60a1497ebb
Code generated for the test runner needs to break visibility rules
4960 lines
184 KiB
Rust
4960 lines
184 KiB
Rust
use driver::session::session;
|
|
use metadata::csearch::{each_path, get_method_names_if_trait};
|
|
use metadata::cstore::find_use_stmt_cnum;
|
|
use metadata::decoder::{def_like, dl_def, dl_field, dl_impl};
|
|
use middle::lang_items::LanguageItems;
|
|
use middle::lint::{deny, allow, forbid, level, unused_imports, warn};
|
|
use middle::pat_util::{pat_bindings};
|
|
use syntax::ast::{_mod, add, arm};
|
|
use syntax::ast::{bind_by_ref, bind_by_implicit_ref, bind_by_value};
|
|
use syntax::ast::{bitand, bitor, bitxor};
|
|
use syntax::ast::{blk, bound_const, bound_copy, bound_owned, bound_send};
|
|
use syntax::ast::{bound_trait, binding_mode,
|
|
capture_clause, class_ctor, class_dtor};
|
|
use syntax::ast::{crate, crate_num, decl_item};
|
|
use syntax::ast::{def, def_arg, def_binding, def_class, def_const, def_fn};
|
|
use syntax::ast::{def_foreign_mod, def_id, def_label, def_local, def_mod};
|
|
use syntax::ast::{def_prim_ty, def_region, def_self, def_ty, def_ty_param};
|
|
use syntax::ast::{def_typaram_binder, def_static_method};
|
|
use syntax::ast::{def_upvar, def_use, def_variant, expr, expr_assign_op};
|
|
use syntax::ast::{expr_binary, expr_cast, expr_field, expr_fn};
|
|
use syntax::ast::{expr_fn_block, expr_index, expr_path};
|
|
use syntax::ast::{def_prim_ty, def_region, def_self, def_ty, def_ty_param};
|
|
use syntax::ast::{def_upvar, def_use, def_variant, div, eq};
|
|
use syntax::ast::{enum_variant_kind, expr, expr_again, expr_assign_op};
|
|
use syntax::ast::{expr_binary, expr_break, expr_cast, expr_field, expr_fn};
|
|
use syntax::ast::{expr_fn_block, expr_index, expr_loop};
|
|
use syntax::ast::{expr_path, expr_struct, expr_unary, fn_decl};
|
|
use syntax::ast::{foreign_item, foreign_item_const, foreign_item_fn, ge};
|
|
use syntax::ast::{gt, ident, impure_fn, inherited, item, item_class};
|
|
use syntax::ast::{item_const, item_enum, item_fn, item_foreign_mod};
|
|
use syntax::ast::{item_impl, item_mac, item_mod, item_trait, item_ty, le};
|
|
use syntax::ast::{local, local_crate, lt, method, module_ns, mul, ne, neg};
|
|
use syntax::ast::{node_id, pat, pat_enum, pat_ident, path, prim_ty};
|
|
use syntax::ast::{pat_box, pat_lit, pat_range, pat_rec, pat_struct};
|
|
use syntax::ast::{pat_tup, pat_uniq, pat_wild, private, provided, public};
|
|
use syntax::ast::{required, rem, self_ty_, shl, shr, stmt_decl};
|
|
use syntax::ast::{struct_field, struct_variant_kind, sty_static, subtract};
|
|
use syntax::ast::{trait_ref, tuple_variant_kind, ty, ty_bool, ty_char};
|
|
use syntax::ast::{ty_f, ty_f32, ty_f64, ty_float, ty_i, ty_i16, ty_i32};
|
|
use syntax::ast::{ty_i64, ty_i8, ty_int, ty_param, ty_path, ty_str, ty_u};
|
|
use syntax::ast::{ty_u16, ty_u32, ty_u64, ty_u8, ty_uint, type_value_ns};
|
|
use syntax::ast::{variant, view_item, view_item_export, view_item_import};
|
|
use syntax::ast::{view_item_use, view_path_glob, view_path_list};
|
|
use syntax::ast::{view_path_simple, visibility, anonymous, named};
|
|
use syntax::ast_util::{def_id_of_def, dummy_sp, local_def};
|
|
use syntax::ast_util::{path_to_ident, walk_pat, trait_method_to_ty_method};
|
|
use syntax::attr::{attr_metas, contains_name};
|
|
use syntax::print::pprust::{pat_to_str, path_to_str};
|
|
use syntax::codemap::span;
|
|
use syntax::visit::{default_visitor, fk_method, mk_vt, visit_block};
|
|
use syntax::visit::{visit_crate, visit_expr, visit_expr_opt, visit_fn};
|
|
use syntax::visit::{visit_foreign_item, visit_item, visit_method_helper};
|
|
use syntax::visit::{visit_mod, visit_ty, vt};
|
|
|
|
use box::ptr_eq;
|
|
use dvec::DVec;
|
|
use option::{get, is_some};
|
|
use str::{connect, split_str};
|
|
use vec::pop;
|
|
use syntax::parse::token::ident_interner;
|
|
|
|
use std::list::{Cons, List, Nil};
|
|
use std::map::HashMap;
|
|
use str_eq = str::eq;
|
|
|
|
// Definition mapping
|
|
type DefMap = HashMap<node_id,def>;
|
|
|
|
struct binding_info {
|
|
span: span,
|
|
binding_mode: binding_mode,
|
|
}
|
|
|
|
// Map from the name in a pattern to its binding mode.
|
|
type BindingMap = HashMap<ident,binding_info>;
|
|
|
|
// Implementation resolution
|
|
//
|
|
// XXX: This kind of duplicates information kept in ty::method. Maybe it
|
|
// should go away.
|
|
|
|
type MethodInfo = {
|
|
did: def_id,
|
|
n_tps: uint,
|
|
ident: ident,
|
|
self_type: self_ty_
|
|
};
|
|
|
|
type Impl = { did: def_id, ident: ident, methods: ~[@MethodInfo] };
|
|
|
|
// Trait method resolution
|
|
type TraitMap = @HashMap<node_id,@DVec<def_id>>;
|
|
|
|
// This is the replacement export map. It maps a module to all of the exports
|
|
// within.
|
|
type ExportMap2 = HashMap<node_id, ~[Export2]>;
|
|
|
|
struct Export2 {
|
|
name: ~str, // The name of the target.
|
|
def_id: def_id, // The definition of the target.
|
|
reexport: bool, // Whether this is a reexport.
|
|
}
|
|
|
|
enum PatternBindingMode {
|
|
RefutableMode,
|
|
IrrefutableMode
|
|
}
|
|
|
|
#[cfg(stage0)]
|
|
impl PatternBindingMode : cmp::Eq {
|
|
pure fn eq(&&other: PatternBindingMode) -> bool {
|
|
(self as uint) == (other as uint)
|
|
}
|
|
pure fn ne(&&other: PatternBindingMode) -> bool { !self.eq(other) }
|
|
}
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
impl PatternBindingMode : cmp::Eq {
|
|
pure fn eq(other: &PatternBindingMode) -> bool {
|
|
(self as uint) == ((*other) as uint)
|
|
}
|
|
pure fn ne(other: &PatternBindingMode) -> bool { !self.eq(other) }
|
|
}
|
|
|
|
|
|
enum Namespace {
|
|
ModuleNS,
|
|
TypeNS,
|
|
ValueNS
|
|
}
|
|
|
|
enum NamespaceResult {
|
|
UnknownResult,
|
|
UnboundResult,
|
|
BoundResult(@Module, @NameBindings)
|
|
}
|
|
|
|
impl NamespaceResult {
|
|
pure fn is_unknown() -> bool {
|
|
match self {
|
|
UnknownResult => true,
|
|
_ => false
|
|
}
|
|
}
|
|
}
|
|
|
|
enum NameDefinition {
|
|
NoNameDefinition, //< The name was unbound.
|
|
ChildNameDefinition(def), //< The name identifies an immediate child.
|
|
ImportNameDefinition(def) //< The name identifies an import.
|
|
|
|
}
|
|
|
|
enum Mutability {
|
|
Mutable,
|
|
Immutable
|
|
}
|
|
|
|
#[cfg(stage0)]
|
|
impl Mutability : cmp::Eq {
|
|
pure fn eq(&&other: Mutability) -> bool {
|
|
(self as uint) == (other as uint)
|
|
}
|
|
pure fn ne(&&other: Mutability) -> bool { !self.eq(other) }
|
|
}
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
impl Mutability : cmp::Eq {
|
|
pure fn eq(other: &Mutability) -> bool {
|
|
(self as uint) == ((*other) as uint)
|
|
}
|
|
pure fn ne(other: &Mutability) -> bool { !self.eq(other) }
|
|
}
|
|
|
|
enum SelfBinding {
|
|
NoSelfBinding,
|
|
HasSelfBinding(node_id)
|
|
}
|
|
|
|
enum CaptureClause {
|
|
NoCaptureClause,
|
|
HasCaptureClause(capture_clause)
|
|
}
|
|
|
|
type ResolveVisitor = vt<()>;
|
|
|
|
enum ModuleDef {
|
|
NoModuleDef, // Does not define a module.
|
|
ModuleDef(@Module), // Defines a module.
|
|
}
|
|
|
|
impl ModuleDef {
|
|
pure fn is_none() -> bool {
|
|
match self { NoModuleDef => true, _ => false }
|
|
}
|
|
}
|
|
|
|
enum ImportDirectiveNS {
|
|
ModuleNSOnly,
|
|
AnyNS
|
|
}
|
|
|
|
#[cfg(stage0)]
|
|
impl ImportDirectiveNS : cmp::Eq {
|
|
pure fn eq(&&other: ImportDirectiveNS) -> bool {
|
|
(self as uint) == (other as uint)
|
|
}
|
|
pure fn ne(&&other: ImportDirectiveNS) -> bool { !self.eq(other) }
|
|
}
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
impl ImportDirectiveNS : cmp::Eq {
|
|
pure fn eq(other: &ImportDirectiveNS) -> bool {
|
|
(self as uint) == ((*other) as uint)
|
|
}
|
|
pure fn ne(other: &ImportDirectiveNS) -> bool { !self.eq(other) }
|
|
}
|
|
|
|
/// Contains data for specific types of import directives.
|
|
enum ImportDirectiveSubclass {
|
|
SingleImport(Atom /* target */, Atom /* source */, ImportDirectiveNS),
|
|
GlobImport
|
|
}
|
|
|
|
/// The context that we thread through while building the reduced graph.
|
|
enum ReducedGraphParent {
|
|
ModuleReducedGraphParent(@Module)
|
|
}
|
|
|
|
enum ResolveResult<T> {
|
|
Failed, // Failed to resolve the name.
|
|
Indeterminate, // Couldn't determine due to unresolved globs.
|
|
Success(T) // Successfully resolved the import.
|
|
}
|
|
|
|
impl<T> ResolveResult<T> {
|
|
fn failed() -> bool {
|
|
match self { Failed => true, _ => false }
|
|
}
|
|
fn indeterminate() -> bool {
|
|
match self { Indeterminate => true, _ => false }
|
|
}
|
|
}
|
|
|
|
enum TypeParameters/& {
|
|
NoTypeParameters, //< No type parameters.
|
|
HasTypeParameters(&~[ty_param], //< Type parameters.
|
|
node_id, //< ID of the enclosing item
|
|
|
|
// The index to start numbering the type parameters at.
|
|
// This is zero if this is the outermost set of type
|
|
// parameters, or equal to the number of outer type
|
|
// parameters. For example, if we have:
|
|
//
|
|
// impl I<T> {
|
|
// fn method<U>() { ... }
|
|
// }
|
|
//
|
|
// The index at the method site will be 1, because the
|
|
// outer T had index 0.
|
|
|
|
uint,
|
|
|
|
// The kind of the rib used for type parameters.
|
|
RibKind)
|
|
}
|
|
|
|
// The rib kind controls the translation of argument or local definitions
|
|
// (`def_arg` or `def_local`) to upvars (`def_upvar`).
|
|
|
|
enum RibKind {
|
|
// No translation needs to be applied.
|
|
NormalRibKind,
|
|
|
|
// We passed through a function scope at the given node ID. Translate
|
|
// upvars as appropriate.
|
|
FunctionRibKind(node_id /* func id */, node_id /* body id */),
|
|
|
|
// We passed through a class, impl, or trait and are now in one of its
|
|
// methods. Allow references to ty params that that class, impl or trait
|
|
// binds. Disallow any other upvars (including other ty params that are
|
|
// upvars).
|
|
// parent; method itself
|
|
MethodRibKind(node_id, MethodSort),
|
|
|
|
// We passed through a function *item* scope. Disallow upvars.
|
|
OpaqueFunctionRibKind
|
|
}
|
|
|
|
// Methods can be required or provided. Required methods only occur in traits.
|
|
enum MethodSort {
|
|
Required,
|
|
Provided(node_id)
|
|
}
|
|
|
|
// The X-ray flag indicates that a context has the X-ray privilege, which
|
|
// allows it to reference private names. Currently, this is used for the test
|
|
// runner.
|
|
//
|
|
// XXX: The X-ray flag is kind of questionable in the first place. It might
|
|
// be better to introduce an expr_xray_path instead.
|
|
|
|
enum XrayFlag {
|
|
NoXray, //< Private items cannot be accessed.
|
|
Xray //< Private items can be accessed.
|
|
}
|
|
|
|
#[cfg(stage0)]
|
|
impl XrayFlag : cmp::Eq {
|
|
pure fn eq(&&other: XrayFlag) -> bool {
|
|
(self as uint) == (other as uint)
|
|
}
|
|
pure fn ne(&&other: XrayFlag) -> bool { !self.eq(other) }
|
|
}
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
impl XrayFlag : cmp::Eq {
|
|
pure fn eq(other: &XrayFlag) -> bool {
|
|
(self as uint) == ((*other) as uint)
|
|
}
|
|
pure fn ne(other: &XrayFlag) -> bool { !self.eq(other) }
|
|
}
|
|
|
|
enum AllowCapturingSelfFlag {
|
|
AllowCapturingSelf, //< The "self" definition can be captured.
|
|
DontAllowCapturingSelf, //< The "self" definition cannot be captured.
|
|
}
|
|
|
|
#[cfg(stage0)]
|
|
impl AllowCapturingSelfFlag : cmp::Eq {
|
|
pure fn eq(&&other: AllowCapturingSelfFlag) -> bool {
|
|
(self as uint) == (other as uint)
|
|
}
|
|
pure fn ne(&&other: AllowCapturingSelfFlag) -> bool { !self.eq(other) }
|
|
}
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
impl AllowCapturingSelfFlag : cmp::Eq {
|
|
pure fn eq(other: &AllowCapturingSelfFlag) -> bool {
|
|
(self as uint) == ((*other) as uint)
|
|
}
|
|
pure fn ne(other: &AllowCapturingSelfFlag) -> bool { !self.eq(other) }
|
|
}
|
|
|
|
enum EnumVariantOrConstResolution {
|
|
FoundEnumVariant(def),
|
|
FoundConst,
|
|
EnumVariantOrConstNotFound
|
|
}
|
|
|
|
// FIXME (issue #2550): Should be a class but then it becomes not implicitly
|
|
// copyable due to a kind bug.
|
|
|
|
type Atom = uint;
|
|
|
|
fn Atom(n: uint) -> Atom {
|
|
return n;
|
|
}
|
|
|
|
/// Creates a hash table of atoms.
|
|
fn atom_hashmap<V:Copy>() -> HashMap<Atom,V> {
|
|
HashMap::<Atom,V>()
|
|
}
|
|
|
|
/// One local scope.
|
|
struct Rib {
|
|
bindings: HashMap<Atom,def_like>,
|
|
kind: RibKind,
|
|
}
|
|
|
|
fn Rib(kind: RibKind) -> Rib {
|
|
Rib {
|
|
bindings: atom_hashmap(),
|
|
kind: kind
|
|
}
|
|
}
|
|
|
|
|
|
/// One import directive.
|
|
struct ImportDirective {
|
|
module_path: @DVec<Atom>,
|
|
subclass: @ImportDirectiveSubclass,
|
|
span: span,
|
|
}
|
|
|
|
fn ImportDirective(module_path: @DVec<Atom>,
|
|
subclass: @ImportDirectiveSubclass,
|
|
span: span) -> ImportDirective {
|
|
ImportDirective {
|
|
module_path: module_path,
|
|
subclass: subclass,
|
|
span: span
|
|
}
|
|
}
|
|
|
|
/// The item that an import resolves to.
|
|
struct Target {
|
|
target_module: @Module,
|
|
bindings: @NameBindings,
|
|
}
|
|
|
|
fn Target(target_module: @Module, bindings: @NameBindings) -> Target {
|
|
Target {
|
|
target_module: target_module,
|
|
bindings: bindings
|
|
}
|
|
}
|
|
|
|
struct ImportResolution {
|
|
span: span,
|
|
|
|
// The number of outstanding references to this name. When this reaches
|
|
// zero, outside modules can count on the targets being correct. Before
|
|
// then, all bets are off; future imports could override this name.
|
|
|
|
mut outstanding_references: uint,
|
|
|
|
mut module_target: Option<Target>,
|
|
mut value_target: Option<Target>,
|
|
mut type_target: Option<Target>,
|
|
|
|
mut used: bool,
|
|
}
|
|
|
|
fn ImportResolution(span: span) -> ImportResolution {
|
|
ImportResolution {
|
|
span: span,
|
|
outstanding_references: 0u,
|
|
module_target: None,
|
|
value_target: None,
|
|
type_target: None,
|
|
used: false
|
|
}
|
|
}
|
|
|
|
impl ImportResolution {
|
|
fn target_for_namespace(namespace: Namespace) -> Option<Target> {
|
|
match namespace {
|
|
ModuleNS => return copy self.module_target,
|
|
TypeNS => return copy self.type_target,
|
|
ValueNS => return copy self.value_target
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The link from a module up to its nearest parent node.
|
|
enum ParentLink {
|
|
NoParentLink,
|
|
ModuleParentLink(@Module, Atom),
|
|
BlockParentLink(@Module, node_id)
|
|
}
|
|
|
|
/// One node in the tree of modules.
|
|
struct Module {
|
|
parent_link: ParentLink,
|
|
mut def_id: Option<def_id>,
|
|
|
|
children: HashMap<Atom,@NameBindings>,
|
|
imports: DVec<@ImportDirective>,
|
|
|
|
// The anonymous children of this node. Anonymous children are pseudo-
|
|
// modules that are implicitly created around items contained within
|
|
// blocks.
|
|
//
|
|
// For example, if we have this:
|
|
//
|
|
// fn f() {
|
|
// fn g() {
|
|
// ...
|
|
// }
|
|
// }
|
|
//
|
|
// There will be an anonymous module created around `g` with the ID of the
|
|
// entry block for `f`.
|
|
|
|
anonymous_children: HashMap<node_id,@Module>,
|
|
|
|
// XXX: This is about to be reworked so that exports are on individual
|
|
// items, not names.
|
|
//
|
|
// The atom is the name of the exported item, while the node ID is the
|
|
// ID of the export path.
|
|
|
|
exported_names: HashMap<Atom,node_id>,
|
|
|
|
// XXX: This is a transition measure to let us switch export-evaluation
|
|
// logic when compiling modules that have transitioned to listing their
|
|
// pub/priv qualifications on items, explicitly, rather than using the
|
|
// old export rule.
|
|
|
|
legacy_exports: bool,
|
|
|
|
// The status of resolving each import in this module.
|
|
import_resolutions: HashMap<Atom,@ImportResolution>,
|
|
|
|
// The number of unresolved globs that this module exports.
|
|
mut glob_count: uint,
|
|
|
|
// The index of the import we're resolving.
