rust/src/librustc/middle/trans/closure.rs
Kevin Butler 09fc34066b librustc: Fix snake case errors.
A number of functions/methods have been moved or renamed to align
better with rust standard conventions.

rustc:🔙🔗:WriteOutputFile => write_output_file
rustc::middle::ty::EmptyBuiltinBounds => empty_builtin_bounds
rustc::middle::ty::AllBuiltinBounds => all_builtin_bounds
rustc::middle::liveness::IrMaps => IrMaps::new
rustc::middle::liveness::Liveness => Liveness::new
rustc::middle::resolve::NameBindings => NameBindings::new
rustc::middle::resolve::PrimitiveTypeTable => PrimitiveTypeTable::new
rustc::middle::resolve::Resolver => Resolver::new
rustc::middle::trans::datum::Datum => Datum::new
rustc::middle::trans::datum::DatumBlock => DatumBlock::new
rustc::middle::trans::datum::Rvalue => Rvalue::new
rustc::middle::typeck::infer::new_ValsAndBindings => ::infer::unify::ValsAndBindings::new
rustc::middle::typeck::infer::region_inference::RegionVarBindings => RegionVarBindings::new

[breaking-change]
2014-05-30 17:55:42 +01:00

465 lines
17 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::abi;
use back::link::mangle_internal_name_by_path_and_seq;
use driver::config::FullDebugInfo;
use lib::llvm::ValueRef;
use middle::freevars;
use middle::lang_items::ClosureExchangeMallocFnLangItem;
use middle::trans::base::*;
use middle::trans::build::*;
use middle::trans::common::*;
use middle::trans::datum::{Datum, DatumBlock, Expr, Lvalue, rvalue_scratch_datum};
use middle::trans::debuginfo;
use middle::trans::expr;
use middle::trans::machine::llsize_of;
use middle::trans::type_of::*;
use middle::trans::type_::Type;
use middle::ty;
use util::ppaux::Repr;
use util::ppaux::ty_to_str;
use arena::TypedArena;
use syntax::ast;
use syntax::ast_util;
// ___Good to know (tm)__________________________________________________
//
// The layout of a closure environment in memory is
// roughly as follows:
//
// struct rust_opaque_box { // see rust_internal.h
// unsigned ref_count; // obsolete (part of @T's header)
// fn(void*) *drop_glue; // destructor (for proc)
// rust_opaque_box *prev; // obsolete (part of @T's header)
// rust_opaque_box *next; // obsolete (part of @T's header)
// struct closure_data {
// upvar1_t upvar1;
// ...
// upvarN_t upvarN;
// }
// };
//
// Note that the closure is itself a rust_opaque_box. This is true
// even for ~fn and ||, because we wish to keep binary compatibility
// between all kinds of closures. The allocation strategy for this
// closure depends on the closure type. For a sendfn, the closure
// (and the referenced type descriptors) will be allocated in the
// exchange heap. For a fn, the closure is allocated in the task heap
// and is reference counted. For a block, the closure is allocated on
// the stack.
//
// ## Opaque closures and the embedded type descriptor ##
//
// One interesting part of closures is that they encapsulate the data
// that they close over. So when I have a ptr to a closure, I do not
// know how many type descriptors it contains nor what upvars are
// captured within. That means I do not know precisely how big it is
// nor where its fields are located. This is called an "opaque
// closure".
//
// Typically an opaque closure suffices because we only manipulate it
// by ptr. The routine Type::at_box().ptr_to() returns an appropriate
// type for such an opaque closure; it allows access to the box fields,
// but not the closure_data itself.
//
// But sometimes, such as when cloning or freeing a closure, we need
// to know the full information. That is where the type descriptor
// that defines the closure comes in handy. We can use its take and
// drop glue functions to allocate/free data as needed.
//
// ## Subtleties concerning alignment ##
//
// It is important that we be able to locate the closure data *without
// knowing the kind of data that is being bound*. This can be tricky
// because the alignment requirements of the bound data affects the
// alignment requires of the closure_data struct as a whole. However,
// right now this is a non-issue in any case, because the size of the
// rust_opaque_box header is always a multiple of 16-bytes, which is
// the maximum alignment requirement we ever have to worry about.
