert!(byte == Some(Ok(10)));
}
#[test]
fn bytes_eof() {
let mut reader = EofReader;
let byte = reader.bytes().next();
assert!(byte.is_none());
}
#[test]
fn bytes_error() {
let mut reader = ErroringReader;
let mut it = reader.bytes();
let byte = it.next();
assert!(byte.unwrap().is_err());
}
#[test]
fn read_bytes() {
let mut reader = MemReader::new(vec!(10, 11, 12, 13));
let bytes = reader.read_exact(4).unwrap();
assert!(bytes == vec!(10, 11, 12, 13));
}
#[test]
fn read_bytes_partial() {
let mut reader = PartialReader {
count: 0,
};
let bytes = reader.read_exact(4).unwrap();
assert!(bytes == vec!(10, 11, 12, 13));
}
#[test]
fn read_bytes_eof() {
let mut reader = MemReader::new(vec!(10, 11));
assert!(reader.read_exact(4).is_err());
}
#[test]
fn push_at_least() {
let mut reader = MemReader::new(vec![10, 11, 12, 13]);
let mut buf = vec![8, 9];
assert!(reader.push_at_least(4, 4, &mut buf).is_ok());
assert!(buf == vec![8, 9, 10, 11, 12, 13]);
}
#[test]
fn push_at_least_partial() {
let mut reader = PartialReader {
count: 0,
};
let mut buf = vec![8, 9];
assert!(reader.push_at_least(4, 4, &mut buf).is_ok());
assert!(buf == vec![8, 9, 10, 11, 12, 13]);
}
#[test]
fn push_at_least_eof() {
let mut reader = MemReader::new(vec![10, 11]);
let mut buf = vec![8, 9];
assert!(reader.push_at_least(4, 4, &mut buf).is_err());
assert!(buf == vec![8, 9, 10, 11]);
}
#[test]
fn push_at_least_error() {
let mut reader = ErroringLaterReader {
count: 0,
};
let mut buf = vec![8, 9];
assert!(reader.push_at_least(4, 4, &mut buf).is_err());
assert!(buf == vec![8, 9, 10]);
}
#[test]
fn read_to_end() {
let mut reader = ThreeChunkReader {
count: 0,
};
let buf = reader.read_to_end().unwrap();
assert!(buf == vec!(10, 11, 12, 13));
}
#[test]
#[should_fail]
fn read_to_end_error() {
let mut reader = ThreeChunkReader {
count: 0,
};
let buf = reader.read_to_end().unwrap();
assert!(buf == vec!(10, 11));
}
#[test]
fn test_read_write_le_mem() {
let uints = [0, 1, 2, 42, 10_123, 100_123_456, ::u64::MAX];
let mut writer = MemWriter::new();
for i in uints.iter() {
writer.write_le_u64(*i).unwrap();
}
let mut reader = MemReader::new(writer.unwrap());
for i in uints.iter() {
assert!(reader.read_le_u64().unwrap() == *i);
}
}
#[test]
fn test_read_write_be() {
let uints = [0, 1, 2, 42, 10_123, 100_123_456, ::u64::MAX];
let mut writer = MemWriter::new();
for i in uints.iter() {
writer.write_be_u64(*i).unwrap();
}
let mut reader = MemReader::new(writer.unwrap());
for i in uints.iter() {
assert!(reader.read_be_u64().unwrap() == *i);
}
}
#[test]
fn test_read_be_int_n() {
let ints = [::i32::MIN, -123456, -42, -5, 0, 1, ::i32::MAX];
let mut writer = MemWriter::new();
for i in ints.iter() {
writer.write_be_i32(*i).unwrap();
}
let mut reader = MemReader::new(writer.unwrap());
for i in ints.iter() {
// this tests that the sign extension is working
// (comparing the values as i32 would not test this)
assert!(reader.read_be_int_n(4).unwrap() == *i as i64);