|
|
mut resolved_import_count: uint,
|
|
}
|
|
|
|
fn Module(parent_link: ParentLink,
|
|
def_id: Option<def_id>,
|
|
legacy_exports: bool) -> Module {
|
|
Module {
|
|
parent_link: parent_link,
|
|
def_id: def_id,
|
|
children: atom_hashmap(),
|
|
imports: DVec(),
|
|
anonymous_children: HashMap(),
|
|
exported_names: atom_hashmap(),
|
|
legacy_exports: legacy_exports,
|
|
import_resolutions: atom_hashmap(),
|
|
glob_count: 0u,
|
|
resolved_import_count: 0u
|
|
}
|
|
}
|
|
|
|
impl Module {
|
|
fn all_imports_resolved() -> bool {
|
|
return self.imports.len() == self.resolved_import_count;
|
|
}
|
|
}
|
|
|
|
// XXX: This is a workaround due to is_none in the standard library mistakenly
|
|
// requiring a T:copy.
|
|
|
|
pure fn is_none<T>(x: Option<T>) -> bool {
|
|
match x {
|
|
None => return true,
|
|
Some(_) => return false
|
|
}
|
|
}
|
|
|
|
fn unused_import_lint_level(session: session) -> level {
|
|
for session.opts.lint_opts.each |lint_option_pair| {
|
|
let (lint_type, lint_level) = *lint_option_pair;
|
|
if lint_type == unused_imports {
|
|
return lint_level;
|
|
}
|
|
}
|
|
return allow;
|
|
}
|
|
|
|
enum Privacy {
|
|
Private,
|
|
Public
|
|
}
|
|
|
|
#[cfg(stage0)]
|
|
impl Privacy : cmp::Eq {
|
|
pure fn eq(&&other: Privacy) -> bool {
|
|
(self as uint) == (other as uint)
|
|
}
|
|
pure fn ne(&&other: Privacy) -> bool { !self.eq(other) }
|
|
}
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
impl Privacy : cmp::Eq {
|
|
pure fn eq(other: &Privacy) -> bool {
|
|
(self as uint) == ((*other) as uint)
|
|
}
|
|
pure fn ne(other: &Privacy) -> bool { !self.eq(other) }
|
|
}
|
|
|
|
// Records a possibly-private definition.
|
|
struct Definition {
|
|
privacy: Privacy,
|
|
def: def,
|
|
}
|
|
|
|
// Records the definitions (at most one for each namespace) that a name is
|
|
// bound to.
|
|
struct NameBindings {
|
|
mut module_def: ModuleDef, //< Meaning in module namespace.
|
|
mut type_def: Option<Definition>, //< Meaning in type namespace.
|
|
mut value_def: Option<Definition>, //< Meaning in value namespace.
|
|
|
|
// For error reporting
|
|
// XXX: Merge me into Definition.
|
|
mut module_span: Option<span>,
|
|
mut type_span: Option<span>,
|
|
mut value_span: Option<span>,
|
|
}
|
|
|
|
impl NameBindings {
|
|
|
|
/// Creates a new module in this set of name bindings.
|
|
fn define_module(parent_link: ParentLink,
|
|
def_id: Option<def_id>,
|
|
legacy_exports: bool,
|
|
sp: span) {
|
|
if self.module_def.is_none() {
|
|
let module_ = @Module(parent_link, def_id, legacy_exports);
|
|
self.module_def = ModuleDef(module_);
|
|
self.module_span = Some(sp);
|
|
}
|
|
}
|
|
|
|
/// Records a type definition.
|
|
fn define_type(privacy: Privacy, def: def, sp: span) {
|
|
self.type_def = Some(Definition { privacy: privacy, def: def });
|
|
self.type_span = Some(sp);
|
|
}
|
|
|
|
/// Records a value definition.
|
|
fn define_value(privacy: Privacy, def: def, sp: span) {
|
|
self.value_def = Some(Definition { privacy: privacy, def: def });
|
|
self.value_span = Some(sp);
|
|
}
|
|
|
|
/// Returns the module node if applicable.
|
|
fn get_module_if_available() -> Option<@Module> {
|
|
match self.module_def {
|
|
NoModuleDef => return None,
|
|
ModuleDef(module_) => return Some(module_)
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the module node. Fails if this node does not have a module
|
|
* definition.
|
|
*/
|
|
fn get_module() -> @Module {
|
|
match self.module_def {
|
|
NoModuleDef => {
|
|
fail
|
|
~"get_module called on a node with no module definition!";
|
|
}
|
|
ModuleDef(module_) => {
|
|
return module_;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn defined_in_namespace(namespace: Namespace) -> bool {
|
|
match namespace {
|
|
ModuleNS => {
|
|
match self.module_def {
|
|
NoModuleDef => false,
|
|
_ => true
|
|
}
|
|
}
|
|
TypeNS => return self.type_def.is_some(),
|
|
ValueNS => return self.value_def.is_some()
|
|
}
|
|
}
|
|
|
|
fn def_for_namespace(namespace: Namespace) -> Option<Definition> {
|
|
match namespace {
|
|
TypeNS => return self.type_def,
|
|
ValueNS => return self.value_def,
|
|
ModuleNS => match self.module_def {
|
|
NoModuleDef => return None,
|
|
ModuleDef(module_) =>
|
|
match module_.def_id {
|
|
None => return None,
|
|
Some(def_id) => {
|
|
return Some(Definition {
|
|
privacy: Public,
|
|
def: def_mod(def_id)
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn span_for_namespace(namespace: Namespace) -> Option<span> {
|
|
match self.def_for_namespace(namespace) {
|
|
Some(_) => {
|
|
match namespace {
|
|
TypeNS => self.type_span,
|
|
ValueNS => self.value_span,
|
|
ModuleNS => self.module_span
|
|
}
|
|
}
|
|
None => None
|
|
}
|
|
}
|
|
}
|
|
|
|
fn NameBindings() -> NameBindings {
|
|
NameBindings {
|
|
module_def: NoModuleDef,
|
|
type_def: None,
|
|
value_def: None,
|
|
module_span: None,
|
|
type_span: None,
|
|
value_span: None
|
|
}
|
|
}
|
|
|
|
|
|
/// Interns the names of the primitive types.
|
|
struct PrimitiveTypeTable {
|
|
primitive_types: HashMap<Atom,prim_ty>,
|
|
}
|
|
|
|
impl PrimitiveTypeTable {
|
|
fn intern(intr: ident_interner, string: @~str,
|
|
primitive_type: prim_ty) {
|
|
let atom = intr.intern(string);
|
|
self.primitive_types.insert(atom, primitive_type);
|
|
}
|
|
}
|
|
|
|
fn PrimitiveTypeTable(intr: ident_interner) -> PrimitiveTypeTable {
|
|
let table = PrimitiveTypeTable {
|
|
primitive_types: atom_hashmap()
|
|
};
|
|
|
|
table.intern(intr, @~"bool", ty_bool);
|
|
table.intern(intr, @~"char", ty_int(ty_char));
|
|
table.intern(intr, @~"float", ty_float(ty_f));
|
|
table.intern(intr, @~"f32", ty_float(ty_f32));
|
|
table.intern(intr, @~"f64", ty_float(ty_f64));
|
|
table.intern(intr, @~"int", ty_int(ty_i));
|
|
table.intern(intr, @~"i8", ty_int(ty_i8));
|
|
table.intern(intr, @~"i16", ty_int(ty_i16));
|
|
table.intern(intr, @~"i32", ty_int(ty_i32));
|
|
table.intern(intr, @~"i64", ty_int(ty_i64));
|
|
table.intern(intr, @~"str", ty_str);
|
|
table.intern(intr, @~"uint", ty_uint(ty_u));
|
|
table.intern(intr, @~"u8", ty_uint(ty_u8));
|
|
table.intern(intr, @~"u16", ty_uint(ty_u16));
|
|
table.intern(intr, @~"u32", ty_uint(ty_u32));
|
|
table.intern(intr, @~"u64", ty_uint(ty_u64));
|
|
|
|
return table;
|
|
}
|
|
|
|
|
|
fn namespace_to_str(ns: Namespace) -> ~str {
|
|
match ns {
|
|
TypeNS => ~"type",
|
|
ValueNS => ~"value",
|
|
ModuleNS => ~"module"
|
|
}
|
|
}
|
|
|
|
fn has_legacy_export_attr(attrs: &[syntax::ast::attribute]) -> bool {
|
|
for attrs.each |attribute| {
|
|
match attribute.node.value.node {
|
|
syntax::ast::meta_word(w) if w == ~"legacy_exports" => {
|
|
return true;
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
fn Resolver(session: session, lang_items: LanguageItems,
|
|
crate: @crate) -> Resolver {
|
|
|
|
let graph_root = @NameBindings();
|
|
|
|
(*graph_root).define_module(NoParentLink,
|
|
Some({ crate: 0, node: 0 }),
|
|
has_legacy_export_attr(crate.node.attrs),
|
|
crate.span);
|
|
|
|
let current_module = (*graph_root).get_module();
|
|
|
|
let self = Resolver {
|
|
session: session,
|
|
lang_items: copy lang_items,
|
|
crate: crate,
|
|
|
|
// The outermost module has def ID 0; this is not reflected in the
|
|
// AST.
|
|
|
|
graph_root: graph_root,
|
|
|
|
unused_import_lint_level: unused_import_lint_level(session),
|
|
|
|
trait_info: HashMap(),
|
|
structs: HashMap(),
|
|
|
|
unresolved_imports: 0u,
|
|
|
|
current_module: current_module,
|
|
value_ribs: @DVec(),
|
|
type_ribs: @DVec(),
|
|
label_ribs: @DVec(),
|
|
|
|
xray_context: NoXray,
|
|
current_trait_refs: None,
|
|
|
|
self_atom: syntax::parse::token::special_idents::self_,
|
|
primitive_type_table: @PrimitiveTypeTable(session.
|
|
parse_sess.interner),
|
|
|
|
namespaces: ~[ ModuleNS, TypeNS, ValueNS ],
|
|
|
|
def_map: HashMap(),
|
|
export_map2: HashMap(),
|
|
trait_map: @HashMap(),
|
|
|
|
intr: session.intr()
|
|
};
|
|
|
|
move self
|
|
}
|
|
|
|
/// The main resolver class.
|
|
struct Resolver {
|
|
session: session,
|
|
lang_items: LanguageItems,
|
|
crate: @crate,
|
|
|
|
intr: ident_interner,
|
|
|
|
graph_root: @NameBindings,
|
|
|
|
unused_import_lint_level: level,
|
|
|
|
trait_info: HashMap<def_id,@HashMap<Atom,()>>,
|
|
structs: HashMap<def_id,bool>,
|
|
|
|
// The number of imports that are currently unresolved.
|
|
mut unresolved_imports: uint,
|
|
|
|
// The module that represents the current item scope.
|
|
mut current_module: @Module,
|
|
|
|
// The current set of local scopes, for values.
|
|
// XXX: Reuse ribs to avoid allocation.
|
|
value_ribs: @DVec<@Rib>,
|
|
|
|
// The current set of local scopes, for types.
|
|
type_ribs: @DVec<@Rib>,
|
|
|
|
// The current set of local scopes, for labels.
|
|
label_ribs: @DVec<@Rib>,
|
|
|
|
// Whether the current context is an X-ray context. An X-ray context is
|
|
// allowed to access private names of any module.
|
|
mut xray_context: XrayFlag,
|
|
|
|
// The trait that the current context can refer to.
|
|
mut current_trait_refs: Option<@DVec<def_id>>,
|
|
|
|
// The atom for the keyword "self".
|
|
self_atom: Atom,
|
|
|
|
// The atoms for the primitive types.
|
|
primitive_type_table: @PrimitiveTypeTable,
|
|
|
|
// The four namespaces.
|
|
namespaces: ~[Namespace],
|
|
|
|
def_map: DefMap,
|
|
export_map2: ExportMap2,
|
|
trait_map: TraitMap,
|
|
}
|
|
|
|
impl Resolver {
|
|
|
|
/// The main name resolution procedure.
|
|
fn resolve(@self, this: @Resolver) {
|
|
self.build_reduced_graph(this);
|
|
self.session.abort_if_errors();
|
|
|
|
self.resolve_imports();
|
|
self.session.abort_if_errors();
|
|
|
|
self.record_exports();
|
|
self.session.abort_if_errors();
|
|
|
|
self.resolve_crate();
|
|
self.session.abort_if_errors();
|
|
|
|
self.check_for_unused_imports_if_necessary();
|
|
}
|
|
|
|
//
|
|
// Reduced graph building
|
|
//
|
|
// Here we build the "reduced graph": the graph of the module tree without
|
|
// any imports resolved.
|
|
//
|
|
|
|
/// Constructs the reduced graph for the entire crate.
|
|
fn build_reduced_graph(this: @Resolver) {
|
|
let initial_parent =
|
|
ModuleReducedGraphParent((*self.graph_root).get_module());
|
|
visit_crate(*self.crate, initial_parent, mk_vt(@{
|
|
visit_item: |item, context, visitor|
|
|
(*this).build_reduced_graph_for_item(item, context, visitor),
|
|
|
|
visit_foreign_item: |foreign_item, context, visitor|
|
|
(*this).build_reduced_graph_for_foreign_item(foreign_item,
|
|
context,
|
|
visitor),
|
|
|
|
visit_view_item: |view_item, context, visitor|
|
|
(*this).build_reduced_graph_for_view_item(view_item,
|
|
context,
|
|
visitor),
|
|
|
|
visit_block: |block, context, visitor|
|
|
(*this).build_reduced_graph_for_block(block,
|
|
context,
|
|
visitor),
|
|
|
|
.. *default_visitor()
|
|
}));
|
|
}
|
|
|
|
fn visibility_to_privacy(visibility: visibility,
|
|
legacy_exports: bool) -> Privacy {
|
|
if legacy_exports {
|
|
match visibility {
|
|
inherited | public => Public,
|
|
private => Private
|
|
}
|
|
} else {
|
|
match visibility {
|
|
public => Public,
|
|
inherited | private => Private
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the current module tracked by the reduced graph parent.
|
|
fn get_module_from_parent(reduced_graph_parent: ReducedGraphParent)
|
|
-> @Module {
|
|
match reduced_graph_parent {
|
|
ModuleReducedGraphParent(module_) => {
|
|
return module_;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Adds a new child item to the module definition of the parent node and
|
|
* returns its corresponding name bindings as well as the current parent.
|
|
* Or, if we're inside a block, creates (or reuses) an anonymous module
|
|
* corresponding to the innermost block ID and returns the name bindings
|
|
* as well as the newly-created parent.
|
|
*
|
|
* If this node does not have a module definition and we are not inside
|
|
* a block, fails.
|
|
*/
|
|
fn add_child(name: Atom,
|
|
reduced_graph_parent: ReducedGraphParent,
|
|
// Pass in the namespaces for the child item so that we can
|
|
// check for duplicate items in the same namespace
|
|
ns: ~[Namespace],
|
|
// For printing errors
|
|
sp: span)
|
|
-> (@NameBindings, ReducedGraphParent) {
|
|
|
|
// If this is the immediate descendant of a module, then we add the
|
|
// child name directly. Otherwise, we create or reuse an anonymous
|
|
// module and add the child to that.
|
|
|
|
let mut module_;
|
|
match reduced_graph_parent {
|
|
ModuleReducedGraphParent(parent_module) => {
|
|
module_ = parent_module;
|
|
}
|
|
}
|
|
|
|
// Add or reuse the child.
|
|
let new_parent = ModuleReducedGraphParent(module_);
|
|
match module_.children.find(name) {
|
|
None => {
|
|
let child = @NameBindings();
|
|
module_.children.insert(name, child);
|
|
return (child, new_parent);
|
|
}
|
|
Some(child) => {
|
|
// We don't want to complain if the multiple definitions
|
|
// are in different namespaces.
|
|
match ns.find(|n| child.defined_in_namespace(n)) {
|
|
Some(ns) => {
|
|
self.session.span_err(sp,
|
|
#fmt("Duplicate definition of %s %s",
|
|
namespace_to_str(ns),
|
|
self.session.str_of(name)));
|
|
do child.span_for_namespace(ns).iter() |sp| {
|
|
self.session.span_note(sp,
|
|
#fmt("First definition of %s %s here:",
|
|
namespace_to_str(ns),
|
|
self.session.str_of(name)));
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
return (child, new_parent);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn block_needs_anonymous_module(block: blk) -> bool {
|
|
// If the block has view items, we need an anonymous module.
|
|
if block.node.view_items.len() > 0u {
|
|
return true;
|
|
}
|
|
|
|
// Check each statement.
|
|
for block.node.stmts.each |statement| {
|
|
match statement.node {
|
|
stmt_decl(declaration, _) => {
|
|
match declaration.node {
|
|
decl_item(_) => {
|
|
return true;
|
|
}
|
|
_ => {
|
|
// Keep searching.
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
// Keep searching.
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we found neither view items nor items, we don't need to create
|
|
// an anonymous module.
|
|
|
|
return false;
|
|
}
|
|
|
|
fn get_parent_link(parent: ReducedGraphParent, name: Atom) -> ParentLink {
|
|
match parent {
|
|
ModuleReducedGraphParent(module_) => {
|
|
return ModuleParentLink(module_, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Constructs the reduced graph for one item.
|
|
fn build_reduced_graph_for_item(item: @item,
|
|
parent: ReducedGraphParent,
|
|
&&visitor: vt<ReducedGraphParent>) {
|
|
|
|
let atom = item.ident;
|
|
let sp = item.span;
|
|
let legacy = match parent {
|
|
ModuleReducedGraphParent(m) => m.legacy_exports
|
|
};
|
|
|
|
match item.node {
|
|
item_mod(module_) => {
|
|
let legacy = has_legacy_export_attr(item.attrs);
|
|
let (name_bindings, new_parent) = self.add_child(atom, parent,
|
|
~[ModuleNS], sp);
|
|
|
|
let parent_link = self.get_parent_link(new_parent, atom);
|
|
let def_id = { crate: 0, node: item.id };
|
|
(*name_bindings).define_module(parent_link, Some(def_id),
|
|
legacy, sp);
|
|
|
|
let new_parent =
|
|
ModuleReducedGraphParent((*name_bindings).get_module());
|
|
|
|
visit_mod(module_, sp, item.id, new_parent, visitor);
|
|
}
|
|
item_foreign_mod(fm) => {
|
|
let legacy = has_legacy_export_attr(item.attrs);
|
|
let new_parent = match fm.sort {
|
|
named => {
|
|
let (name_bindings, new_parent) = self.add_child(atom,
|
|
parent, ~[ModuleNS], sp);
|
|
|
|
let parent_link = self.get_parent_link(new_parent, atom);
|
|
let def_id = { crate: 0, node: item.id };
|
|
(*name_bindings).define_module(parent_link, Some(def_id),
|
|
legacy, sp);
|
|
|
|
ModuleReducedGraphParent((*name_bindings).get_module())
|
|
}
|
|
// For anon foreign mods, the contents just go in the
|
|
// current scope
|
|
anonymous => parent
|
|
};
|
|
|
|
visit_item(item, new_parent, visitor);
|
|
}
|
|
|
|
// These items live in the value namespace.
|
|
item_const(*) => {
|
|
let (name_bindings, _) = self.add_child(atom, parent,
|
|
~[ValueNS], sp);
|
|
|
|
(*name_bindings).define_value
|
|
(self.visibility_to_privacy(item.vis, legacy),
|
|
def_const(local_def(item.id)),
|
|
sp);
|
|
}
|
|
item_fn(_, purity, _, _) => {
|
|
let (name_bindings, new_parent) = self.add_child(atom, parent,
|
|
~[ValueNS], sp);
|
|
|
|
let def = def_fn(local_def(item.id), purity);
|
|
(*name_bindings).define_value
|
|
(self.visibility_to_privacy(item.vis, legacy), def, sp);
|
|
visit_item(item, new_parent, visitor);
|
|
}
|
|
|
|
// These items live in the type namespace.