//
// The only reason alignment matters is that, in order to learn what data
// is bound, we would normally first load the type descriptors: but their
// location is ultimately depend on their content! There is, however, a
// workaround. We can load the tydesc from the rust_opaque_box, which
// describes the closure_data struct and has self-contained derived type
// descriptors, and read the alignment from there. It's just annoying to
// do. Hopefully should this ever become an issue we'll have monomorphized
// and type descriptors will all be a bad dream.
//
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pub struct EnvValue {
action: freevars::CaptureMode,
datum: Datum<Lvalue>
}
impl EnvValue {
pub fn to_str(&self, ccx: &CrateContext) -> String {
format!("{}({})", self.action, self.datum.to_str(ccx))
}
}
// Given a closure ty, emits a corresponding tuple ty
pub fn mk_closure_tys(tcx: &ty::ctxt,
bound_values: &[EnvValue])
-> ty::t {
// determine the types of the values in the env. Note that this
// is the actual types that will be stored in the map, not the
// logical types as the user sees them, so by-ref upvars must be
// converted to ptrs.
let bound_tys = bound_values.iter().map(|bv| {
match bv.action {
freevars::CaptureByValue => bv.datum.ty,
freevars::CaptureByRef => ty::mk_mut_ptr(tcx, bv.datum.ty)
}
}).collect();
let cdata_ty = ty::mk_tup(tcx, bound_tys);
debug!("cdata_ty={}", ty_to_str(tcx, cdata_ty));
return cdata_ty;
}
fn tuplify_box_ty(tcx: &ty::ctxt, t: ty::t) -> ty::t {
let ptr = ty::mk_imm_ptr(tcx, ty::mk_i8());
ty::mk_tup(tcx, vec!(ty::mk_uint(), ty::mk_nil_ptr(tcx), ptr, ptr, t))
}
fn allocate_cbox<'a>(bcx: &'a Block<'a>,
store: ty::TraitStore,
cdata_ty: ty::t)
-> Result<'a> {
let _icx = push_ctxt("closure::allocate_cbox");
let tcx = bcx.tcx();
// Allocate and initialize the box:
match store {
ty::UniqTraitStore => {
let ty = type_of(bcx.ccx(), cdata_ty);
let size = llsize_of(bcx.ccx(), ty);
// we treat proc as @ here, which isn't ideal
malloc_raw_dyn_managed(bcx, cdata_ty, ClosureExchangeMallocFnLangItem, size)
}
ty::RegionTraitStore(..) => {
let cbox_ty = tuplify_box_ty(tcx, cdata_ty);
let llbox = alloc_ty(bcx, cbox_ty, "__closure");
Result::new(bcx, llbox)
}
}
}
pub struct ClosureResult<'a> {
llbox: ValueRef, // llvalue of ptr to closure
cdata_ty: ty::t, // type of the closure data
bcx: &'a Block<'a> // final bcx
}
// Given a block context and a list of tydescs and values to bind
// construct a closure out of them. If copying is true, it is a
// heap allocated closure that copies the upvars into environment.
// Otherwise, it is stack allocated and copies pointers to the upvars.
pub fn store_environment<'a>(
bcx: &'a Block<'a>,
bound_values: Vec<EnvValue> ,
store: ty::TraitStore)
-> ClosureResult<'a> {
let _icx = push_ctxt("closure::store_environment");
let ccx = bcx.ccx();
let tcx = ccx.tcx();
// compute the type of the closure
let cdata_ty = mk_closure_tys(tcx, bound_values.as_slice());
// cbox_ty has the form of a tuple: (a, b, c) we want a ptr to a
// tuple. This could be a ptr in uniq or a box or on stack,
// whatever.
let cbox_ty = tuplify_box_ty(tcx, cdata_ty);
let cboxptr_ty = ty::mk_ptr(tcx, ty::mt {ty:cbox_ty, mutbl:ast::MutImmutable});
let llboxptr_ty = type_of(ccx, cboxptr_ty);
// If there are no bound values, no point in allocating anything.
if bound_values.is_empty() {
return ClosureResult {llbox: C_null(llboxptr_ty),
cdata_ty: cdata_ty,
bcx: bcx};
}
// allocate closure in the heap
let Result {bcx: bcx, val: llbox} = allocate_cbox(bcx, store, cdata_ty);
let llbox = PointerCast(bcx, llbox, llboxptr_ty);
debug!("tuplify_box_ty = {}", ty_to_str(tcx, cbox_ty));
// Copy expr values into boxed bindings.