}
}
#[test]
fn test_read_f32() {
//big-endian floating-point 8.1250
let buf = vec![0x41, 0x02, 0x00, 0x00];
let mut writer = MemWriter::new();
writer.write(buf.as_slice()).unwrap();
let mut reader = MemReader::new(writer.unwrap());
let f = reader.read_be_f32().unwrap();
assert!(f == 8.1250);
}
#[test]
fn test_read_write_f32() {
let f:f32 = 8.1250;
let mut writer = MemWriter::new();
writer.write_be_f32(f).unwrap();
writer.write_le_f32(f).unwrap();
let mut reader = MemReader::new(writer.unwrap());
assert!(reader.read_be_f32().unwrap() == 8.1250);
assert!(reader.read_le_f32().unwrap() == 8.1250);
}
#[test]
fn test_u64_from_be_bytes() {
use super::u64_from_be_bytes;
let buf = [0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09];
// Aligned access
assert_eq!(u64_from_be_bytes(buf, 0, 0), 0);
assert_eq!(u64_from_be_bytes(buf, 0, 1), 0x01);
assert_eq!(u64_from_be_bytes(buf, 0, 2), 0x0102);
assert_eq!(u64_from_be_bytes(buf, 0, 3), 0x010203);
assert_eq!(u64_from_be_bytes(buf, 0, 4), 0x01020304);
assert_eq!(u64_from_be_bytes(buf, 0, 5), 0x0102030405);
assert_eq!(u64_from_be_bytes(buf, 0, 6), 0x010203040506);
assert_eq!(u64_from_be_bytes(buf, 0, 7), 0x01020304050607);
assert_eq!(u64_from_be_bytes(buf, 0, 8), 0x0102030405060708);
// Unaligned access
assert_eq!(u64_from_be_bytes(buf, 1, 0), 0);
assert_eq!(u64_from_be_bytes(buf, 1, 1), 0x02);
assert_eq!(u64_from_be_bytes(buf, 1, 2), 0x0203);
assert_eq!(u64_from_be_bytes(buf, 1, 3), 0x020304);
assert_eq!(u64_from_be_bytes(buf, 1, 4), 0x02030405);
assert_eq!(u64_from_be_bytes(buf, 1, 5), 0x0203040506);
assert_eq!(u64_from_be_bytes(buf, 1, 6), 0x020304050607);
assert_eq!(u64_from_be_bytes(buf, 1, 7), 0x02030405060708);
assert_eq!(u64_from_be_bytes(buf, 1, 8), 0x0203040506070809);
}
}
#[cfg(test)]
mod bench {
extern crate test;
use prelude::*;
use self::test::Bencher;
// why is this a macro? wouldn't an inlined function work just as well?
macro_rules! u64_from_be_bytes_bench_impl(
($b:expr, $size:expr, $stride:expr, $start_index:expr) =>
({
use super::u64_from_be_bytes;
let data = Vec::from_fn($stride*100+$start_index, |i| i as u8);
let mut sum = 0u64;
$b.iter(|| {
let mut i = $start_index;
while i < data.len() {
sum += u64_from_be_bytes(data.as_slice(), i, $size);
i += $stride;
}
});
})
)
#[bench]
fn u64_from_be_bytes_4_aligned(b: &mut Bencher) {
u64_from_be_bytes_bench_impl!(b, 4, 4, 0);
}
#[bench]
fn u64_from_be_bytes_4_unaligned(b: &mut Bencher) {
u64_from_be_bytes_bench_impl!(b, 4, 4, 1);
}
#[bench]
fn u64_from_be_bytes_7_aligned(b: &mut Bencher) {
u64_from_be_bytes_bench_impl!(b, 7, 8, 0);
}
#[bench]
fn u64_from_be_bytes_7_unaligned(b: &mut Bencher) {
u64_from_be_bytes_bench_impl!(b, 7, 8, 1);
}
#[bench]
fn u64_from_be_bytes_8_aligned(b: &mut Bencher) {
u64_from_be_bytes_bench_impl!(b, 8, 8, 0);
}
#[bench]
fn u64_from_be_bytes_8_unaligned(b: &mut Bencher) {
u64_from_be_bytes_bench_impl!(b, 8, 8, 1);
}
}