|
|
item_ty(*) => {
|
|
let (name_bindings, _) = self.add_child(atom, parent,
|
|
~[TypeNS], sp);
|
|
|
|
(*name_bindings).define_type
|
|
(self.visibility_to_privacy(item.vis, legacy),
|
|
def_ty(local_def(item.id)),
|
|
sp);
|
|
}
|
|
|
|
item_enum(enum_definition, _) => {
|
|
|
|
let (name_bindings, new_parent) = self.add_child(atom, parent,
|
|
~[TypeNS], sp);
|
|
|
|
(*name_bindings).define_type
|
|
(self.visibility_to_privacy(item.vis, legacy),
|
|
def_ty(local_def(item.id)),
|
|
sp);
|
|
|
|
for enum_definition.variants.each |variant| {
|
|
self.build_reduced_graph_for_variant(*variant,
|
|
local_def(item.id),
|
|
new_parent,
|
|
visitor);
|
|
}
|
|
}
|
|
|
|
// These items live in both the type and value namespaces.
|
|
item_class(struct_definition, _) => {
|
|
let new_parent =
|
|
match struct_definition.ctor {
|
|
None => {
|
|
let (name_bindings, new_parent) =
|
|
self.add_child(atom, parent, ~[TypeNS], sp);
|
|
|
|
(*name_bindings).define_type
|
|
(self.visibility_to_privacy(item.vis, legacy),
|
|
def_ty(local_def(item.id)),
|
|
sp);
|
|
new_parent
|
|
}
|
|
Some(ctor) => {
|
|
let (name_bindings, new_parent) =
|
|
self.add_child(atom, parent, ~[ValueNS, TypeNS],
|
|
sp);
|
|
|
|
let privacy = self.visibility_to_privacy(item.vis,
|
|
legacy);
|
|
|
|
(*name_bindings).define_type
|
|
(privacy, def_ty(local_def(item.id)), sp);
|
|
|
|
let purity = impure_fn;
|
|
let ctor_def = def_fn(local_def(ctor.node.id),
|
|
purity);
|
|
(*name_bindings).define_value(privacy, ctor_def, sp);
|
|
new_parent
|
|
}
|
|
};
|
|
|
|
// Record the def ID of this struct.
|
|
self.structs.insert(local_def(item.id),
|
|
is_some(struct_definition.ctor));
|
|
|
|
visit_item(item, new_parent, visitor);
|
|
}
|
|
|
|
item_impl(*) => {
|
|
visit_item(item, parent, visitor);
|
|
}
|
|
|
|
item_trait(_, _, methods) => {
|
|
let (name_bindings, new_parent) = self.add_child(atom, parent,
|
|
~[TypeNS], sp);
|
|
|
|
// Add the names of all the methods to the trait info.
|
|
let method_names = @atom_hashmap();
|
|
for methods.each |method| {
|
|
let ty_m = trait_method_to_ty_method(*method);
|
|
|
|
let atom = ty_m.ident;
|
|
// Add it to the trait info if not static,
|
|
// add it as a name in the enclosing module otherwise.
|
|
match ty_m.self_ty.node {
|
|
sty_static => {
|
|
// which parent to use??
|
|
let (method_name_bindings, _) =
|
|
self.add_child(atom, new_parent, ~[ValueNS],
|
|
ty_m.span);
|
|
let def = def_static_method(local_def(ty_m.id),
|
|
ty_m.purity);
|
|
(*method_name_bindings).define_value
|
|
(Public, def, ty_m.span);
|
|
}
|
|
_ => {
|
|
(*method_names).insert(atom, ());
|
|
}
|
|
}
|
|
}
|
|
|
|
let def_id = local_def(item.id);
|
|
self.trait_info.insert(def_id, method_names);
|
|
|
|
(*name_bindings).define_type
|
|
(self.visibility_to_privacy(item.vis, legacy),
|
|
def_ty(def_id),
|
|
sp);
|
|
visit_item(item, new_parent, visitor);
|
|
}
|
|
|
|
item_mac(*) => {
|
|
fail ~"item macros unimplemented"
|
|
}
|
|
}
|
|
}
|
|
|
|
// Constructs the reduced graph for one variant. Variants exist in the
|
|
// type and/or value namespaces.
|
|
fn build_reduced_graph_for_variant(variant: variant,
|
|
item_id: def_id,
|
|
parent: ReducedGraphParent,
|
|
&&visitor: vt<ReducedGraphParent>) {
|
|
|
|
let legacy = match parent {
|
|
ModuleReducedGraphParent(m) => m.legacy_exports
|
|
};
|
|
|
|
let atom = variant.node.name;
|
|
let (child, _) = self.add_child(atom, parent, ~[ValueNS],
|
|
variant.span);
|
|
let privacy = self.visibility_to_privacy(variant.node.vis, legacy);
|
|
|
|
match variant.node.kind {
|
|
tuple_variant_kind(_) => {
|
|
(*child).define_value(privacy,
|
|
def_variant(item_id,
|
|
local_def(variant.node.id)),
|
|
variant.span);
|
|
}
|
|
struct_variant_kind(_) => {
|
|
(*child).define_type(privacy,
|
|
def_variant(item_id,
|
|
local_def(variant.node.id)),
|
|
variant.span);
|
|
self.structs.insert(local_def(variant.node.id), false);
|
|
}
|
|
enum_variant_kind(enum_definition) => {
|
|
(*child).define_type(privacy,
|
|
def_ty(local_def(variant.node.id)),
|
|
variant.span);
|
|
for enum_definition.variants.each |variant| {
|
|
self.build_reduced_graph_for_variant(*variant, item_id,
|
|
parent, visitor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructs the reduced graph for one 'view item'. View items consist
|
|
* of imports and use directives.
|
|
*/
|
|
fn build_reduced_graph_for_view_item(view_item: @view_item,
|
|
parent: ReducedGraphParent,
|
|
&&_visitor: vt<ReducedGraphParent>) {
|
|
|
|
match view_item.node {
|
|
view_item_import(view_paths) => {
|
|
for view_paths.each |view_path| {
|
|
// Extract and intern the module part of the path. For
|
|
// globs and lists, the path is found directly in the AST;
|
|
// for simple paths we have to munge the path a little.
|
|
|
|
let module_path = @DVec();
|
|
match view_path.node {
|
|
view_path_simple(_, full_path, _, _) => {
|
|
let path_len = full_path.idents.len();
|
|
assert path_len != 0u;
|
|
|
|
for full_path.idents.eachi |i, ident| {
|
|
if i != path_len - 1u {
|
|
(*module_path).push(*ident);
|
|
}
|
|
}
|
|
}
|
|
|
|
view_path_glob(module_ident_path, _) |
|
|
view_path_list(module_ident_path, _, _) => {
|
|
for module_ident_path.idents.each |ident| {
|
|
(*module_path).push(*ident);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Build up the import directives.
|
|
let module_ = self.get_module_from_parent(parent);
|
|
match view_path.node {
|
|
view_path_simple(binding, full_path, ns, _) => {
|
|
let ns = match ns {
|
|
module_ns => ModuleNSOnly,
|
|
type_value_ns => AnyNS
|
|
};
|
|
|
|
let source_ident = full_path.idents.last();
|
|
let subclass = @SingleImport(binding,
|
|
source_ident,
|
|
ns);
|
|
self.build_import_directive(module_,
|
|
module_path,
|
|
subclass,
|
|
view_path.span);
|
|
}
|
|
view_path_list(_, source_idents, _) => {
|
|
for source_idents.each |source_ident| {
|
|
let name = source_ident.node.name;
|
|
let subclass = @SingleImport(name,
|
|
name,
|
|
AnyNS);
|
|
self.build_import_directive(module_,
|
|
module_path,
|
|
subclass,
|
|
view_path.span);
|
|
}
|
|
}
|
|
view_path_glob(_, _) => {
|
|
self.build_import_directive(module_,
|
|
module_path,
|
|
@GlobImport,
|
|
view_path.span);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
view_item_export(view_paths) => {
|
|
let module_ = self.get_module_from_parent(parent);
|
|
for view_paths.each |view_path| {
|
|
match view_path.node {
|
|
view_path_simple(ident, full_path, _, ident_id) => {
|
|
let last_ident = full_path.idents.last();
|
|
if last_ident != ident {
|
|
self.session.span_err(view_item.span,
|
|
~"cannot export under \
|
|
a new name");
|
|
}
|
|
if full_path.idents.len() != 1u {
|
|
self.session.span_err(
|
|
view_item.span,
|
|
~"cannot export an item \
|
|
that is not in this \
|
|
module");
|
|
}
|
|
|
|
module_.exported_names.insert(ident, ident_id);
|
|
}
|
|
|
|
view_path_glob(*) => {
|
|
self.session.span_err(view_item.span,
|
|
~"export globs are \
|
|
unsupported");
|
|
}
|
|
|
|
view_path_list(path, path_list_idents, _) => {
|
|
if path.idents.len() == 1u &&
|
|
path_list_idents.len() == 0u {
|
|
|
|
self.session.span_warn(view_item.span,
|
|
~"this syntax for \
|
|
exporting no \
|
|
variants is \
|
|
unsupported; export \
|
|
variants \
|
|
individually");
|
|
} else {
|
|
if path.idents.len() != 0u {
|
|
self.session.span_err(view_item.span,
|
|
~"cannot export an \
|
|
item that is not \
|
|
in this module");
|
|
}
|
|
|
|
for path_list_idents.each |path_list_ident| {
|
|
let atom = path_list_ident.node.name;
|
|
let id = path_list_ident.node.id;
|
|
module_.exported_names.insert(atom, id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
view_item_use(name, _, node_id) => {
|
|
match find_use_stmt_cnum(self.session.cstore, node_id) {
|
|
Some(crate_id) => {
|
|
let (child_name_bindings, new_parent) =
|
|
// should this be in ModuleNS? --tjc
|
|
self.add_child(name, parent, ~[ModuleNS],
|
|
view_item.span);
|
|
|
|
let def_id = { crate: crate_id, node: 0 };
|
|
let parent_link = ModuleParentLink
|
|
(self.get_module_from_parent(new_parent), name);
|
|
|
|
(*child_name_bindings).define_module(parent_link,
|
|
Some(def_id),
|
|
false,
|
|
view_item.span);
|
|
self.build_reduced_graph_for_external_crate
|
|
((*child_name_bindings).get_module());
|
|
}
|
|
None => {
|
|
/* Ignore. */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Constructs the reduced graph for one foreign item.
|
|
fn build_reduced_graph_for_foreign_item(foreign_item: @foreign_item,
|
|
parent: ReducedGraphParent,
|
|
&&visitor:
|
|
vt<ReducedGraphParent>) {
|
|
|
|
let name = foreign_item.ident;
|
|
let (name_bindings, new_parent) =
|
|
self.add_child(name, parent, ~[ValueNS], foreign_item.span);
|
|
|
|
match foreign_item.node {
|
|
foreign_item_fn(_, purity, type_parameters) => {
|
|
let def = def_fn(local_def(foreign_item.id), purity);
|
|
(*name_bindings).define_value(Public, def, foreign_item.span);
|
|
|
|
do self.with_type_parameter_rib
|
|
(HasTypeParameters(&type_parameters, foreign_item.id,
|
|
0u, NormalRibKind)) {
|
|
visit_foreign_item(foreign_item, new_parent, visitor);
|
|
}
|
|
}
|
|
foreign_item_const(*) => {
|
|
let def = def_const(local_def(foreign_item.id));
|
|
(*name_bindings).define_value(Public, def, foreign_item.span);
|
|
|
|
visit_foreign_item(foreign_item, new_parent, visitor);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn build_reduced_graph_for_block(block: blk,
|
|
parent: ReducedGraphParent,
|
|
&&visitor: vt<ReducedGraphParent>) {
|
|
|
|
let mut new_parent;
|
|
if self.block_needs_anonymous_module(block) {
|
|
let block_id = block.node.id;
|
|
|
|
debug!("(building reduced graph for block) creating a new \
|
|
anonymous module for block %d",
|
|
block_id);
|
|
|
|
let parent_module = self.get_module_from_parent(parent);
|
|
let new_module = @Module(BlockParentLink(parent_module, block_id),
|
|
None, false);
|
|
parent_module.anonymous_children.insert(block_id, new_module);
|
|
new_parent = ModuleReducedGraphParent(new_module);
|
|
} else {
|
|
new_parent = parent;
|
|
}
|
|
|
|
visit_block(block, new_parent, visitor);
|
|
}
|
|
|
|
fn handle_external_def(def: def, modules: HashMap<def_id, @Module>,
|
|
child_name_bindings: @NameBindings,
|
|
final_ident: ~str,
|
|
atom: Atom, new_parent: ReducedGraphParent) {
|
|
match def {
|
|
def_mod(def_id) | def_foreign_mod(def_id) => {
|
|
match copy child_name_bindings.module_def {
|
|
NoModuleDef => {
|
|
debug!("(building reduced graph for \
|
|
external crate) building module \
|
|
%s", final_ident);
|
|
let parent_link = self.get_parent_link(new_parent, atom);
|
|
|
|
match modules.find(def_id) {
|
|
None => {
|
|
child_name_bindings.define_module(parent_link,
|
|
Some(def_id),
|
|
false,
|
|
dummy_sp());
|
|
modules.insert(def_id,
|
|
child_name_bindings.get_module());
|
|
}
|
|
Some(existing_module) => {
|
|
// Create an import resolution to
|
|
// avoid creating cycles in the
|
|
// module graph.
|
|
|
|
let resolution = @ImportResolution(dummy_sp());
|
|
resolution.outstanding_references = 0;
|
|
|
|
match existing_module.parent_link {
|
|
NoParentLink |
|
|
BlockParentLink(*) => {
|
|
fail ~"can't happen";
|
|
}
|
|
ModuleParentLink(parent_module, atom) => {
|
|
|
|
let name_bindings = parent_module.children.get(atom);
|
|
|
|
resolution.module_target =
|
|
Some(Target(parent_module, name_bindings));
|
|
}
|
|
}
|
|
|
|
debug!("(building reduced graph for external crate) \
|
|
... creating import resolution");
|
|
|
|
new_parent.import_resolutions.insert(atom, resolution);
|
|
}
|
|
}
|
|
}
|
|
ModuleDef(module_) => {
|
|
debug!("(building reduced graph for \
|
|
external crate) already created \
|
|
module");
|
|
module_.def_id = Some(def_id);
|
|
modules.insert(def_id, module_);
|
|
}
|
|
}
|
|
}
|
|
def_fn(*) | def_static_method(*) | def_const(*) |
|
|
def_variant(*) => {
|
|
debug!("(building reduced graph for external \
|
|
crate) building value %s", final_ident);
|
|
(*child_name_bindings).define_value(Public, def, dummy_sp());
|
|
}
|
|
def_ty(def_id) => {
|
|
debug!("(building reduced graph for external \
|
|
crate) building type %s", final_ident);
|
|
|
|
// If this is a trait, add all the method names
|
|
// to the trait info.
|
|
|
|
match get_method_names_if_trait(self.session.cstore,
|
|
def_id) {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(method_names) => {
|
|
let interned_method_names = @atom_hashmap();
|
|
for method_names.each |method_data| {
|
|
let (method_name, self_ty) = *method_data;
|
|
debug!("(building reduced graph for \
|
|
external crate) ... adding \
|
|
trait method '%s'",
|
|
self.session.str_of(method_name));
|
|
|
|
// Add it to the trait info if not static.
|
|
if self_ty != sty_static {
|
|
interned_method_names.insert(method_name, ());
|
|
}
|
|
}
|
|
self.trait_info.insert(def_id, interned_method_names);
|
|
}
|
|
}
|
|
|
|
child_name_bindings.define_type(Public, def, dummy_sp());
|
|
}
|
|
def_class(def_id, has_constructor) => {
|
|
debug!("(building reduced graph for external \
|
|
crate) building type %s (value? %d)",
|
|
final_ident,
|
|
if has_constructor { 1 } else { 0 });
|
|
child_name_bindings.define_type(Public, def, dummy_sp());
|
|
|
|
if has_constructor {
|
|
child_name_bindings.define_value(Public, def, dummy_sp());
|
|
}
|
|
|
|
self.structs.insert(def_id, has_constructor);
|
|
}
|
|
def_self(*) | def_arg(*) | def_local(*) |
|
|
def_prim_ty(*) | def_ty_param(*) | def_binding(*) |
|
|
def_use(*) | def_upvar(*) | def_region(*) |
|
|
def_typaram_binder(*) | def_label(*) => {
|
|
fail fmt!("didn't expect `%?`", def);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Builds the reduced graph rooted at the 'use' directive for an external
|
|
* crate.
|
|
*/
|
|
fn build_reduced_graph_for_external_crate(root: @Module) {
|
|
let modules = HashMap();
|
|
|
|
// Create all the items reachable by paths.
|
|
for each_path(self.session.cstore, get(root.def_id).crate)
|
|
|path_entry| {
|
|
|
|
debug!("(building reduced graph for external crate) found path \
|
|
entry: %s (%?)",
|
|
path_entry.path_string,
|
|
path_entry.def_like);
|
|
|
|
let mut pieces = split_str(path_entry.path_string, ~"::");
|
|
let final_ident_str = pop(pieces);
|
|
let final_ident = self.session.ident_of(final_ident_str);
|
|
|
|
// Find the module we need, creating modules along the way if we
|
|
// need to.
|
|
|
|
let mut current_module = root;
|
|
for pieces.each |ident_str| {
|
|
let ident = self.session.ident_of(*ident_str);
|
|
// Create or reuse a graph node for the child.
|
|
let (child_name_bindings, new_parent) =
|
|
self.add_child(ident,
|
|
ModuleReducedGraphParent(current_module),
|
|
// May want a better span
|
|
~[], dummy_sp());
|
|
|
|
// Define or reuse the module node.
|
|
match child_name_bindings.module_def {
|
|
NoModuleDef => {
|
|
debug!("(building reduced graph for external crate) \
|
|
autovivifying %s", *ident_str);
|
|
let parent_link = self.get_parent_link(new_parent,
|
|
ident);
|
|
(*child_name_bindings).define_module(parent_link,
|
|
None, false,
|
|
dummy_sp());
|
|
}
|
|
ModuleDef(_) => { /* Fall through. */ }
|
|
}
|
|
|
|
current_module = (*child_name_bindings).get_module();
|
|
}
|
|
|
|
// Add the new child item.
|
|
let (child_name_bindings, new_parent) =
|
|
self.add_child(final_ident,
|
|
ModuleReducedGraphParent(current_module),
|
|
~[], dummy_sp());
|
|
|
|
match path_entry.def_like {
|
|
dl_def(def) => {
|
|
self.handle_external_def(def, modules,
|
|
child_name_bindings,
|
|
self.session.str_of(final_ident),
|
|
final_ident, new_parent);
|
|
}
|
|
dl_impl(_) => {
|
|
// Because of the infelicitous way the metadata is
|
|
// written, we can't process this impl now. We'll get it
|
|
// later.
|
|
|
|
debug!("(building reduced graph for external crate) \
|
|
ignoring impl %s", final_ident_str);
|
|
}
|
|
dl_field => {
|
|
debug!("(building reduced graph for external crate) \
|
|
ignoring field %s", final_ident_str);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Creates and adds an import directive to the given module.
|
|
fn build_import_directive(module_: @Module,
|
|
module_path: @DVec<Atom>,
|
|
subclass: @ImportDirectiveSubclass,
|
|
span: span) {
|
|
|
|
let directive = @ImportDirective(module_path, subclass, span);
|
|
module_.imports.push(directive);
|
|
|
|
// Bump the reference count on the name. Or, if this is a glob, set
|
|
// the appropriate flag.
|
|
|
|
match *subclass {
|
|
SingleImport(target, _, _) => {
|
|
match module_.import_resolutions.find(target) {
|
|
Some(resolution) => {
|
|
resolution.outstanding_references += 1u;
|
|
}
|
|
None => {
|
|
let resolution = @ImportResolution(span);
|
|
resolution.outstanding_references = 1u;
|
|
module_.import_resolutions.insert(target, resolution);
|
|
}
|
|
}
|
|
}
|
|
GlobImport => {
|
|
// Set the glob flag. This tells us that we don't know the
|
|
// module's exports ahead of time.