let mut bcx = bcx;
for (i, bv) in bound_values.move_iter().enumerate() {
debug!("Copy {} into closure", bv.to_str(ccx));
if ccx.sess().asm_comments() {
add_comment(bcx, format!("Copy {} into closure",
bv.to_str(ccx)).as_slice());
}
let bound_data = GEPi(bcx, llbox, [0u, abi::box_field_body, i]);
match bv.action {
freevars::CaptureByValue => {
bcx = bv.datum.store_to(bcx, bound_data);
}
freevars::CaptureByRef => {
Store(bcx, bv.datum.to_llref(), bound_data);
}
}
}
ClosureResult { llbox: llbox, cdata_ty: cdata_ty, bcx: bcx }
}
// Given a context and a list of upvars, build a closure. This just
// collects the upvars and packages them up for store_environment.
fn build_closure<'a>(bcx0: &'a Block<'a>,
freevar_mode: freevars::CaptureMode,
freevars: &Vec<freevars::freevar_entry>,
store: ty::TraitStore)
-> ClosureResult<'a>
{
let _icx = push_ctxt("closure::build_closure");
// If we need to, package up the iterator body to call
let bcx = bcx0;
// Package up the captured upvars
let mut env_vals = Vec::new();
for freevar in freevars.iter() {
let datum = expr::trans_local_var(bcx, freevar.def);
env_vals.push(EnvValue {action: freevar_mode, datum: datum});
}
store_environment(bcx, env_vals, store)
}
// Given an enclosing block context, a new function context, a closure type,
// and a list of upvars, generate code to load and populate the environment
// with the upvars and type descriptors.
fn load_environment<'a>(bcx: &'a Block<'a>,
cdata_ty: ty::t,
freevars: &Vec<freevars::freevar_entry>,
store: ty::TraitStore)
-> &'a Block<'a> {
let _icx = push_ctxt("closure::load_environment");
// Don't bother to create the block if there's nothing to load
if freevars.len() == 0 {
return bcx;
}
// Load a pointer to the closure data, skipping over the box header:
let llcdata = at_box_body(bcx, cdata_ty, bcx.fcx.llenv.unwrap());
// Store the pointer to closure data in an alloca for debug info because that's what the
// llvm.dbg.declare intrinsic expects
let env_pointer_alloca = if bcx.sess().opts.debuginfo == FullDebugInfo {
let alloc = alloc_ty(bcx, ty::mk_mut_ptr(bcx.tcx(), cdata_ty), "__debuginfo_env_ptr");
Store(bcx, llcdata, alloc);
Some(alloc)
} else {
None
};
// Populate the upvars from the environment
let mut i = 0u;
for freevar in freevars.iter() {
let mut upvarptr = GEPi(bcx, llcdata, [0u, i]);
match store {
ty::RegionTraitStore(..) => { upvarptr = Load(bcx, upvarptr); }
ty::UniqTraitStore => {}
}
let def_id = ast_util::def_id_of_def(freevar.def);
bcx.fcx.llupvars.borrow_mut().insert(def_id.node, upvarptr);
for &env_pointer_alloca in env_pointer_alloca.iter() {
debuginfo::create_captured_var_metadata(
bcx,
def_id.node,
cdata_ty,
env_pointer_alloca,
i,
store,
freevar.span);
}
i += 1u;
}
bcx
}
fn fill_fn_pair(bcx: &Block, pair: ValueRef, llfn: ValueRef, llenvptr: ValueRef) {
Store(bcx, llfn, GEPi(bcx, pair, [0u, abi::fn_field_code]));
let llenvptr = PointerCast(bcx, llenvptr, Type::i8p(bcx.ccx()));
Store(bcx, llenvptr, GEPi(bcx, pair, [0u, abi::fn_field_box]));
}
pub fn trans_expr_fn<'a>(
bcx: &'a Block<'a>,
store: ty::TraitStore,
decl: &ast::FnDecl,
body: &ast::Block,
id: ast::NodeId,
dest: expr::Dest)
-> &'a Block<'a> {
/*!
*
* Translates the body of a closure expression.
*
* - `store`
* - `decl`
* - `body`
* - `id`: The id of the closure expression.
* - `cap_clause`: information about captured variables, if any.