|
|
|
|
module_.glob_count += 1u;
|
|
}
|
|
}
|
|
|
|
self.unresolved_imports += 1u;
|
|
}
|
|
|
|
// Import resolution
|
|
//
|
|
// This is a fixed-point algorithm. We resolve imports until our efforts
|
|
// are stymied by an unresolved import; then we bail out of the current
|
|
// module and continue. We terminate successfully once no more imports
|
|
// remain or unsuccessfully when no forward progress in resolving imports
|
|
// is made.
|
|
|
|
/**
|
|
* Resolves all imports for the crate. This method performs the fixed-
|
|
* point iteration.
|
|
*/
|
|
fn resolve_imports() {
|
|
let mut i = 0u;
|
|
let mut prev_unresolved_imports = 0u;
|
|
loop {
|
|
debug!("(resolving imports) iteration %u, %u imports left",
|
|
i, self.unresolved_imports);
|
|
|
|
let module_root = (*self.graph_root).get_module();
|
|
self.resolve_imports_for_module_subtree(module_root);
|
|
|
|
if self.unresolved_imports == 0u {
|
|
debug!("(resolving imports) success");
|
|
break;
|
|
}
|
|
|
|
if self.unresolved_imports == prev_unresolved_imports {
|
|
self.session.err(~"failed to resolve imports");
|
|
self.report_unresolved_imports(module_root);
|
|
break;
|
|
}
|
|
|
|
i += 1u;
|
|
prev_unresolved_imports = self.unresolved_imports;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Attempts to resolve imports for the given module and all of its
|
|
* submodules.
|
|
*/
|
|
fn resolve_imports_for_module_subtree(module_: @Module) {
|
|
debug!("(resolving imports for module subtree) resolving %s",
|
|
self.module_to_str(module_));
|
|
self.resolve_imports_for_module(module_);
|
|
|
|
for module_.children.each |_name, child_node| {
|
|
match child_node.get_module_if_available() {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(child_module) => {
|
|
self.resolve_imports_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for module_.anonymous_children.each |_block_id, child_module| {
|
|
self.resolve_imports_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
|
|
/// Attempts to resolve imports for the given module only.
|
|
fn resolve_imports_for_module(module_: @Module) {
|
|
if (*module_).all_imports_resolved() {
|
|
debug!("(resolving imports for module) all imports resolved for \
|
|
%s",
|
|
self.module_to_str(module_));
|
|
return;
|
|
}
|
|
|
|
let import_count = module_.imports.len();
|
|
while module_.resolved_import_count < import_count {
|
|
let import_index = module_.resolved_import_count;
|
|
let import_directive = module_.imports.get_elt(import_index);
|
|
match self.resolve_import_for_module(module_, import_directive) {
|
|
Failed => {
|
|
// We presumably emitted an error. Continue.
|
|
self.session.span_err(import_directive.span,
|
|
~"failed to resolve import");
|
|
}
|
|
Indeterminate => {
|
|
// Bail out. We'll come around next time.
|
|
break;
|
|
}
|
|
Success(()) => {
|
|
// Good. Continue.
|
|
}
|
|
}
|
|
|
|
module_.resolved_import_count += 1u;
|
|
}
|
|
}
|
|
|
|
fn atoms_to_str(atoms: ~[Atom]) -> ~str {
|
|
// XXX: str::connect should do this.
|
|
let mut result = ~"";
|
|
let mut first = true;
|
|
for atoms.each() |atom| {
|
|
if first {
|
|
first = false;
|
|
} else {
|
|
result += ~"::";
|
|
}
|
|
result += self.session.str_of(*atom);
|
|
}
|
|
// XXX: Shouldn't copy here. We need string builder functionality.
|
|
return result;
|
|
}
|
|
/**
|
|
* Attempts to resolve the given import. The return value indicates
|
|
* failure if we're certain the name does not exist, indeterminate if we
|
|
* don't know whether the name exists at the moment due to other
|
|
* currently-unresolved imports, or success if we know the name exists.
|
|
* If successful, the resolved bindings are written into the module.
|
|
*/
|
|
fn resolve_import_for_module(module_: @Module,
|
|
import_directive: @ImportDirective)
|
|
-> ResolveResult<()> {
|
|
|
|
let mut resolution_result;
|
|
let module_path = import_directive.module_path;
|
|
|
|
debug!("(resolving import for module) resolving import `%s::...` in \
|
|
`%s`",
|
|
self.atoms_to_str((*module_path).get()),
|
|
self.module_to_str(module_));
|
|
|
|
// One-level renaming imports of the form `import foo = bar;` are
|
|
// handled specially.
|
|
|
|
if (*module_path).len() == 0u {
|
|
resolution_result =
|
|
self.resolve_one_level_renaming_import(module_,
|
|
import_directive);
|
|
} else {
|
|
// First, resolve the module path for the directive, if necessary.
|
|
match self.resolve_module_path_for_import(module_,
|
|
module_path,
|
|
NoXray,
|
|
import_directive.span) {
|
|
|
|
Failed => {
|
|
resolution_result = Failed;
|
|
}
|
|
Indeterminate => {
|
|
resolution_result = Indeterminate;
|
|
}
|
|
Success(containing_module) => {
|
|
// We found the module that the target is contained
|
|
// within. Attempt to resolve the import within it.
|
|
|
|
match *import_directive.subclass {
|
|
SingleImport(target, source, AnyNS) => {
|
|
resolution_result =
|
|
self.resolve_single_import(module_,
|
|
containing_module,
|
|
target,
|
|
source);
|
|
}
|
|
SingleImport(target, source, ModuleNSOnly) => {
|
|
resolution_result =
|
|
self.resolve_single_module_import
|
|
(module_, containing_module, target,
|
|
source);
|
|
}
|
|
GlobImport => {
|
|
let span = import_directive.span;
|
|
resolution_result =
|
|
self.resolve_glob_import(module_,
|
|
containing_module,
|
|
span);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Decrement the count of unresolved imports.
|
|
match resolution_result {
|
|
Success(()) => {
|
|
assert self.unresolved_imports >= 1u;
|
|
self.unresolved_imports -= 1u;
|
|
}
|
|
_ => {
|
|
// Nothing to do here; just return the error.
|
|
}
|
|
}
|
|
|
|
// Decrement the count of unresolved globs if necessary. But only if
|
|
// the resolution result is indeterminate -- otherwise we'll stop
|
|
// processing imports here. (See the loop in
|
|
// resolve_imports_for_module.)
|
|
|
|
if !resolution_result.indeterminate() {
|
|
match *import_directive.subclass {
|
|
GlobImport => {
|
|
assert module_.glob_count >= 1u;
|
|
module_.glob_count -= 1u;
|
|
}
|
|
SingleImport(*) => {
|
|
// Ignore.
|
|
}
|
|
}
|
|
}
|
|
|
|
return resolution_result;
|
|
}
|
|
|
|
fn resolve_single_import(module_: @Module,
|
|
containing_module: @Module,
|
|
target: Atom,
|
|
source: Atom)
|
|
-> ResolveResult<()> {
|
|
|
|
debug!("(resolving single import) resolving `%s` = `%s::%s` from \
|
|
`%s`",
|
|
self.session.str_of(target),
|
|
self.module_to_str(containing_module),
|
|
self.session.str_of(source),
|
|
self.module_to_str(module_));
|
|
|
|
if !self.name_is_exported(containing_module, source) {
|
|
debug!("(resolving single import) name `%s` is unexported",
|
|
self.session.str_of(source));
|
|
return Failed;
|
|
}
|
|
|
|
// We need to resolve all four namespaces for this to succeed.
|
|
//
|
|
// XXX: See if there's some way of handling namespaces in a more
|
|
// generic way. We have four of them; it seems worth doing...
|
|
|
|
let mut module_result = UnknownResult;
|
|
let mut value_result = UnknownResult;
|
|
let mut type_result = UnknownResult;
|
|
|
|
// Search for direct children of the containing module.
|
|
match containing_module.children.find(source) {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(child_name_bindings) => {
|
|
if (*child_name_bindings).defined_in_namespace(ModuleNS) {
|
|
module_result = BoundResult(containing_module,
|
|
child_name_bindings);
|
|
}
|
|
if (*child_name_bindings).defined_in_namespace(ValueNS) {
|
|
value_result = BoundResult(containing_module,
|
|
child_name_bindings);
|
|
}
|
|
if (*child_name_bindings).defined_in_namespace(TypeNS) {
|
|
type_result = BoundResult(containing_module,
|
|
child_name_bindings);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Unless we managed to find a result in all four namespaces
|
|
// (exceedingly unlikely), search imports as well.
|
|
|
|
match (module_result, value_result, type_result) {
|
|
(BoundResult(*), BoundResult(*), BoundResult(*)) => {
|
|
// Continue.
|
|
}
|
|
_ => {
|
|
// If there is an unresolved glob at this point in the
|
|
// containing module, bail out. We don't know enough to be
|
|
// able to resolve this import.
|
|
|
|
if containing_module.glob_count > 0u {
|
|
debug!("(resolving single import) unresolved glob; \
|
|
bailing out");
|
|
return Indeterminate;
|
|
}
|
|
|
|
// Now search the exported imports within the containing
|
|
// module.
|
|
|
|
match containing_module.import_resolutions.find(source) {
|
|
None => {
|
|
// The containing module definitely doesn't have an
|
|
// exported import with the name in question. We can
|
|
// therefore accurately report that the names are
|
|
// unbound.
|
|
|
|
if module_result.is_unknown() {
|
|
module_result = UnboundResult;
|
|
}
|
|
if value_result.is_unknown() {
|
|
value_result = UnboundResult;
|
|
}
|
|
if type_result.is_unknown() {
|
|
type_result = UnboundResult;
|
|
}
|
|
}
|
|
Some(import_resolution)
|
|
if import_resolution.outstanding_references
|
|
== 0u => {
|
|
|
|
fn get_binding(import_resolution: @ImportResolution,
|
|
namespace: Namespace)
|
|
-> NamespaceResult {
|
|
|
|
match (*import_resolution).
|
|
target_for_namespace(namespace) {
|
|
None => {
|
|
return UnboundResult;
|
|
}
|
|
Some(target) => {
|
|
import_resolution.used = true;
|
|
return BoundResult(target.target_module,
|
|
target.bindings);
|
|
}
|
|
}
|
|
}
|
|
|
|
// The name is an import which has been fully
|
|
// resolved. We can, therefore, just follow it.
|
|
|
|
if module_result.is_unknown() {
|
|
module_result = get_binding(import_resolution,
|
|
ModuleNS);
|
|
}
|
|
if value_result.is_unknown() {
|
|
value_result = get_binding(import_resolution,
|
|
ValueNS);
|
|
}
|
|
if type_result.is_unknown() {
|
|
type_result = get_binding(import_resolution,
|
|
TypeNS);
|
|
}
|
|
}
|
|
Some(_) => {
|
|
// The import is unresolved. Bail out.
|
|
debug!("(resolving single import) unresolved import; \
|
|
bailing out");
|
|
return Indeterminate;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We've successfully resolved the import. Write the results in.
|
|
assert module_.import_resolutions.contains_key(target);
|
|
let import_resolution = module_.import_resolutions.get(target);
|
|
|
|
match module_result {
|
|
BoundResult(target_module, name_bindings) => {
|
|
debug!("(resolving single import) found module binding");
|
|
import_resolution.module_target =
|
|
Some(Target(target_module, name_bindings));
|
|
}
|
|
UnboundResult => {
|
|
debug!("(resolving single import) didn't find module \
|
|
binding");
|
|
}
|
|
UnknownResult => {
|
|
fail ~"module result should be known at this point";
|
|
}
|
|
}
|
|
match value_result {
|
|
BoundResult(target_module, name_bindings) => {
|
|
import_resolution.value_target =
|
|
Some(Target(target_module, name_bindings));
|
|
}
|
|
UnboundResult => { /* Continue. */ }
|
|
UnknownResult => {
|
|
fail ~"value result should be known at this point";
|
|
}
|
|
}
|
|
match type_result {
|
|
BoundResult(target_module, name_bindings) => {
|
|
import_resolution.type_target =
|
|
Some(Target(target_module, name_bindings));
|
|
}
|
|
UnboundResult => { /* Continue. */ }
|
|
UnknownResult => {
|
|
fail ~"type result should be known at this point";
|
|
}
|
|
}
|
|
|
|
let i = import_resolution;
|
|
match (i.module_target, i.value_target, i.type_target) {
|
|
/*
|
|
If this name wasn't found in any of the four namespaces, it's
|
|
definitely unresolved
|
|
*/
|
|
(None, None, None) => { return Failed; }
|
|
_ => {}
|
|
}
|
|
|
|
assert import_resolution.outstanding_references >= 1u;
|
|
import_resolution.outstanding_references -= 1u;
|
|
|
|
debug!("(resolving single import) successfully resolved import");
|
|
return Success(());
|
|
}
|
|
|
|
fn resolve_single_module_import(module_: @Module,
|
|
containing_module: @Module,
|
|
target: Atom,
|
|
source: Atom)
|
|
-> ResolveResult<()> {
|
|
|
|
debug!("(resolving single module import) resolving `%s` = `%s::%s` \
|
|
from `%s`",
|
|
self.session.str_of(target),
|
|
self.module_to_str(containing_module),
|
|
self.session.str_of(source),
|
|
self.module_to_str(module_));
|
|
|
|
if !self.name_is_exported(containing_module, source) {
|
|
debug!("(resolving single import) name `%s` is unexported",
|
|
self.session.str_of(source));
|
|
return Failed;
|
|
}
|
|
|
|
// We need to resolve the module namespace for this to succeed.
|
|
let mut module_result = UnknownResult;
|
|
|
|
// Search for direct children of the containing module.
|
|
match containing_module.children.find(source) {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(child_name_bindings) => {
|
|
if (*child_name_bindings).defined_in_namespace(ModuleNS) {
|
|
module_result = BoundResult(containing_module,
|
|
child_name_bindings);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Unless we managed to find a result, search imports as well.
|
|
match module_result {
|
|
BoundResult(*) => {
|
|
// Continue.
|
|
}
|
|
_ => {
|
|
// If there is an unresolved glob at this point in the
|
|
// containing module, bail out. We don't know enough to be
|
|
// able to resolve this import.
|
|
|
|
if containing_module.glob_count > 0u {
|
|
debug!("(resolving single module import) unresolved \
|
|
glob; bailing out");
|
|
return Indeterminate;
|
|
}
|
|
|
|
// Now search the exported imports within the containing
|
|
// module.
|
|
|
|
match containing_module.import_resolutions.find(source) {
|
|
None => {
|
|
// The containing module definitely doesn't have an
|
|
// exported import with the name in question. We can
|
|
// therefore accurately report that the names are
|
|
// unbound.
|
|
|
|
if module_result.is_unknown() {
|
|
module_result = UnboundResult;
|
|
}
|
|
}
|
|
Some(import_resolution)
|
|
if import_resolution.outstanding_references
|
|
== 0u => {
|
|
// The name is an import which has been fully
|
|
// resolved. We can, therefore, just follow it.
|
|
|
|
if module_result.is_unknown() {
|
|
match (*import_resolution).
|
|
target_for_namespace(ModuleNS) {
|
|
None => {
|
|
module_result = UnboundResult;
|
|
}
|
|
Some(target) => {
|
|
import_resolution.used = true;
|
|
module_result = BoundResult
|
|
(target.target_module,
|
|
target.bindings);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Some(_) => {
|
|
// The import is unresolved. Bail out.
|
|
debug!("(resolving single module import) unresolved \
|
|
import; bailing out");
|
|
return Indeterminate;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We've successfully resolved the import. Write the results in.
|
|
assert module_.import_resolutions.contains_key(target);
|
|
let import_resolution = module_.import_resolutions.get(target);
|
|
|
|
match module_result {
|
|
BoundResult(target_module, name_bindings) => {
|
|
debug!("(resolving single import) found module binding");
|
|
import_resolution.module_target =
|
|
Some(Target(target_module, name_bindings));
|
|
}
|
|
UnboundResult => {
|
|
debug!("(resolving single import) didn't find module \
|
|
binding");
|
|
}
|
|
UnknownResult => {
|
|
fail ~"module result should be known at this point";
|
|
}
|
|
}
|
|
|
|
let i = import_resolution;
|
|
if i.module_target.is_none() {
|
|
// If this name wasn't found in the module namespace, it's
|
|
// definitely unresolved.
|
|
return Failed;
|
|
}
|
|
|
|
assert import_resolution.outstanding_references >= 1u;
|
|
import_resolution.outstanding_references -= 1u;
|
|
|
|
debug!("(resolving single module import) successfully resolved \
|
|
import");
|
|
return Success(());
|
|
}
|
|
|
|
|
|
/**
|
|
* Resolves a glob import. Note that this function cannot fail; it either
|
|
* succeeds or bails out (as importing * from an empty module or a module
|
|
* that exports nothing is valid).
|
|
*/
|
|
fn resolve_glob_import(module_: @Module,
|
|
containing_module: @Module,
|
|
span: span)
|
|
-> ResolveResult<()> {
|
|
|
|
// This function works in a highly imperative manner; it eagerly adds
|
|
// everything it can to the list of import resolutions of the module
|
|
// node.
|
|
|
|
// We must bail out if the node has unresolved imports of any kind
|
|
// (including globs).
|
|
|
|
if !(*containing_module).all_imports_resolved() {
|
|
debug!("(resolving glob import) target module has unresolved \
|
|
imports; bailing out");
|
|
return Indeterminate;
|
|
}
|
|
|
|
assert containing_module.glob_count == 0u;
|
|
|
|
// Add all resolved imports from the containing module.
|
|
for containing_module.import_resolutions.each
|
|
|atom, target_import_resolution| {
|
|
|
|
if !self.name_is_exported(containing_module, atom) {
|
|
debug!("(resolving glob import) name `%s` is unexported",
|
|
self.session.str_of(atom));
|
|
loop;
|
|
}
|
|
|
|
debug!("(resolving glob import) writing module resolution \
|
|
%? into `%s`",
|
|
is_none(target_import_resolution.module_target),
|
|
self.module_to_str(module_));
|
|
|
|
// Here we merge two import resolutions.
|
|
match module_.import_resolutions.find(atom) {
|
|
None => {
|
|
// Simple: just copy the old import resolution.
|
|
let new_import_resolution =
|
|
@ImportResolution(target_import_resolution.span);
|
|
new_import_resolution.module_target =
|
|
copy target_import_resolution.module_target;
|
|
new_import_resolution.value_target =
|
|
copy target_import_resolution.value_target;
|
|
new_import_resolution.type_target =
|
|
copy target_import_resolution.type_target;
|
|
|
|
module_.import_resolutions.insert
|
|
(atom, new_import_resolution);
|
|
}
|
|
Some(dest_import_resolution) => {
|
|
// Merge the two import resolutions at a finer-grained
|
|
// level.
|
|
|
|
match copy target_import_resolution.module_target {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(module_target) => {
|
|
dest_import_resolution.module_target =
|
|
Some(copy module_target);
|
|
}
|
|
}
|
|
match copy target_import_resolution.value_target {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(value_target) => {
|
|
dest_import_resolution.value_target =
|
|
Some(copy value_target);
|
|
}
|
|
}
|
|
match copy target_import_resolution.type_target {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(type_target) => {
|
|
dest_import_resolution.type_target =
|
|
Some(copy type_target);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add all children from the containing module.
|
|
for containing_module.children.each |atom, name_bindings| {
|
|
if !self.name_is_exported(containing_module, atom) {
|
|
debug!("(resolving glob import) name `%s` is unexported",
|
|
self.session.str_of(atom));
|
|
loop;
|
|
}
|
|
|
|
let mut dest_import_resolution;
|
|
match module_.import_resolutions.find(atom) {
|
|
None => {
|
|
// Create a new import resolution from this child.
|
|
dest_import_resolution = @ImportResolution(span);
|
|
module_.import_resolutions.insert
|
|
(atom, dest_import_resolution);
|
|
}
|
|
Some(existing_import_resolution) => {
|
|
dest_import_resolution = existing_import_resolution;
|
|
}
|
|
}
|
|
|
|
|
|
debug!("(resolving glob import) writing resolution `%s` in `%s` \
|
|
to `%s`",
|
|
self.session.str_of(atom),
|
|
self.module_to_str(containing_module),
|
|
self.module_to_str(module_));
|
|
|
|
// Merge the child item into the import resolution.
|
|
if (*name_bindings).defined_in_namespace(ModuleNS) {
|
|
debug!("(resolving glob import) ... for module target");
|
|
dest_import_resolution.module_target =
|
|
Some(Target(containing_module, name_bindings));
|
|
}
|
|
if (*name_bindings).defined_in_namespace(ValueNS) {
|
|
debug!("(resolving glob import) ... for value target");
|
|
dest_import_resolution.value_target =
|
|
Some(Target(containing_module, name_bindings));
|
|
}
|
|
if (*name_bindings).defined_in_namespace(TypeNS) {
|
|
debug!("(resolving glob import) ... for type target");
|
|
dest_import_resolution.type_target =
|
|
Some(Target(containing_module, name_bindings));
|
|
}
|
|
}
|
|
|
|
debug!("(resolving glob import) successfully resolved import");
|
|
return Success(());
|
|
}
|
|
|
|
fn resolve_module_path_from_root(module_: @Module,
|
|
module_path: @DVec<Atom>,
|
|
index: uint,
|
|
xray: XrayFlag,
|
|
span: span)
|
|
-> ResolveResult<@Module> {
|
|
|
|
let mut search_module = module_;
|
|
let mut index = index;
|
|
let module_path_len = (*module_path).len();
|
|
|
|
// Resolve the module part of the path. This does not involve looking
|
|
// upward though scope chains; we simply resolve names directly in
|
|
// modules as we go.
|
|
|
|
while index < module_path_len {
|
|
let name = (*module_path).get_elt(index);
|
|
match self.resolve_name_in_module(search_module, name, ModuleNS,
|
|
xray) {
|
|
|
|
Failed => {
|
|
self.session.span_err(span, ~"unresolved name");
|
|
return Failed;
|
|
}
|
|
Indeterminate => {
|
|
debug!("(resolving module path for import) module \
|
|
resolution is indeterminate: %s",
|
|
self.session.str_of(name));
|
|
return Indeterminate;
|
|
}
|
|
Success(target) => {
|
|
match target.bindings.module_def {
|
|
NoModuleDef => {
|
|
// Not a module.
|
|
self.session.span_err(span,
|
|
fmt!("not a module: %s",
|
|
self.session.
|
|
str_of(name)));
|
|
return Failed;
|
|
}
|
|
ModuleDef(copy module_) => {
|
|
search_module = module_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
index += 1u;
|
|
}
|
|
|
|
return Success(search_module);
|
|
}
|
|
|
|
/**
|
|
* Attempts to resolve the module part of an import directive rooted at
|
|
* the given module.
|
|
*/
|
|
fn resolve_module_path_for_import(module_: @Module,
|
|
module_path: @DVec<Atom>,
|
|
xray: XrayFlag,
|
|
span: span)
|
|
-> ResolveResult<@Module> {
|
|
|
|
let module_path_len = (*module_path).len();
|
|
assert module_path_len > 0u;
|
|
|
|
debug!("(resolving module path for import) processing `%s` rooted at \
|
|
`%s`",
|
|
self.atoms_to_str((*module_path).get()),
|
|
self.module_to_str(module_));
|
|
|
|
// The first element of the module path must be in the current scope
|
|
// chain.
|
|
|
|
let first_element = (*module_path).get_elt(0u);
|
|
let mut search_module;
|
|
match self.resolve_module_in_lexical_scope(module_, first_element) {
|
|
Failed => {
|
|
self.session.span_err(span, ~"unresolved name");
|
|
return Failed;
|
|
}
|
|
Indeterminate => {
|
|
debug!("(resolving module path for import) indeterminate; \
|
|
bailing");
|
|
return Indeterminate;
|
|
}
|
|
Success(resulting_module) => {
|
|
search_module = resulting_module;
|
|
}
|
|
}
|
|
|
|
return self.resolve_module_path_from_root(search_module,
|
|
module_path,
|
|
1u,
|
|
xray,
|
|
span);
|
|
}
|
|
|
|
fn resolve_item_in_lexical_scope(module_: @Module,
|
|
name: Atom,
|
|
namespace: Namespace)
|
|
-> ResolveResult<Target> {
|
|
|
|
debug!("(resolving item in lexical scope) resolving `%s` in \
|
|
namespace %? in `%s`",
|
|
self.session.str_of(name),
|
|
namespace,
|
|
self.module_to_str(module_));
|
|
|
|
// The current module node is handled specially. First, check for
|
|
// its immediate children.
|
|
|
|
match module_.children.find(name) {
|
|
Some(name_bindings)
|
|
if (*name_bindings).defined_in_namespace(namespace) => {
|
|
|
|
return Success(Target(module_, name_bindings));
|
|
}
|
|
Some(_) | None => { /* Not found; continue. */ }
|
|
}
|
|
|
|
// Now check for its import directives. We don't have to have resolved
|
|
// all its imports in the usual way; this is because chains of
|
|
// adjacent import statements are processed as though they mutated the
|
|
// current scope.
|
|
|
|
match module_.import_resolutions.find(name) {
|
|
None => {
|
|
// Not found; continue.
|
|
}
|
|
Some(import_resolution) => {
|
|
match (*import_resolution).target_for_namespace(namespace) {
|
|
None => {
|
|
// Not found; continue.
|
|
debug!("(resolving item in lexical scope) found \
|
|
import resolution, but not in namespace %?",
|
|
namespace);
|
|
}
|
|
Some(target) => {
|
|
import_resolution.used = true;
|
|
return Success(copy target);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, proceed up the scope chain looking for parent modules.
|
|
let mut search_module = module_;
|
|
loop {
|
|
// Go to the next parent.
|
|
match search_module.parent_link {
|
|
NoParentLink => {
|
|
// No more parents. This module was unresolved.
|
|
debug!("(resolving item in lexical scope) unresolved \
|
|
module");
|
|
return Failed;
|
|
}
|
|
ModuleParentLink(parent_module_node, _) |
|
|
BlockParentLink(parent_module_node, _) => {
|
|
search_module = parent_module_node;
|
|
}
|
|
}
|
|
|
|
// Resolve the name in the parent module.
|
|
match self.resolve_name_in_module(search_module, name, namespace,
|
|
Xray) {
|
|
Failed => {
|
|
// Continue up the search chain.
|
|
}
|
|
Indeterminate => {
|
|
// We couldn't see through the higher scope because of an
|
|
// unresolved import higher up. Bail.
|
|
|
|
debug!("(resolving item in lexical scope) indeterminate \
|
|
higher scope; bailing");
|
|
return Indeterminate;
|
|
}
|
|
Success(target) => {
|
|
// We found the module.
|
|
return Success(copy target);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_module_in_lexical_scope(module_: @Module, name: Atom)
|
|
-> ResolveResult<@Module> {
|
|
|
|
match self.resolve_item_in_lexical_scope(module_, name, ModuleNS) {
|
|
Success(target) => {
|
|
match target.bindings.module_def {
|
|
NoModuleDef => {
|
|
error!("!!! (resolving module in lexical scope) module
|
|
wasn't actually a module!");
|
|
return Failed;
|
|
}
|
|
ModuleDef(module_) => {
|
|
return Success(module_);
|
|
}
|
|
}
|
|
}
|
|
Indeterminate => {
|
|
debug!("(resolving module in lexical scope) indeterminate; \
|
|
bailing");
|
|
return Indeterminate;
|
|
}
|
|
Failed => {
|
|
debug!("(resolving module in lexical scope) failed to \
|
|
resolve");
|
|
return Failed;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn name_is_exported(module_: @Module, name: Atom) -> bool {
|
|
return !module_.legacy_exports ||
|
|
module_.exported_names.size() == 0u ||
|
|
module_.exported_names.contains_key(name);
|
|
}
|
|
|
|
/**
|
|
* Attempts to resolve the supplied name in the given module for the
|
|
* given namespace. If successful, returns the target corresponding to
|
|
* the name.
|
|
*/
|
|
fn resolve_name_in_module(module_: @Module,
|
|
name: Atom,
|
|
namespace: Namespace,
|
|
xray: XrayFlag)
|
|
-> ResolveResult<Target> {
|
|
|
|
debug!("(resolving name in module) resolving `%s` in `%s`",
|
|
self.session.str_of(name),
|
|
self.module_to_str(module_));
|
|
|
|
if xray == NoXray && !self.name_is_exported(module_, name) {
|
|
debug!("(resolving name in module) name `%s` is unexported",
|
|
self.session.str_of(name));
|
|
return Failed;
|
|
}
|
|
|
|
// First, check the direct children of the module.
|
|
match module_.children.find(name) {
|
|
Some(name_bindings)
|
|
if (*name_bindings).defined_in_namespace(namespace) => {
|
|
|
|
debug!("(resolving name in module) found node as child");
|
|
return Success(Target(module_, name_bindings));
|
|
}
|
|
Some(_) | None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
|
|
// Next, check the module's imports. If the module has a glob, then
|
|
// we bail out; we don't know its imports yet.
|
|
|
|
if module_.glob_count > 0u {
|
|
debug!("(resolving name in module) module has glob; bailing out");
|
|
return Indeterminate;
|
|
}
|
|
|
|
// Otherwise, we check the list of resolved imports.
|
|
match module_.import_resolutions.find(name) {
|
|
Some(import_resolution) => {
|
|
if import_resolution.outstanding_references != 0u {
|
|
debug!("(resolving name in module) import unresolved; \
|
|
bailing out");
|
|
return Indeterminate;
|
|
}
|
|
|
|
match (*import_resolution).target_for_namespace(namespace) {
|
|
None => {
|
|
debug!("(resolving name in module) name found, but \
|
|
not in namespace %?",
|
|
namespace);
|
|
}
|
|
Some(target) => {
|
|
debug!("(resolving name in module) resolved to \
|
|
import");
|
|
import_resolution.used = true;
|
|
return Success(copy target);
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
|
|
// We're out of luck.
|
|
debug!("(resolving name in module) failed to resolve %s",
|
|
self.session.str_of(name));
|
|
return Failed;
|
|
}
|
|
|
|
/**
|
|
* Resolves a one-level renaming import of the kind `import foo = bar;`
|
|
* This needs special handling, as, unlike all of the other imports, it
|
|
* needs to look in the scope chain for modules and non-modules alike.
|
|
*/
|
|
fn resolve_one_level_renaming_import(module_: @Module,
|
|
import_directive: @ImportDirective)
|
|
-> ResolveResult<()> {
|
|
|
|
let mut target_name;
|
|
let mut source_name;
|
|
let allowable_namespaces;
|
|
match *import_directive.subclass {
|
|
SingleImport(target, source, namespaces) => {
|
|
target_name = target;
|
|
source_name = source;
|
|
allowable_namespaces = namespaces;
|
|
}
|
|
GlobImport => {
|
|
fail ~"found `import *`, which is invalid";
|
|
}
|
|
}
|
|
|
|
debug!("(resolving one-level naming result) resolving import `%s` = \
|
|
`%s` in `%s`",
|
|
self.session.str_of(target_name),
|
|
self.session.str_of(source_name),
|
|
self.module_to_str(module_));
|
|
|
|
// Find the matching items in the lexical scope chain for every
|
|
// namespace. If any of them come back indeterminate, this entire
|
|
// import is indeterminate.
|
|
|
|
let mut module_result;
|
|
debug!("(resolving one-level naming result) searching for module");
|
|
match self.resolve_item_in_lexical_scope(module_,
|
|
source_name,
|
|
ModuleNS) {
|
|
|
|
Failed => {
|
|
debug!("(resolving one-level renaming import) didn't find \
|
|
module result");
|
|
module_result = None;
|
|
}
|
|
Indeterminate => {
|
|
debug!("(resolving one-level renaming import) module result \
|
|
is indeterminate; bailing");
|
|
return Indeterminate;
|
|
}
|
|
Success(name_bindings) => {
|
|
debug!("(resolving one-level renaming import) module result \
|
|
found");
|
|
module_result = Some(copy name_bindings);
|
|
}
|
|
}
|
|
|
|
let mut value_result;
|
|
let mut type_result;
|
|
if allowable_namespaces == ModuleNSOnly {
|
|
value_result = None;
|
|
type_result = None;
|
|
} else {
|
|
debug!("(resolving one-level naming result) searching for value");
|
|
match self.resolve_item_in_lexical_scope(module_,
|
|
source_name,
|
|
ValueNS) {
|
|
|
|
Failed => {
|
|
debug!("(resolving one-level renaming import) didn't \
|
|
find value result");
|
|
value_result = None;
|
|
}
|
|
Indeterminate => {
|
|
debug!("(resolving one-level renaming import) value \
|
|
result is indeterminate; bailing");
|
|
return Indeterminate;
|
|
}
|
|
Success(name_bindings) => {
|
|
debug!("(resolving one-level renaming import) value \
|
|
result found");
|
|
value_result = Some(copy name_bindings);
|
|
}
|
|
}
|
|
|
|
debug!("(resolving one-level naming result) searching for type");
|
|
match self.resolve_item_in_lexical_scope(module_,
|
|
source_name,
|
|
TypeNS) {
|
|
|
|
Failed => {
|
|
debug!("(resolving one-level renaming import) didn't \
|
|
find type result");
|
|
type_result = None;
|
|
}
|
|
Indeterminate => {
|
|
debug!("(resolving one-level renaming import) type \
|
|
result is indeterminate; bailing");
|
|
return Indeterminate;
|
|
}
|
|
Success(name_bindings) => {
|
|
debug!("(resolving one-level renaming import) type \
|
|
result found");
|
|
type_result = Some(copy name_bindings);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// NB: This one results in effects that may be somewhat surprising. It
|
|
// means that this:
|
|
//
|
|
// mod A {
|
|
// impl foo for ... { ... }
|
|
// mod B {
|
|
// impl foo for ... { ... }
|
|
// import bar = foo;
|
|
// ...
|
|
// }
|
|
// }
|
|
//
|
|
// results in only A::B::foo being aliased to A::B::bar, not A::foo
|
|
// *and* A::B::foo being aliased to A::B::bar.
|
|
//
|
|
|
|
// If nothing at all was found, that's an error.
|
|
if is_none(module_result) &&
|
|
is_none(value_result) &&
|
|
is_none(type_result) {
|
|
|
|
self.session.span_err(import_directive.span,
|
|
~"unresolved import");
|
|
return Failed;
|
|
}
|
|
|
|
// Otherwise, proceed and write in the bindings.
|
|
match module_.import_resolutions.find(target_name) {
|
|
None => {
|
|
fail ~"(resolving one-level renaming import) reduced graph \
|
|
construction or glob importing should have created the \
|
|
import resolution name by now";
|
|
}
|
|
Some(import_resolution) => {
|
|
debug!("(resolving one-level renaming import) writing module \
|
|
result %? for `%s` into `%s`",
|
|
is_none(module_result),
|
|
self.session.str_of(target_name),
|
|
self.module_to_str(module_));
|
|
|
|
import_resolution.module_target = module_result;
|
|
import_resolution.value_target = value_result;
|
|
import_resolution.type_target = type_result;
|
|
|
|
assert import_resolution.outstanding_references >= 1u;
|
|
import_resolution.outstanding_references -= 1u;
|
|
}
|
|
}
|
|
|
|
debug!("(resolving one-level renaming import) successfully resolved");
|
|
return Success(());
|
|
}
|
|
|
|
fn report_unresolved_imports(module_: @Module) {
|
|
let index = module_.resolved_import_count;
|
|
let import_count = module_.imports.len();
|
|
if index != import_count {
|
|
self.session.span_err(module_.imports.get_elt(index).span,
|
|
~"unresolved import");
|
|
}
|
|
|
|
// Descend into children and anonymous children.
|
|
for module_.children.each |_name, child_node| {
|
|
match child_node.get_module_if_available() {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(child_module) => {
|
|
self.report_unresolved_imports(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for module_.anonymous_children.each |_name, module_| {
|
|
self.report_unresolved_imports(module_);
|
|
}
|
|
}
|
|
|
|
// Export recording
|
|
//
|
|
// This pass simply determines what all "export" keywords refer to and
|
|
// writes the results into the export map.
|
|
//
|
|
// XXX: This pass will be removed once exports change to per-item. Then
|
|
// this operation can simply be performed as part of item (or import)
|
|
// processing.
|
|
|
|
fn record_exports() {
|
|
let root_module = (*self.graph_root).get_module();
|
|
self.record_exports_for_module_subtree(root_module);
|
|
}
|
|
|
|
fn record_exports_for_module_subtree(module_: @Module) {
|
|
// If this isn't a local crate, then bail out. We don't need to record
|
|
// exports for local crates.
|
|
|
|
match module_.def_id {
|
|
Some(def_id) if def_id.crate == local_crate => {
|
|
// OK. Continue.
|
|
}
|
|
None => {
|
|
// Record exports for the root module.
|
|
}
|
|
Some(_) => {
|
|
// Bail out.
|
|
debug!("(recording exports for module subtree) not recording \
|
|
exports for `%s`",
|
|
self.module_to_str(module_));
|
|
return;
|
|
}
|
|
}
|
|
|
|
self.record_exports_for_module(module_);
|
|
|
|
for module_.children.each |_atom, child_name_bindings| {
|
|
match child_name_bindings.get_module_if_available() {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(child_module) => {
|
|
self.record_exports_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for module_.anonymous_children.each |_node_id, child_module| {
|
|
self.record_exports_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
|
|
fn record_exports_for_module(module_: @Module) {
|
|
let mut exports2 = ~[];
|
|
for module_.exported_names.each |name, _exp_node_id| {
|
|
for self.namespaces.each |namespace| {
|
|
match self.resolve_definition_of_name_in_module(module_,
|
|
name,
|
|
*namespace,
|
|
Xray) {
|
|
NoNameDefinition => {
|
|
// Nothing to do.
|
|
}
|
|
ChildNameDefinition(target_def) => {
|
|
debug!("(computing exports) found child export '%s' \
|
|
for %?",
|
|
self.session.str_of(name),
|
|
module_.def_id);
|
|
vec::push(exports2, Export2 {
|
|
reexport: false,
|
|
name: self.session.str_of(name),
|
|
def_id: def_id_of_def(target_def)
|
|
});
|
|
}
|
|
ImportNameDefinition(target_def) => {
|
|
debug!("(computing exports) found reexport '%s' for \
|
|
%?",
|
|
self.session.str_of(name),
|
|
module_.def_id);
|
|
vec::push(exports2, Export2 {
|
|
reexport: true,
|
|
name: self.session.str_of(name),
|
|
def_id: def_id_of_def(target_def)
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
match copy module_.def_id {
|
|
Some(def_id) => {
|
|
self.export_map2.insert(def_id.node, move exports2);
|
|
debug!("(computing exports) writing exports for %d (some)",
|
|
def_id.node);
|
|
}
|
|
None => {}
|
|
}
|
|
}
|
|
|
|
// AST resolution
|
|
//
|
|
// We maintain a list of value ribs and type ribs.
|
|
//
|
|
// Simultaneously, we keep track of the current position in the module
|
|
// graph in the `current_module` pointer. When we go to resolve a name in
|
|
// the value or type namespaces, we first look through all the ribs and
|
|
// then query the module graph. When we resolve a name in the module
|
|
// namespace, we can skip all the ribs (since nested modules are not
|
|
// allowed within blocks in Rust) and jump straight to the current module
|
|
// graph node.