* - `dest`: where to write the closure value, which must be a
(fn ptr, env) pair
*/
let _icx = push_ctxt("closure::trans_expr_fn");
let dest_addr = match dest {
expr::SaveIn(p) => p,
expr::Ignore => {
return bcx; // closure construction is non-side-effecting
}
};
let ccx = bcx.ccx();
let tcx = bcx.tcx();
let fty = node_id_type(bcx, id);
let s = tcx.map.with_path(id, |path| {
mangle_internal_name_by_path_and_seq(path, "closure")
});
let llfn = decl_internal_rust_fn(ccx, fty, s.as_slice());
// set an inline hint for all closures
set_inline_hint(llfn);
let freevar_mode = freevars::get_capture_mode(tcx, id);
let freevars: Vec<freevars::freevar_entry> =
freevars::with_freevars(
tcx, id,
|fv| fv.iter().map(|&fv| fv).collect());
let ClosureResult {llbox, cdata_ty, bcx} =
build_closure(bcx, freevar_mode, &freevars, store);
trans_closure(ccx, decl, body, llfn,
bcx.fcx.param_substs, id,
[], ty::ty_fn_ret(fty),
|bcx| load_environment(bcx, cdata_ty, &freevars, store));
fill_fn_pair(bcx, dest_addr, llfn, llbox);
bcx
}
pub fn get_wrapper_for_bare_fn(ccx: &CrateContext,
closure_ty: ty::t,
def: ast::Def,
fn_ptr: ValueRef,
is_local: bool) -> ValueRef {
let def_id = match def {
ast::DefFn(did, _) | ast::DefStaticMethod(did, _, _) |
ast::DefVariant(_, did, _) | ast::DefStruct(did) => did,
_ => {
ccx.sess().bug(format!("get_wrapper_for_bare_fn: \
expected a statically resolved fn, got \
{:?}",
def).as_slice());
}
};
match ccx.closure_bare_wrapper_cache.borrow().find(&fn_ptr) {
Some(&llval) => return llval,
None => {}
}
let tcx = ccx.tcx();
debug!("get_wrapper_for_bare_fn(closure_ty={})", closure_ty.repr(tcx));
let f = match ty::get(closure_ty).sty {
ty::ty_closure(ref f) => f,
_ => {
ccx.sess().bug(format!("get_wrapper_for_bare_fn: \
expected a closure ty, got {}",
closure_ty.repr(tcx)).as_slice());
}
};
let name = ty::with_path(tcx, def_id, |path| {
mangle_internal_name_by_path_and_seq(path, "as_closure")
});
let llfn = if is_local {
decl_internal_rust_fn(ccx, closure_ty, name.as_slice())
} else {
decl_rust_fn(ccx, closure_ty, name.as_slice())
};
ccx.closure_bare_wrapper_cache.borrow_mut().insert(fn_ptr, llfn);
// This is only used by statics inlined from a different crate.
if !is_local {
// Don't regenerate the wrapper, just reuse the original one.
return llfn;
}
let _icx = push_ctxt("closure::get_wrapper_for_bare_fn");
let arena = TypedArena::new();
let fcx = new_fn_ctxt(ccx, llfn, -1, true, f.sig.output, None, None, &arena);
init_function(&fcx, true, f.sig.output);
let bcx = fcx.entry_bcx.borrow().clone().unwrap();
let args = create_datums_for_fn_args(&fcx,
ty::ty_fn_args(closure_ty)
.as_slice());
let mut llargs = Vec::new();
match fcx.llretptr.get() {
Some(llretptr) => {
llargs.push(llretptr);
}
None => {}
}
llargs.extend(args.iter().map(|arg| arg.val));
let retval = Call(bcx, fn_ptr, llargs.as_slice(), []);
if type_is_zero_size(ccx, f.sig.output) || fcx.llretptr.get().is_some() {
RetVoid(bcx);
} else {
Ret(bcx, retval);
}
// HACK(eddyb) finish_fn cannot be used here, we returned directly.
debuginfo::clear_source_location(&fcx);
fcx.cleanup();
llfn
}
pub fn make_closure_from_bare_fn<'a>(bcx: &'a Block<'a>,
closure_ty: ty::t,
def: ast::Def,
fn_ptr: ValueRef)
-> DatumBlock<'a, Expr> {
let scratch = rvalue_scratch_datum(bcx, closure_ty, "__adjust");
let wrapper = get_wrapper_for_bare_fn(bcx.ccx(), closure_ty, def, fn_ptr, true);
fill_fn_pair(bcx, scratch.val, wrapper, C_null(Type::i8p(bcx.ccx())));
DatumBlock::new(bcx, scratch.to_expr_datum())
}