|
|
//
|
|
// Named implementations are handled separately. When we find a method
|
|
// call, we consult the module node to find all of the implementations in
|
|
// scope. This information is lazily cached in the module node. We then
|
|
// generate a fake "implementation scope" containing all the
|
|
// implementations thus found, for compatibility with old resolve pass.
|
|
|
|
fn with_scope(name: Option<Atom>, f: fn()) {
|
|
let orig_module = self.current_module;
|
|
|
|
// Move down in the graph.
|
|
match name {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(name) => {
|
|
match orig_module.children.find(name) {
|
|
None => {
|
|
debug!("!!! (with scope) didn't find `%s` in `%s`",
|
|
self.session.str_of(name),
|
|
self.module_to_str(orig_module));
|
|
}
|
|
Some(name_bindings) => {
|
|
match (*name_bindings).get_module_if_available() {
|
|
None => {
|
|
debug!("!!! (with scope) didn't find module \
|
|
for `%s` in `%s`",
|
|
self.session.str_of(name),
|
|
self.module_to_str(orig_module));
|
|
}
|
|
Some(module_) => {
|
|
self.current_module = module_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
f();
|
|
|
|
self.current_module = orig_module;
|
|
}
|
|
|
|
// Wraps the given definition in the appropriate number of `def_upvar`
|
|
// wrappers.
|
|
|
|
fn upvarify(ribs: @DVec<@Rib>, rib_index: uint, def_like: def_like,
|
|
span: span, allow_capturing_self: AllowCapturingSelfFlag)
|
|
-> Option<def_like> {
|
|
|
|
let mut def;
|
|
let mut is_ty_param;
|
|
|
|
match def_like {
|
|
dl_def(d @ def_local(*)) | dl_def(d @ def_upvar(*)) |
|
|
dl_def(d @ def_arg(*)) | dl_def(d @ def_binding(*)) => {
|
|
def = d;
|
|
is_ty_param = false;
|
|
}
|
|
dl_def(d @ def_ty_param(*)) => {
|
|
def = d;
|
|
is_ty_param = true;
|
|
}
|
|
dl_def(d @ def_self(*))
|
|
if allow_capturing_self == DontAllowCapturingSelf => {
|
|
def = d;
|
|
is_ty_param = false;
|
|
}
|
|
_ => {
|
|
return Some(def_like);
|
|
}
|
|
}
|
|
|
|
let mut rib_index = rib_index + 1u;
|
|
while rib_index < (*ribs).len() {
|
|
let rib = (*ribs).get_elt(rib_index);
|
|
match rib.kind {
|
|
NormalRibKind => {
|
|
// Nothing to do. Continue.
|
|
}
|
|
FunctionRibKind(function_id, body_id) => {
|
|
if !is_ty_param {
|
|
def = def_upvar(def_id_of_def(def).node,
|
|
@def,
|
|
function_id,
|
|
body_id);
|
|
}
|
|
}
|
|
MethodRibKind(item_id, _) => {
|
|
// If the def is a ty param, and came from the parent
|
|
// item, it's ok
|
|
match def {
|
|
def_ty_param(did, _) if self.def_map.find(copy(did.node))
|
|
== Some(def_typaram_binder(item_id)) => {
|
|
// ok
|
|
}
|
|
_ => {
|
|
if !is_ty_param {
|
|
// This was an attempt to access an upvar inside a
|
|
// named function item. This is not allowed, so we
|
|
// report an error.
|
|
|
|
self.session.span_err(
|
|
span,
|
|
~"attempted dynamic environment-capture");
|
|
} else {
|
|
// This was an attempt to use a type parameter outside
|
|
// its scope.
|
|
|
|
self.session.span_err(span,
|
|
~"attempt to use a type \
|
|
argument out of scope");
|
|
}
|
|
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
OpaqueFunctionRibKind => {
|
|
if !is_ty_param {
|
|
// This was an attempt to access an upvar inside a
|
|
// named function item. This is not allowed, so we
|
|
// report an error.
|
|
|
|
self.session.span_err(
|
|
span,
|
|
~"attempted dynamic environment-capture");
|
|
} else {
|
|
// This was an attempt to use a type parameter outside
|
|
// its scope.
|
|
|
|
self.session.span_err(span,
|
|
~"attempt to use a type \
|
|
argument out of scope");
|
|
}
|
|
|
|
return None;
|
|
}
|
|
}
|
|
|
|
rib_index += 1u;
|
|
}
|
|
|
|
return Some(dl_def(def));
|
|
}
|
|
|
|
fn search_ribs(ribs: @DVec<@Rib>, name: Atom, span: span,
|
|
allow_capturing_self: AllowCapturingSelfFlag)
|
|
-> Option<def_like> {
|
|
|
|
// XXX: This should not use a while loop.
|
|
// XXX: Try caching?
|
|
|
|
let mut i = (*ribs).len();
|
|
while i != 0u {
|
|
i -= 1u;
|
|
let rib = (*ribs).get_elt(i);
|
|
match rib.bindings.find(name) {
|
|
Some(def_like) => {
|
|
return self.upvarify(ribs, i, def_like, span,
|
|
allow_capturing_self);
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
fn resolve_crate(@self) {
|
|
debug!("(resolving crate) starting");
|
|
|
|
visit_crate(*self.crate, (), mk_vt(@{
|
|
visit_item: |item, _context, visitor|
|
|
self.resolve_item(item, visitor),
|
|
visit_arm: |arm, _context, visitor|
|
|
self.resolve_arm(arm, visitor),
|
|
visit_block: |block, _context, visitor|
|
|
self.resolve_block(block, visitor),
|
|
visit_expr: |expr, _context, visitor|
|
|
self.resolve_expr(expr, visitor),
|
|
visit_local: |local, _context, visitor|
|
|
self.resolve_local(local, visitor),
|
|
visit_ty: |ty, _context, visitor|
|
|
self.resolve_type(ty, visitor),
|
|
.. *default_visitor()
|
|
}));
|
|
}
|
|
|
|
fn resolve_item(item: @item, visitor: ResolveVisitor) {
|
|
debug!("(resolving item) resolving %s",
|
|
self.session.str_of(item.ident));
|
|
|
|
// Items with the !resolve_unexported attribute are X-ray contexts.
|
|
// This is used to allow the test runner to run unexported tests.
|
|
let orig_xray_flag = self.xray_context;
|
|
if contains_name(attr_metas(item.attrs), ~"!resolve_unexported") {
|
|
self.xray_context = Xray;
|
|
}
|
|
|
|
match item.node {
|
|
item_enum(_, type_parameters) |
|
|
item_ty(_, type_parameters) => {
|
|
do self.with_type_parameter_rib
|
|
(HasTypeParameters(&type_parameters, item.id, 0u,
|
|
NormalRibKind))
|
|
|| {
|
|
|
|
visit_item(item, (), visitor);
|
|
}
|
|
}
|
|
|
|
item_impl(type_parameters, implemented_traits, self_type,
|
|
methods) => {
|
|
|
|
self.resolve_implementation(item.id, item.span,
|
|
type_parameters,
|
|
implemented_traits,
|
|
self_type, methods, visitor);
|
|
}
|
|
|
|
item_trait(type_parameters, traits, methods) => {
|
|
// Create a new rib for the self type.
|
|
let self_type_rib = @Rib(NormalRibKind);
|
|
(*self.type_ribs).push(self_type_rib);
|
|
self_type_rib.bindings.insert(self.self_atom,
|
|
dl_def(def_self(item.id)));
|
|
|
|
// Create a new rib for the trait-wide type parameters.
|
|
do self.with_type_parameter_rib
|
|
(HasTypeParameters(&type_parameters, item.id, 0u,
|
|
NormalRibKind)) {
|
|
|
|
self.resolve_type_parameters(type_parameters, visitor);
|
|
|
|
// Resolve derived traits.
|
|
for traits.each |trt| {
|
|
match self.resolve_path(trt.path, TypeNS, true,
|
|
visitor) {
|
|
None =>
|
|
self.session.span_err(trt.path.span,
|
|
~"attempt to derive a \
|
|
nonexistent trait"),
|
|
Some(def) => {
|
|
// Write a mapping from the trait ID to the
|
|
// definition of the trait into the definition
|
|
// map.
|
|
|
|
debug!("(resolving trait) found trait def: \
|
|
%?", def);
|
|
|
|
self.record_def(trt.ref_id, def);
|
|
}
|
|
}
|
|
}
|
|
|
|
for methods.each |method| {
|
|
// Create a new rib for the method-specific type
|
|
// parameters.
|
|
//
|
|
// XXX: Do we need a node ID here?
|
|
|
|
match *method {
|
|
required(ty_m) => {
|
|
do self.with_type_parameter_rib
|
|
(HasTypeParameters(&ty_m.tps,
|
|
item.id,
|
|
type_parameters.len(),
|
|
MethodRibKind(item.id, Required))) {
|
|
|
|
// Resolve the method-specific type
|
|
// parameters.
|
|
self.resolve_type_parameters(ty_m.tps,
|
|
visitor);
|
|
|
|
for ty_m.decl.inputs.each |argument| {
|
|
self.resolve_type(argument.ty, visitor);
|
|
}
|
|
|
|
self.resolve_type(ty_m.decl.output, visitor);
|
|
}
|
|
}
|
|
provided(m) => {
|
|
self.resolve_method(MethodRibKind(item.id,
|
|
Provided(m.id)),
|
|
m,
|
|
type_parameters.len(),
|
|
visitor)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
(*self.type_ribs).pop();
|
|
}
|
|
|
|
item_class(struct_def, ty_params) => {
|
|
self.resolve_class(item.id,
|
|
@copy ty_params,
|
|
struct_def.traits,
|
|
struct_def.fields,
|
|
struct_def.methods,
|
|
struct_def.ctor,
|
|
struct_def.dtor,
|
|
visitor);
|
|
}
|
|
|
|
item_mod(module_) => {
|
|
do self.with_scope(Some(item.ident)) {
|
|
self.resolve_module(module_, item.span, item.ident,
|
|
item.id, visitor);
|
|
}
|
|
}
|
|
|
|
item_foreign_mod(foreign_module) => {
|
|
do self.with_scope(Some(item.ident)) {
|
|
for foreign_module.items.each |foreign_item| {
|
|
match foreign_item.node {
|
|
foreign_item_fn(_, _, type_parameters) => {
|
|
do self.with_type_parameter_rib
|
|
(HasTypeParameters(&type_parameters,
|
|
foreign_item.id,
|
|
0u,
|
|
OpaqueFunctionRibKind))
|
|
|| {
|
|
|
|
visit_foreign_item(*foreign_item, (),
|
|
visitor);
|
|
}
|
|
}
|
|
foreign_item_const(_) => {
|
|
visit_foreign_item(*foreign_item, (),
|
|
visitor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
item_fn(fn_decl, _, ty_params, block) => {
|
|
// If this is the main function, we must record it in the
|
|
// session.
|
|
//
|
|
// For speed, we put the string comparison last in this chain
|
|
// of conditionals.
|
|
|
|
if !self.session.building_library &&
|
|
is_none(self.session.main_fn) &&
|
|
item.ident == syntax::parse::token::special_idents::main {
|
|
|
|
self.session.main_fn = Some((item.id, item.span));
|
|
}
|
|
|
|
self.resolve_function(OpaqueFunctionRibKind,
|
|
Some(@fn_decl),
|
|
HasTypeParameters
|
|
(&ty_params,
|
|
item.id,
|
|
0u,
|
|
OpaqueFunctionRibKind),
|
|
block,
|
|
NoSelfBinding,
|
|
NoCaptureClause,
|
|
visitor);
|
|
}
|
|
|
|
item_const(*) => {
|
|
visit_item(item, (), visitor);
|
|
}
|
|
|
|
item_mac(*) => {
|
|
fail ~"item macros unimplemented"
|
|
}
|
|
}
|
|
|
|
self.xray_context = orig_xray_flag;
|
|
}
|
|
|
|
fn with_type_parameter_rib(type_parameters: TypeParameters, f: fn()) {
|
|
match type_parameters {
|
|
HasTypeParameters(type_parameters, node_id, initial_index,
|
|
rib_kind) => {
|
|
|
|
let function_type_rib = @Rib(rib_kind);
|
|
(*self.type_ribs).push(function_type_rib);
|
|
|
|
for (*type_parameters).eachi |index, type_parameter| {
|
|
let name = type_parameter.ident;
|
|
debug!("with_type_parameter_rib: %d %d", node_id,
|
|
type_parameter.id);
|
|
let def_like = dl_def(def_ty_param
|
|
(local_def(type_parameter.id),
|
|
index + initial_index));
|
|
// Associate this type parameter with
|
|
// the item that bound it
|
|
self.record_def(type_parameter.id,
|
|
def_typaram_binder(node_id));
|
|
(*function_type_rib).bindings.insert(name, def_like);
|
|
}
|
|
}
|
|
|
|
NoTypeParameters => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
|
|
f();
|
|
|
|
match type_parameters {
|
|
HasTypeParameters(*) => {
|
|
(*self.type_ribs).pop();
|
|
}
|
|
|
|
NoTypeParameters => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
}
|
|
|
|
fn with_label_rib(f: fn()) {
|
|
(*self.label_ribs).push(@Rib(NormalRibKind));
|
|
f();
|
|
(*self.label_ribs).pop();
|
|
}
|
|
|
|
fn resolve_function(rib_kind: RibKind,
|
|
optional_declaration: Option<@fn_decl>,
|
|
type_parameters: TypeParameters,
|
|
block: blk,
|
|
self_binding: SelfBinding,
|
|
capture_clause: CaptureClause,
|
|
visitor: ResolveVisitor) {
|
|
|
|
// Check each element of the capture clause.
|
|
match capture_clause {
|
|
NoCaptureClause => {
|
|
// Nothing to do.
|
|
}
|
|
HasCaptureClause(capture_clause) => {
|
|
// Resolve each captured item.
|
|
for (*capture_clause).each |capture_item| {
|
|
match self.resolve_identifier(capture_item.name,
|
|
ValueNS,
|
|
true,
|
|
capture_item.span) {
|
|
None => {
|
|
self.session.span_err(capture_item.span,
|
|
~"unresolved name in \
|
|
capture clause");
|
|
}
|
|
Some(def) => {
|
|
self.record_def(capture_item.id, def);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a value rib for the function.
|
|
let function_value_rib = @Rib(rib_kind);
|
|
(*self.value_ribs).push(function_value_rib);
|
|
|
|
// Create a label rib for the function.
|
|
let function_label_rib = @Rib(rib_kind);
|
|
(*self.label_ribs).push(function_label_rib);
|
|
|
|
// If this function has type parameters, add them now.
|
|
do self.with_type_parameter_rib(type_parameters) {
|
|
// Resolve the type parameters.
|
|
match type_parameters {
|
|
NoTypeParameters => {
|
|
// Continue.
|
|
}
|
|
HasTypeParameters(type_parameters, _, _, _) => {
|
|
self.resolve_type_parameters(*type_parameters, visitor);
|
|
}
|
|
}
|
|
|
|
// Add self to the rib, if necessary.
|
|
match self_binding {
|
|
NoSelfBinding => {
|
|
// Nothing to do.
|
|
}
|
|
HasSelfBinding(self_node_id) => {
|
|
let def_like = dl_def(def_self(self_node_id));
|
|
(*function_value_rib).bindings.insert(self.self_atom,
|
|
def_like);
|
|
}
|
|
}
|
|
|
|
// Add each argument to the rib.
|
|
match optional_declaration {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(declaration) => {
|
|
for declaration.inputs.each |argument| {
|
|
let name = argument.ident;
|
|
let def_like = dl_def(def_arg(argument.id,
|
|
argument.mode));
|
|
(*function_value_rib).bindings.insert(name, def_like);
|
|
|
|
self.resolve_type(argument.ty, visitor);
|
|
|
|
debug!("(resolving function) recorded argument `%s`",
|
|
self.session.str_of(name));
|
|
}
|
|
|
|
self.resolve_type(declaration.output, visitor);
|
|
}
|
|
}
|
|
|
|
// Resolve the function body.
|
|
self.resolve_block(block, visitor);
|
|
|
|
debug!("(resolving function) leaving function");
|
|
}
|
|
|
|
(*self.label_ribs).pop();
|
|
(*self.value_ribs).pop();
|
|
}
|
|
|
|
fn resolve_type_parameters(type_parameters: ~[ty_param],
|
|
visitor: ResolveVisitor) {
|
|
|
|
for type_parameters.each |type_parameter| {
|
|
for type_parameter.bounds.each |bound| {
|
|
match *bound {
|
|
bound_copy | bound_send | bound_const | bound_owned => {
|
|
// Nothing to do.
|
|
}
|
|
bound_trait(trait_type) => {
|
|
self.resolve_type(trait_type, visitor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_class(id: node_id,
|
|
type_parameters: @~[ty_param],
|
|
traits: ~[@trait_ref],
|
|
fields: ~[@struct_field],
|
|
methods: ~[@method],
|
|
optional_constructor: Option<class_ctor>,
|
|
optional_destructor: Option<class_dtor>,
|
|
visitor: ResolveVisitor) {
|
|
|
|
// If applicable, create a rib for the type parameters.
|
|
let outer_type_parameter_count = (*type_parameters).len();
|
|
let borrowed_type_parameters: &~[ty_param] = &*type_parameters;
|
|
do self.with_type_parameter_rib(HasTypeParameters
|
|
(borrowed_type_parameters, id, 0u,
|
|
NormalRibKind)) {
|
|
|
|
// Resolve the type parameters.
|
|
self.resolve_type_parameters(*type_parameters, visitor);
|
|
|
|
// Resolve implemented traits.
|
|
for traits.each |trt| {
|
|
match self.resolve_path(trt.path, TypeNS, true, visitor) {
|
|
None => {
|
|
self.session.span_err(trt.path.span,
|
|
~"attempt to implement a \
|
|
nonexistent trait");
|
|
}
|
|
Some(def) => {
|
|
// Write a mapping from the trait ID to the
|
|
// definition of the trait into the definition
|
|
// map.
|
|
|
|
debug!("(resolving class) found trait def: %?", def);
|
|
|
|
self.record_def(trt.ref_id, def);
|
|
|
|
// XXX: This is wrong but is needed for tests to
|
|
// pass.
|
|
|
|
self.record_def(id, def);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Resolve methods.
|
|
for methods.each |method| {
|
|
self.resolve_method(MethodRibKind(id, Provided(method.id)),
|
|
*method,
|
|
outer_type_parameter_count,
|
|
visitor);
|
|
}
|
|
|
|
// Resolve fields.
|
|
for fields.each |field| {
|
|
self.resolve_type(field.node.ty, visitor);
|
|
}
|
|
|
|
// Resolve the constructor, if applicable.
|
|
match optional_constructor {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(constructor) => {
|
|
self.resolve_function(NormalRibKind,
|
|
Some(@constructor.node.dec),
|
|
NoTypeParameters,
|
|
constructor.node.body,
|
|
HasSelfBinding(constructor.node.
|
|
self_id),
|
|
NoCaptureClause,
|
|
visitor);
|
|
}
|
|
}
|
|
|
|
// Resolve the destructor, if applicable.
|
|
match optional_destructor {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(destructor) => {
|
|
self.resolve_function(NormalRibKind,
|
|
None,
|
|
NoTypeParameters,
|
|
destructor.node.body,
|
|
HasSelfBinding
|
|
(destructor.node.self_id),
|
|
NoCaptureClause,
|
|
visitor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Does this really need to take a RibKind or is it always going
|
|
// to be NormalRibKind?
|
|
fn resolve_method(rib_kind: RibKind,
|
|
method: @method,
|
|
outer_type_parameter_count: uint,
|
|
visitor: ResolveVisitor) {
|
|
let borrowed_method_type_parameters = &method.tps;
|
|
let type_parameters =
|
|
HasTypeParameters(borrowed_method_type_parameters,
|
|
method.id,
|
|
outer_type_parameter_count,
|
|
rib_kind);
|
|
// we only have self ty if it is a non static method
|
|
let self_binding = match method.self_ty.node {
|
|
sty_static => { NoSelfBinding }
|
|
_ => { HasSelfBinding(method.self_id) }
|
|
};
|
|
|
|
self.resolve_function(rib_kind,
|
|
Some(@method.decl),
|
|
type_parameters,
|
|
method.body,
|
|
self_binding,
|
|
NoCaptureClause,
|
|
visitor);
|
|
}
|
|
|
|
fn resolve_implementation(id: node_id,
|
|
span: span,
|
|
type_parameters: ~[ty_param],
|
|
opt_trait_reference: Option<@trait_ref>,
|
|
self_type: @ty,
|
|
methods: ~[@method],
|
|
visitor: ResolveVisitor) {
|
|
|
|
// If applicable, create a rib for the type parameters.
|
|
let outer_type_parameter_count = type_parameters.len();
|
|
let borrowed_type_parameters: &~[ty_param] = &type_parameters;
|
|
do self.with_type_parameter_rib(HasTypeParameters
|
|
(borrowed_type_parameters, id, 0u,
|
|
NormalRibKind)) {
|
|
|
|
// Resolve the type parameters.
|
|
self.resolve_type_parameters(type_parameters, visitor);
|
|
|
|
// Resolve the trait reference, if necessary.
|
|
let original_trait_refs = self.current_trait_refs;
|
|
match opt_trait_reference {
|
|
Some(trait_reference) => {
|
|
let new_trait_refs = @DVec();
|
|
match self.resolve_path(
|
|
trait_reference.path, TypeNS, true, visitor) {
|
|
None => {
|
|
self.session.span_err(span,
|
|
~"attempt to implement an \
|
|
unknown trait");
|
|
}
|
|
Some(def) => {
|
|
self.record_def(trait_reference.ref_id, def);
|
|
|
|
// Record the current trait reference.
|
|
(*new_trait_refs).push(def_id_of_def(def));
|
|
}
|
|
}
|
|
// Record the current set of trait references.
|
|
self.current_trait_refs = Some(new_trait_refs);
|
|
}
|
|
None => ()
|
|
}
|
|
|
|
// Resolve the self type.
|
|
self.resolve_type(self_type, visitor);
|
|
|
|
for methods.each |method| {
|
|
// We also need a new scope for the method-specific
|
|
// type parameters.
|
|
self.resolve_method(MethodRibKind(id, Provided(method.id)),
|
|
*method,
|
|
outer_type_parameter_count,
|
|
visitor);
|
|
/*
|
|
let borrowed_type_parameters = &method.tps;
|
|
self.resolve_function(MethodRibKind(id, Provided(method.id)),
|
|
Some(@method.decl),
|
|
HasTypeParameters
|
|
(borrowed_type_parameters,
|
|
method.id,
|
|
outer_type_parameter_count,
|
|
NormalRibKind),
|
|
method.body,
|
|
HasSelfBinding(method.self_id),
|
|
NoCaptureClause,
|
|
visitor);
|
|
*/
|
|
}
|
|
|
|
// Restore the original trait references.
|
|
self.current_trait_refs = original_trait_refs;
|
|
}
|
|
}
|
|
|
|
fn resolve_module(module_: _mod, span: span, _name: ident, id: node_id,
|
|
visitor: ResolveVisitor) {
|
|
|
|
// Write the implementations in scope into the module metadata.
|
|
debug!("(resolving module) resolving module ID %d", id);
|
|
visit_mod(module_, span, id, (), visitor);
|
|
}
|
|
|
|
fn resolve_local(local: @local, visitor: ResolveVisitor) {
|
|
let mut mutability;
|
|
if local.node.is_mutbl {
|
|
mutability = Mutable;
|
|
} else {
|
|
mutability = Immutable;
|
|
}
|
|
|
|
// Resolve the type.
|
|
self.resolve_type(local.node.ty, visitor);
|
|
|
|
// Resolve the initializer, if necessary.
|
|
match local.node.init {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(initializer) => {
|
|
self.resolve_expr(initializer.expr, visitor);
|
|
}
|
|
}
|
|
|
|
// Resolve the pattern.
|
|
self.resolve_pattern(local.node.pat, IrrefutableMode, mutability,
|
|
None, visitor);
|
|
}
|
|
|
|
fn binding_mode_map(pat: @pat) -> BindingMap {
|
|
let result = HashMap();
|
|
do pat_bindings(self.def_map, pat) |binding_mode, _id, sp, path| {
|
|
let ident = path_to_ident(path);
|
|
result.insert(ident,
|
|
binding_info {span: sp,
|
|
binding_mode: binding_mode});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
fn check_consistent_bindings(arm: arm) {
|
|
if arm.pats.len() == 0 { return; }
|
|
let map_0 = self.binding_mode_map(arm.pats[0]);
|
|
for arm.pats.eachi() |i, p| {
|
|
let map_i = self.binding_mode_map(*p);
|
|
|
|
for map_0.each |key, binding_0| {
|
|
match map_i.find(key) {
|
|
None => {
|
|
self.session.span_err(
|
|
p.span,
|
|
fmt!("variable `%s` from pattern #1 is \
|
|
not bound in pattern #%u",
|
|
self.session.str_of(key), i + 1));
|
|
}
|
|
Some(binding_i) => {
|
|
if binding_0.binding_mode != binding_i.binding_mode {
|
|
self.session.span_err(
|
|
binding_i.span,
|
|
fmt!("variable `%s` is bound with different \
|
|
mode in pattern #%u than in pattern #1",
|
|
self.session.str_of(key), i + 1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for map_i.each |key, binding| {
|
|
if !map_0.contains_key(key) {
|
|
self.session.span_err(
|
|
binding.span,
|
|
fmt!("variable `%s` from pattern #%u is \
|
|
not bound in pattern #1",
|
|
self.session.str_of(key), i + 1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_arm(arm: arm, visitor: ResolveVisitor) {
|
|
(*self.value_ribs).push(@Rib(NormalRibKind));
|
|
|
|
let bindings_list = atom_hashmap();
|
|
for arm.pats.each |pattern| {
|
|
self.resolve_pattern(*pattern, RefutableMode, Immutable,
|
|
Some(bindings_list), visitor);
|
|
}
|
|
|
|
// This has to happen *after* we determine which
|
|
// pat_idents are variants
|
|
self.check_consistent_bindings(arm);
|
|
|
|
visit_expr_opt(arm.guard, (), visitor);
|
|
self.resolve_block(arm.body, visitor);
|
|
|
|
(*self.value_ribs).pop();
|
|
}
|
|
|
|
fn resolve_block(block: blk, visitor: ResolveVisitor) {
|
|
debug!("(resolving block) entering block");
|
|
(*self.value_ribs).push(@Rib(NormalRibKind));
|
|
|
|
// Move down in the graph, if there's an anonymous module rooted here.
|
|
let orig_module = self.current_module;
|
|
match self.current_module.anonymous_children.find(block.node.id) {
|
|
None => { /* Nothing to do. */ }
|
|
Some(anonymous_module) => {
|
|
debug!("(resolving block) found anonymous module, moving \
|
|
down");
|
|
self.current_module = anonymous_module;
|
|
}
|
|
}
|
|
|
|
// Descend into the block.
|
|
visit_block(block, (), visitor);
|
|
|
|
// Move back up.
|
|
self.current_module = orig_module;
|
|
|
|
(*self.value_ribs).pop();
|
|
debug!("(resolving block) leaving block");
|
|
}
|
|
|
|
fn resolve_type(ty: @ty, visitor: ResolveVisitor) {
|
|
match ty.node {
|
|
// Like path expressions, the interpretation of path types depends
|
|
// on whether the path has multiple elements in it or not.
|
|
|
|
ty_path(path, path_id) => {
|
|
// This is a path in the type namespace. Walk through scopes
|
|
// scopes looking for it.
|
|
|
|
let mut result_def;
|
|
match self.resolve_path(path, TypeNS, true, visitor) {
|
|
Some(def) => {
|
|
debug!("(resolving type) resolved `%s` to type",
|
|
self.session.str_of(path.idents.last()));
|
|
result_def = Some(def);
|
|
}
|
|
None => {
|
|
result_def = None;
|
|
}
|
|
}
|
|
|
|
match result_def {
|
|
Some(_) => {
|
|
// Continue.
|
|
}
|
|
None => {
|
|
// Check to see whether the name is a primitive type.
|
|
if path.idents.len() == 1u {
|
|
let name = path.idents.last();
|
|
|
|
match self.primitive_type_table
|
|
.primitive_types
|
|
.find(name) {
|
|
|
|
Some(primitive_type) => {
|
|
result_def =
|
|
Some(def_prim_ty(primitive_type));
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
match copy result_def {
|
|
Some(def) => {
|
|
// Write the result into the def map.
|
|
debug!("(resolving type) writing resolution for `%s` \
|
|
(id %d)",
|
|
connect(path.idents.map(
|
|
|x| self.session.str_of(*x)), ~"::"),
|
|
path_id);
|
|
self.record_def(path_id, def);
|
|
}
|
|
None => {
|
|
self.session.span_err
|
|
(ty.span, fmt!("use of undeclared type name `%s`",
|
|
connect(path.idents.map(
|
|
|x| self.session.str_of(*x)),
|
|
~"::")));
|
|
}
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
// Just resolve embedded types.
|
|
visit_ty(ty, (), visitor);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_pattern(pattern: @pat,
|
|
mode: PatternBindingMode,
|
|
mutability: Mutability,
|
|
// Maps idents to the node ID for the (outermost)
|
|
// pattern that binds them
|
|
bindings_list: Option<HashMap<Atom,node_id>>,
|
|
visitor: ResolveVisitor) {
|
|
|
|
let pat_id = pattern.id;
|
|
do walk_pat(pattern) |pattern| {
|
|
match pattern.node {
|
|
pat_ident(binding_mode, path, _)
|
|
if !path.global && path.idents.len() == 1u => {
|
|
|
|
// The meaning of pat_ident with no type parameters
|
|
// depends on whether an enum variant with that name is in
|
|
// scope. The probing lookup has to be careful not to emit
|
|
// spurious errors. Only matching patterns (match) can
|
|
// match nullary variants. For binding patterns (let),
|
|
// matching such a variant is simply disallowed (since
|
|
// it's rarely what you want).
|
|
|
|
let atom = path.idents[0];
|
|
|
|
match self.resolve_enum_variant_or_const(atom) {
|
|
FoundEnumVariant(def) if mode == RefutableMode => {
|
|
debug!("(resolving pattern) resolving `%s` to \
|
|
enum variant",
|
|
self.session.str_of(atom));
|
|
|
|
self.record_def(pattern.id, def);
|
|
}
|
|
FoundEnumVariant(_) => {
|
|
self.session.span_err(pattern.span,
|
|
fmt!("declaration of `%s` \
|
|
shadows an enum \
|
|
that's in scope",
|
|
self.session
|
|
.str_of(atom)));
|
|
}
|
|
FoundConst => {
|
|
self.session.span_err(pattern.span,
|
|
~"pattern variable \
|
|
conflicts with a constant \
|
|
in scope");
|
|
}
|
|
EnumVariantOrConstNotFound => {
|
|
debug!("(resolving pattern) binding `%s`",
|
|
self.session.str_of(atom));
|
|
|
|
let is_mutable = mutability == Mutable;
|
|
|
|
let def = match mode {
|
|
RefutableMode => {
|
|
// For pattern arms, we must use
|
|
// `def_binding` definitions.
|
|
|
|
def_binding(pattern.id, binding_mode)
|
|
}
|
|
IrrefutableMode => {
|
|
// But for locals, we use `def_local`.
|
|
def_local(pattern.id, is_mutable)
|
|
}
|
|
};
|
|
|
|
// Record the definition so that later passes
|
|
// will be able to distinguish variants from
|
|
// locals in patterns.
|
|
|
|
self.record_def(pattern.id, def);
|
|
|
|
// Add the binding to the local ribs, if it
|
|
// doesn't already exist in the bindings list. (We
|
|
// must not add it if it's in the bindings list
|
|
// because that breaks the assumptions later
|
|
// passes make about or-patterns.)
|
|
|
|
match bindings_list {
|
|
Some(bindings_list)
|
|
if !bindings_list.contains_key(atom) => {
|
|
let last_rib = (*self.value_ribs).last();
|
|
last_rib.bindings.insert(atom,
|
|
dl_def(def));
|
|
bindings_list.insert(atom, pat_id);
|
|
}
|
|
Some(b) => {
|
|
if b.find(atom) == Some(pat_id) {
|
|
// Then this is a duplicate variable
|
|
// in the same disjunct, which is an
|
|
// error
|
|
self.session.span_err(pattern.span,
|
|
fmt!("Identifier %s is bound more \
|
|
than once in the same pattern",
|
|
path_to_str(path, self.session
|
|
.intr())));
|
|
}
|
|
// Not bound in the same pattern: do nothing
|
|
}
|
|
None => {
|
|
let last_rib = (*self.value_ribs).last();
|
|
last_rib.bindings.insert(atom,
|
|
dl_def(def));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check the types in the path pattern.
|
|
for path.types.each |ty| {
|
|
self.resolve_type(*ty, visitor);
|
|
}
|
|
}
|
|
|
|
pat_ident(_, path, _) | pat_enum(path, _) => {
|
|
// These two must be enum variants.
|
|
match self.resolve_path(path, ValueNS, false, visitor) {
|
|
Some(def @ def_variant(*)) => {
|
|
self.record_def(pattern.id, def);
|
|
}
|
|
Some(_) => {
|
|
self.session.span_err(
|
|
path.span,
|
|
fmt!("not an enum variant: %s",
|
|
self.session.str_of(
|
|
path.idents.last())));
|
|
}
|
|
None => {
|
|
self.session.span_err(path.span,
|
|
~"unresolved enum variant");
|
|
}
|
|
}
|
|
|
|
// Check the types in the path pattern.
|
|
for path.types.each |ty| {
|
|
self.resolve_type(*ty, visitor);
|
|
}
|
|
}
|
|
|
|
pat_lit(expr) => {
|
|
self.resolve_expr(expr, visitor);
|
|
}
|
|
|
|
pat_range(first_expr, last_expr) => {
|
|
self.resolve_expr(first_expr, visitor);
|
|
self.resolve_expr(last_expr, visitor);
|
|
}
|
|
|
|
pat_struct(path, _, _) => {
|
|
match self.resolve_path(path, TypeNS, false, visitor) {
|
|
Some(def_ty(class_id))
|
|
if self.structs.contains_key(class_id) => {
|
|
let has_constructor = self.structs.get(class_id);
|
|
let class_def = def_class(class_id,
|
|
has_constructor);
|
|
self.record_def(pattern.id, class_def);
|
|
}
|
|
Some(definition @ def_variant(_, variant_id))
|
|
if self.structs.contains_key(variant_id) => {
|
|
self.record_def(pattern.id, definition);
|
|
}
|
|
_ => {
|
|
self.session.span_err(
|
|
path.span,
|
|
fmt!("`%s` does not name a structure",
|
|
connect(path.idents.map(
|
|
|x| self.session.str_of(*x)),
|
|
~"::")));
|
|
}
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_enum_variant_or_const(name: Atom)
|
|
-> EnumVariantOrConstResolution {
|
|
|
|
match self.resolve_item_in_lexical_scope(self.current_module,
|
|
name,
|
|
ValueNS) {
|
|
|
|
Success(target) => {
|
|
match target.bindings.value_def {
|
|
None => {
|
|
fail ~"resolved name in the value namespace to a set \
|
|
of name bindings with no def?!";
|
|
}
|
|
Some(def) => {
|
|
match def.def {
|
|
def @ def_variant(*) => {
|
|
return FoundEnumVariant(def);
|
|
}
|
|
def_const(*) => {
|
|
return FoundConst;
|
|
}
|
|
_ => {
|
|
return EnumVariantOrConstNotFound;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Indeterminate => {
|
|
fail ~"unexpected indeterminate result";
|
|
}
|
|
|
|
Failed => {
|
|
return EnumVariantOrConstNotFound;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* If `check_ribs` is true, checks the local definitions first; i.e.
|
|
* doesn't skip straight to the containing module.
|
|
*/
|
|
fn resolve_path(path: @path, namespace: Namespace, check_ribs: bool,
|
|
visitor: ResolveVisitor)
|
|
-> Option<def> {
|
|
|
|
// First, resolve the types.
|
|
for path.types.each |ty| {
|
|
self.resolve_type(*ty, visitor);
|
|
}
|
|
|
|
if path.global {
|
|
return self.resolve_crate_relative_path(path,
|
|
self.xray_context,
|
|
namespace);
|
|
}
|
|
|
|
if path.idents.len() > 1u {
|
|
return self.resolve_module_relative_path(path,
|
|
self.xray_context,
|
|
namespace);
|
|
}
|
|
|
|
return self.resolve_identifier(path.idents.last(),
|
|
namespace,
|
|
check_ribs,
|
|
path.span);
|
|
}
|
|
|
|
fn resolve_identifier(identifier: ident,
|
|
namespace: Namespace,
|
|
check_ribs: bool,
|
|
span: span)
|
|
-> Option<def> {
|
|
|
|
if check_ribs {
|
|
match self.resolve_identifier_in_local_ribs(identifier,
|
|
namespace,
|
|
span) {
|
|
Some(def) => {
|
|
return Some(def);
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
return self.resolve_item_by_identifier_in_lexical_scope(identifier,
|
|
namespace);
|
|
}
|
|
|
|
// XXX: Merge me with resolve_name_in_module?
|
|
fn resolve_definition_of_name_in_module(containing_module: @Module,
|
|
name: Atom,
|
|
namespace: Namespace,
|
|
xray: XrayFlag)
|
|
-> NameDefinition {
|
|
|
|
if xray == NoXray && !self.name_is_exported(containing_module, name) {
|
|
debug!("(resolving definition of name in module) name `%s` is \
|
|
unexported",
|
|
self.session.str_of(name));
|
|
return NoNameDefinition;
|
|
}
|
|
|
|
// First, search children.
|
|
match containing_module.children.find(name) {
|
|
Some(child_name_bindings) => {
|
|
match (*child_name_bindings).def_for_namespace(namespace) {
|
|
Some(def) if def.privacy == Public || xray == Xray => {
|
|
// Found it. Stop the search here.
|
|
return ChildNameDefinition(def.def);
|
|
}
|
|
Some(_) | None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
|
|
// Next, search import resolutions.
|
|
match containing_module.import_resolutions.find(name) {
|
|
Some(import_resolution) => {
|
|
match (*import_resolution).target_for_namespace(namespace) {
|
|
Some(target) => {
|
|
match (*target.bindings)
|
|
.def_for_namespace(namespace) {
|
|
Some(def) if def.privacy == Public => {
|
|
// Found it.
|
|
import_resolution.used = true;
|
|
return ImportNameDefinition(def.def);
|
|
}
|
|
Some(_) | None => {
|
|
// This can happen with external impls, due to
|
|
// the imperfect way we read the metadata.
|
|
|
|
return NoNameDefinition;
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
return NoNameDefinition;
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
return NoNameDefinition;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn intern_module_part_of_path(path: @path) -> @DVec<Atom> {
|
|
let module_path_atoms = @DVec();
|
|
for path.idents.eachi |index, ident| {
|
|
if index == path.idents.len() - 1u {
|
|
break;
|
|
}
|
|
|
|
(*module_path_atoms).push(*ident);
|
|
}
|
|
|
|
return module_path_atoms;
|
|
}
|
|
|
|
fn resolve_module_relative_path(path: @path,
|
|
+xray: XrayFlag,
|
|
namespace: Namespace)
|
|
-> Option<def> {
|
|
|
|
let module_path_atoms = self.intern_module_part_of_path(path);
|
|
|
|
let mut containing_module;
|
|
match self.resolve_module_path_for_import(self.current_module,
|
|
module_path_atoms,
|
|
xray,
|
|
path.span) {
|
|
|
|
Failed => {
|
|
self.session.span_err(path.span,
|
|
fmt!("use of undeclared module `%s`",
|
|
self.atoms_to_str(
|
|
(*module_path_atoms).get())));
|
|
return None;
|
|
}
|
|
|
|
Indeterminate => {
|
|
fail ~"indeterminate unexpected";
|
|
}
|
|
|
|
Success(resulting_module) => {
|
|
containing_module = resulting_module;
|
|
}
|
|
}
|
|
|
|
let name = path.idents.last();
|
|
match self.resolve_definition_of_name_in_module(containing_module,
|
|
name,
|
|
namespace,
|
|
xray) {
|
|
NoNameDefinition => {
|
|
// We failed to resolve the name. Report an error.
|
|
return None;
|
|
}
|
|
ChildNameDefinition(def) | ImportNameDefinition(def) => {
|
|
return Some(def);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_crate_relative_path(path: @path,
|
|
+xray: XrayFlag,
|
|
namespace: Namespace)
|
|
-> Option<def> {
|
|
|
|
let module_path_atoms = self.intern_module_part_of_path(path);
|
|
|
|
let root_module = (*self.graph_root).get_module();
|
|
|
|
let mut containing_module;
|
|
match self.resolve_module_path_from_root(root_module,
|
|
module_path_atoms,
|
|
0u,
|
|
xray,
|
|
path.span) {
|
|
|
|
Failed => {
|
|
self.session.span_err(path.span,
|
|
fmt!("use of undeclared module `::%s`",
|
|
self.atoms_to_str
|
|
((*module_path_atoms).get())));
|
|
return None;
|
|
}
|
|
|
|
Indeterminate => {
|
|
fail ~"indeterminate unexpected";
|
|
}
|
|
|
|
Success(resulting_module) => {
|
|
containing_module = resulting_module;
|
|
}
|
|
}
|
|
|
|
let name = path.idents.last();
|
|
match self.resolve_definition_of_name_in_module(containing_module,
|
|
name,
|
|
namespace,
|
|
xray) {
|
|
NoNameDefinition => {
|
|
// We failed to resolve the name. Report an error.
|
|
return None;
|
|
}
|
|
ChildNameDefinition(def) | ImportNameDefinition(def) => {
|
|
return Some(def);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_identifier_in_local_ribs(ident: ident,
|
|
namespace: Namespace,
|
|
span: span)
|
|
-> Option<def> {
|
|
// Check the local set of ribs.
|
|
let mut search_result;
|
|
match namespace {
|
|
ValueNS => {
|
|
search_result = self.search_ribs(self.value_ribs, ident, span,
|
|
DontAllowCapturingSelf);
|
|
}
|
|
TypeNS => {
|
|
search_result = self.search_ribs(self.type_ribs, ident, span,
|
|
AllowCapturingSelf);
|
|
}
|
|
ModuleNS => {
|
|
fail ~"module namespaces do not have local ribs";
|
|
}
|
|
}
|
|
|
|
match copy search_result {
|
|
Some(dl_def(def)) => {
|
|
debug!("(resolving path in local ribs) resolved `%s` to \
|
|
local: %?",
|
|
self.session.str_of(ident),
|
|
def);
|
|
return Some(def);
|
|
}
|
|
Some(dl_field) | Some(dl_impl(_)) | None => {
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_item_by_identifier_in_lexical_scope(ident: ident,
|
|
namespace: Namespace)
|
|
-> Option<def> {
|
|
|
|
// Check the items.
|
|
match self.resolve_item_in_lexical_scope(self.current_module,
|
|
ident,
|
|
namespace) {
|
|
|
|
Success(target) => {
|
|
match (*target.bindings).def_for_namespace(namespace) {
|
|
None => {
|
|
fail ~"resolved name in a namespace to a set of name \
|
|
bindings with no def for that namespace?!";
|
|
}
|
|
Some(def) => {
|
|
debug!("(resolving item path in lexical scope) \
|
|
resolved `%s` to item",
|
|
self.session.str_of(ident));
|
|
return Some(def.def);
|
|
}
|
|
}
|
|
}
|
|
Indeterminate => {
|
|
fail ~"unexpected indeterminate result";
|
|
}
|
|
Failed => {
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn name_exists_in_scope_class(name: &str) -> bool {
|
|
let mut i = self.type_ribs.len();
|
|
while i != 0 {
|
|
i -= 1;
|
|
let rib = self.type_ribs.get_elt(i);
|
|
match rib.kind {
|
|
MethodRibKind(node_id, _) =>
|
|
for vec::each(self.crate.node.module.items) |item| {
|
|
if item.id == node_id {
|
|
match item.node {
|
|
item_class(class_def, _) => {
|
|
for vec::each(class_def.fields) |field| {
|
|
match field.node.kind {
|
|
syntax::ast::unnamed_field
|
|
=> {},
|
|
syntax::ast::named_field(ident, _, _)
|
|
=> {
|
|
if str::eq_slice(self.session.str_of(ident),
|
|
name) {
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for vec::each(class_def.methods) |method| {
|
|
if str::eq_slice(self.session.str_of(method.ident),
|
|
name) {
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
},
|
|
_ => {}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
fn resolve_expr(expr: @expr, visitor: ResolveVisitor) {
|
|
// First, record candidate traits for this expression if it could
|
|
// result in the invocation of a method call.
|
|
|
|
self.record_candidate_traits_for_expr_if_necessary(expr);
|
|
|
|
// Next, resolve the node.
|
|
match expr.node {
|
|
// The interpretation of paths depends on whether the path has
|
|
// multiple elements in it or not.
|
|
|
|
expr_path(path) => {
|
|
// This is a local path in the value namespace. Walk through
|
|
// scopes looking for it.
|
|
|
|
match self.resolve_path(path, ValueNS, true, visitor) {
|
|
Some(def) => {
|
|
// Write the result into the def map.
|
|
debug!("(resolving expr) resolved `%s`",
|
|
connect(path.idents.map(
|
|
|x| self.session.str_of(*x)), ~"::"));
|
|
self.record_def(expr.id, def);
|
|
}
|
|
None => {
|
|
let wrong_name =
|
|
connect(path.idents.map(
|
|
|x| self.session.str_of(*x)), ~"::") ;
|
|
if self.name_exists_in_scope_class(wrong_name) {
|
|
self.session.span_err(expr.span,
|
|
fmt!("unresolved name: `%s`. \
|
|
Did you mean: `self.%s`?",
|
|
wrong_name,
|
|
wrong_name));
|
|
}
|
|
else {
|
|
self.session.span_err(expr.span,
|
|
fmt!("unresolved name: %s",
|
|
wrong_name));
|
|
}
|
|
}
|
|
}
|
|
|
|
visit_expr(expr, (), visitor);
|
|
}
|
|
|
|
expr_fn(_, fn_decl, block, capture_clause) |
|
|
expr_fn_block(fn_decl, block, capture_clause) => {
|
|
self.resolve_function(FunctionRibKind(expr.id, block.node.id),
|
|
Some(@fn_decl),
|
|
NoTypeParameters,
|
|
block,
|
|
NoSelfBinding,
|
|
HasCaptureClause(capture_clause),
|
|
visitor);
|
|
}
|
|
|
|
expr_struct(path, _, _) => {
|
|
// Resolve the path to the structure it goes to.
|
|
//
|
|
// XXX: We might want to support explicit type parameters in
|
|
// the path, in which case this gets a little more
|
|
// complicated:
|
|
//
|
|
// 1. Should we go through the ast_path_to_ty() path, which
|
|
// handles typedefs and the like?
|
|
//
|
|
// 2. If so, should programmers be able to write this?
|
|
//
|
|
// class Foo<A> { ... }
|
|
// type Bar<A> = Foo<A>;
|
|
// let bar = Bar { ... } // no type parameters
|
|
|
|
match self.resolve_path(path, TypeNS, false, visitor) {
|
|
Some(def_ty(class_id)) | Some(def_class(class_id, _))
|
|
if self.structs.contains_key(class_id) => {
|
|
let has_constructor = self.structs.get(class_id);
|
|
let class_def = def_class(class_id, has_constructor);
|
|
self.record_def(expr.id, class_def);
|
|
}
|
|
Some(definition @ def_variant(_, class_id))
|
|
if self.structs.contains_key(class_id) => {
|
|
self.record_def(expr.id, definition);
|
|
}
|
|
_ => {
|
|
self.session.span_err(
|
|
path.span,
|
|
fmt!("`%s` does not name a structure",
|
|
connect(path.idents.map(
|
|
|x| self.session.str_of(*x)),
|
|
~"::")));
|
|
}
|
|
}
|
|
|
|
visit_expr(expr, (), visitor);
|
|
}
|
|
|
|
expr_loop(_, Some(label)) => {
|
|
do self.with_label_rib {
|
|
let def_like = dl_def(def_label(expr.id));
|
|
self.label_ribs.last().bindings.insert(label, def_like);
|
|
|
|
visit_expr(expr, (), visitor);
|
|
}
|
|
}
|
|
|
|
expr_break(Some(label)) | expr_again(Some(label)) => {
|
|
match self.search_ribs(self.label_ribs, label, expr.span,
|
|
DontAllowCapturingSelf) {
|
|
None =>
|
|
self.session.span_err(expr.span,
|
|
fmt!("use of undeclared label \
|
|
`%s`", self.session.str_of(
|
|
label))),
|
|
Some(dl_def(def @ def_label(_))) =>
|
|
self.record_def(expr.id, def),
|
|
Some(_) =>
|
|
self.session.span_bug(expr.span,
|
|
~"label wasn't mapped to a \
|
|
label def!")
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
visit_expr(expr, (), visitor);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn record_candidate_traits_for_expr_if_necessary(expr: @expr) {
|
|
match expr.node {
|
|
expr_field(_, ident, _) => {
|
|
let traits = self.search_for_traits_containing_method(ident);
|
|
self.trait_map.insert(expr.id, traits);
|
|
}
|
|
expr_binary(add, _, _) | expr_assign_op(add, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.add_trait);
|
|
}
|
|
expr_binary(subtract, _, _) | expr_assign_op(subtract, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.sub_trait);
|
|
}
|
|
expr_binary(mul, _, _) | expr_assign_op(mul, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.mul_trait);
|
|
}
|
|
expr_binary(div, _, _) | expr_assign_op(div, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.div_trait);
|
|
}
|
|
expr_binary(rem, _, _) | expr_assign_op(rem, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.modulo_trait);
|
|
}
|
|
expr_binary(bitxor, _, _) | expr_assign_op(bitxor, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.bitxor_trait);
|
|
}
|
|
expr_binary(bitand, _, _) | expr_assign_op(bitand, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.bitand_trait);
|
|
}
|
|
expr_binary(bitor, _, _) | expr_assign_op(bitor, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.bitor_trait);
|
|
}
|
|
expr_binary(shl, _, _) | expr_assign_op(shl, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.shl_trait);
|
|
}
|
|
expr_binary(shr, _, _) | expr_assign_op(shr, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.shr_trait);
|
|
}
|
|
expr_binary(lt, _, _) | expr_binary(le, _, _) |
|
|
expr_binary(ge, _, _) | expr_binary(gt, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.ord_trait);
|
|
}
|
|
expr_binary(eq, _, _) | expr_binary(ne, _, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.eq_trait);
|
|
}
|
|
expr_unary(neg, _) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.neg_trait);
|
|
}
|
|
expr_index(*) => {
|
|
self.add_fixed_trait_for_expr(expr.id,
|
|
self.lang_items.index_trait);
|
|
}
|
|
_ => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
}
|
|
|
|
fn search_for_traits_containing_method(name: Atom) -> @DVec<def_id> {
|
|
let found_traits = @DVec();
|
|
let mut search_module = self.current_module;
|
|
loop {
|
|
// Look for the current trait.
|
|
match copy self.current_trait_refs {
|
|
Some(trait_def_ids) => {
|
|
for trait_def_ids.each |trait_def_id| {
|
|
self.add_trait_info_if_containing_method
|
|
(found_traits, *trait_def_id, name);
|
|
}
|
|
}
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
|
|
// Look for trait children.
|
|
for search_module.children.each |_name, child_name_bindings| {
|
|
match child_name_bindings.def_for_namespace(TypeNS) {
|
|
Some(def) => {
|
|
match def.def {
|
|
def_ty(trait_def_id) => {
|
|
self.add_trait_info_if_containing_method
|
|
(found_traits, trait_def_id, name);
|
|
}
|
|
_ => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for imports.
|
|
for search_module.import_resolutions.each
|
|
|_atom, import_resolution| {
|
|
|
|
match import_resolution.target_for_namespace(TypeNS) {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(target) => {
|
|
match target.bindings.def_for_namespace(TypeNS) {
|
|
Some(def) => {
|
|
match def.def {
|
|
def_ty(trait_def_id) => {
|
|
self.
|
|
add_trait_info_if_containing_method
|
|
(found_traits, trait_def_id, name);
|
|
}
|
|
_ => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Move to the next parent.
|
|
match search_module.parent_link {
|
|
NoParentLink => {
|
|
// Done.
|
|
break;
|
|
}
|
|
ModuleParentLink(parent_module, _) |
|
|
BlockParentLink(parent_module, _) => {
|
|
search_module = parent_module;
|
|
}
|
|
}
|
|
}
|
|
|
|
return found_traits;
|
|
}
|
|
|
|
fn add_trait_info_if_containing_method(found_traits: @DVec<def_id>,
|
|
trait_def_id: def_id,
|
|
name: Atom) {
|
|
|
|
match self.trait_info.find(trait_def_id) {
|
|
Some(trait_info) if trait_info.contains_key(name) => {
|
|
debug!("(adding trait info if containing method) found trait \
|
|
%d:%d for method '%s'",
|
|
trait_def_id.crate,
|
|
trait_def_id.node,
|
|
self.session.str_of(name));
|
|
(*found_traits).push(trait_def_id);
|
|
}
|
|
Some(_) | None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
fn add_fixed_trait_for_expr(expr_id: node_id, +trait_id: Option<def_id>) {
|
|
let traits = @DVec();
|
|
traits.push(trait_id.get());
|
|
self.trait_map.insert(expr_id, traits);
|
|
}
|
|
|
|
fn record_def(node_id: node_id, def: def) {
|
|
debug!("(recording def) recording %? for %?", def, node_id);
|
|
self.def_map.insert(node_id, def);
|
|
}
|
|
|
|
//
|
|
// Unused import checking
|
|
//
|
|
// Although this is a lint pass, it lives in here because it depends on
|
|
// resolve data structures.
|
|
//
|
|
|
|
fn check_for_unused_imports_if_necessary() {
|
|
if self.unused_import_lint_level == allow {
|
|
return;
|
|
}
|
|
|
|
let root_module = (*self.graph_root).get_module();
|
|
self.check_for_unused_imports_in_module_subtree(root_module);
|
|
}
|
|
|
|
fn check_for_unused_imports_in_module_subtree(module_: @Module) {
|
|
// If this isn't a local crate, then bail out. We don't need to check
|
|
// for unused imports in external crates.
|
|
|
|
match module_.def_id {
|
|
Some(def_id) if def_id.crate == local_crate => {
|
|
// OK. Continue.
|
|
}
|
|
None => {
|
|
// Check for unused imports in the root module.
|
|
}
|
|
Some(_) => {
|
|
// Bail out.
|
|
debug!("(checking for unused imports in module subtree) not \
|
|
checking for unused imports for `%s`",
|
|
self.module_to_str(module_));
|
|
return;
|
|
}
|
|
}
|
|
|
|
self.check_for_unused_imports_in_module(module_);
|
|
|
|
for module_.children.each |_atom, child_name_bindings| {
|
|
match (*child_name_bindings).get_module_if_available() {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(child_module) => {
|
|
self.check_for_unused_imports_in_module_subtree
|
|
(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for module_.anonymous_children.each |_node_id, child_module| {
|
|
self.check_for_unused_imports_in_module_subtree(child_module);
|
|
}
|
|
}
|
|
|
|
fn check_for_unused_imports_in_module(module_: @Module) {
|
|
for module_.import_resolutions.each |_name, import_resolution| {
|
|
if !import_resolution.used {
|
|
match self.unused_import_lint_level {
|
|
warn => {
|
|
self.session.span_warn(import_resolution.span,
|
|
~"unused import");
|
|
}
|
|
deny | forbid => {
|
|
self.session.span_err(import_resolution.span,
|
|
~"unused import");
|
|
}
|
|
allow => {
|
|
self.session.span_bug(import_resolution.span,
|
|
~"shouldn't be here if lint \
|
|
is allowed");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Diagnostics
|
|
//
|
|
// Diagnostics are not particularly efficient, because they're rarely
|
|
// hit.
|
|
//
|
|
|
|
/// A somewhat inefficient routine to print out the name of a module.
|
|
fn module_to_str(module_: @Module) -> ~str {
|
|
let atoms = DVec();
|
|
let mut current_module = module_;
|
|
loop {
|
|
match current_module.parent_link {
|
|
NoParentLink => {
|
|
break;
|
|
}
|
|
ModuleParentLink(module_, name) => {
|
|
atoms.push(name);
|
|
current_module = module_;
|
|
}
|
|
BlockParentLink(module_, _) => {
|
|
atoms.push(syntax::parse::token::special_idents::opaque);
|
|
current_module = module_;
|
|
}
|
|
}
|
|
}
|
|
|
|
if atoms.len() == 0u {
|
|
return ~"???";
|
|
}
|
|
|
|
let mut string = ~"";
|
|
let mut i = atoms.len() - 1u;
|
|
loop {
|
|
if i < atoms.len() - 1u {
|
|
string += ~"::";
|
|
}
|
|
string += self.session.str_of(atoms.get_elt(i));
|
|
|
|
if i == 0u {
|
|
break;
|
|
}
|
|
i -= 1u;
|
|
}
|
|
|
|
return string;
|
|
}
|
|
|
|
fn dump_module(module_: @Module) {
|
|
debug!("Dump of module `%s`:", self.module_to_str(module_));
|
|
|
|
debug!("Children:");
|
|
for module_.children.each |name, _child| {
|
|
debug!("* %s", self.session.str_of(name));
|
|
}
|
|
|
|
debug!("Import resolutions:");
|
|
for module_.import_resolutions.each |name, import_resolution| {
|
|
let mut module_repr;
|
|
match (*import_resolution).target_for_namespace(ModuleNS) {
|
|
None => { module_repr = ~""; }
|
|
Some(_) => {
|
|
module_repr = ~" module:?";
|
|
// XXX
|
|
}
|
|
}
|
|
|
|
let mut value_repr;
|
|
match (*import_resolution).target_for_namespace(ValueNS) {
|
|
None => { value_repr = ~""; }
|
|
Some(_) => {
|
|
value_repr = ~" value:?";
|
|
// XXX
|
|
}
|
|
}
|
|
|
|
let mut type_repr;
|
|
match (*import_resolution).target_for_namespace(TypeNS) {
|
|
None => { type_repr = ~""; }
|
|
Some(_) => {
|
|
type_repr = ~" type:?";
|
|
// XXX
|
|
}
|
|
}
|
|
|
|
debug!("* %s:%s%s%s",
|
|
self.session.str_of(name),
|
|
module_repr, value_repr, type_repr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Entry point to crate resolution.
|
|
fn resolve_crate(session: session, lang_items: LanguageItems, crate: @crate)
|
|
-> { def_map: DefMap,
|
|
exp_map2: ExportMap2,
|
|
trait_map: TraitMap } {
|
|
|
|
let resolver = @Resolver(session, lang_items, crate);
|
|
resolver.resolve(resolver);
|
|
return {
|
|
def_map: resolver.def_map,
|
|
exp_map2: resolver.export_map2,
|
|
trait_map: resolver.trait_map
|
|
};
|
|
}
|
|
|