rust/src/librustc_trans/trans/expr.rs
Niko Matsakis 096a28607f librustc: Make Copy opt-in.
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.

A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.

For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.

This breaks code like:

    #[deriving(Show)]
    struct Point2D {
        x: int,
        y: int,
    }

    fn main() {
        let mypoint = Point2D {
            x: 1,
            y: 1,
        };
        let otherpoint = mypoint;
        println!("{}{}", mypoint, otherpoint);
    }

Change this code to:

    #[deriving(Show)]
    struct Point2D {
        x: int,
        y: int,
    }

    impl Copy for Point2D {}

    fn main() {
        let mypoint = Point2D {
            x: 1,
            y: 1,
        };
        let otherpoint = mypoint;
        println!("{}{}", mypoint, otherpoint);
    }

This is the backwards-incompatible part of #13231.

Part of RFC #3.

[breaking-change]
2014-12-08 13:47:44 -05:00

2222 lines
89 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! # Translation of Expressions
//!
//! Public entry points:
//!
//! - `trans_into(bcx, expr, dest) -> bcx`: evaluates an expression,
//! storing the result into `dest`. This is the preferred form, if you
//! can manage it.
//!
//! - `trans(bcx, expr) -> DatumBlock`: evaluates an expression, yielding
//! `Datum` with the result. You can then store the datum, inspect
//! the value, etc. This may introduce temporaries if the datum is a
//! structural type.
//!
//! - `trans_to_lvalue(bcx, expr, "...") -> DatumBlock`: evaluates an
//! expression and ensures that the result has a cleanup associated with it,
//! creating a temporary stack slot if necessary.
//!
//! - `trans_local_var -> Datum`: looks up a local variable or upvar.
//!
//! See doc.rs for more comments.
#![allow(non_camel_case_types)]
pub use self::cast_kind::*;
pub use self::Dest::*;
use self::lazy_binop_ty::*;
use back::abi;
use llvm::{mod, ValueRef};
use middle::def;
use middle::mem_categorization::Typer;
use middle::subst::{mod, Subst};
use trans::{_match, adt, asm, base, callee, closure, consts, controlflow};
use trans::base::*;
use trans::build::*;
use trans::cleanup::{mod, CleanupMethods};
use trans::common::*;
use trans::datum::*;
use trans::debuginfo;
use trans::glue;
use trans::machine;
use trans::meth;
use trans::inline;
use trans::tvec;
use trans::type_of;
use middle::ty::{struct_fields, tup_fields};
use middle::ty::{AdjustDerefRef, AdjustAddEnv, AutoUnsafe};
use middle::ty::{AutoPtr};
use middle::ty::{mod, Ty};
use middle::ty::MethodCall;
use util::common::indenter;
use util::ppaux::Repr;
use trans::machine::{llsize_of, llsize_of_alloc};
use trans::type_::Type;
use syntax::{ast, ast_util, codemap};
use syntax::print::pprust::{expr_to_string};
use syntax::ptr::P;
use std::rc::Rc;
// Destinations
// These are passed around by the code generating functions to track the
// destination of a computation's value.
#[deriving(PartialEq)]
pub enum Dest {
SaveIn(ValueRef),
Ignore,
}
impl Copy for Dest {}
impl Dest {
pub fn to_string(&self, ccx: &CrateContext) -> String {
match *self {
SaveIn(v) => format!("SaveIn({})", ccx.tn().val_to_string(v)),
Ignore => "Ignore".to_string()
}
}
}
/// This function is equivalent to `trans(bcx, expr).store_to_dest(dest)` but it may generate
/// better optimized LLVM code.
pub fn trans_into<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
dest: Dest)
-> Block<'blk, 'tcx> {
let mut bcx = bcx;
if bcx.tcx().adjustments.borrow().contains_key(&expr.id) {
// use trans, which may be less efficient but
// which will perform the adjustments:
let datum = unpack_datum!(bcx, trans(bcx, expr));
return datum.store_to_dest(bcx, dest, expr.id)
}
debug!("trans_into() expr={}", expr.repr(bcx.tcx()));
let cleanup_debug_loc = debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(),
expr.id,
expr.span,
false);
bcx.fcx.push_ast_cleanup_scope(cleanup_debug_loc);
debuginfo::set_source_location(bcx.fcx, expr.id, expr.span);
let kind = ty::expr_kind(bcx.tcx(), expr);
bcx = match kind {
ty::LvalueExpr | ty::RvalueDatumExpr => {
trans_unadjusted(bcx, expr).store_to_dest(dest, expr.id)
}
ty::RvalueDpsExpr => {
trans_rvalue_dps_unadjusted(bcx, expr, dest)
}
ty::RvalueStmtExpr => {
trans_rvalue_stmt_unadjusted(bcx, expr)
}
};
bcx.fcx.pop_and_trans_ast_cleanup_scope(bcx, expr.id)
}
/// Translates an expression, returning a datum (and new block) encapsulating the result. When
/// possible, it is preferred to use `trans_into`, as that may avoid creating a temporary on the
/// stack.
pub fn trans<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr)
-> DatumBlock<'blk, 'tcx, Expr> {
debug!("trans(expr={})", bcx.expr_to_string(expr));
let mut bcx = bcx;
let fcx = bcx.fcx;
let cleanup_debug_loc = debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(),
expr.id,
expr.span,
false);
fcx.push_ast_cleanup_scope(cleanup_debug_loc);
let datum = unpack_datum!(bcx, trans_unadjusted(bcx, expr));
let datum = unpack_datum!(bcx, apply_adjustments(bcx, expr, datum));
bcx = fcx.pop_and_trans_ast_cleanup_scope(bcx, expr.id);
return DatumBlock::new(bcx, datum);
}
pub fn get_len(bcx: Block, fat_ptr: ValueRef) -> ValueRef {
GEPi(bcx, fat_ptr, &[0u, abi::FAT_PTR_EXTRA])
}
pub fn get_dataptr(bcx: Block, fat_ptr: ValueRef) -> ValueRef {
GEPi(bcx, fat_ptr, &[0u, abi::FAT_PTR_ADDR])
}
/// Helper for trans that apply adjustments from `expr` to `datum`, which should be the unadjusted
/// translation of `expr`.
fn apply_adjustments<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
datum: Datum<'tcx, Expr>)
-> DatumBlock<'blk, 'tcx, Expr> {
let mut bcx = bcx;
let mut datum = datum;
let adjustment = match bcx.tcx().adjustments.borrow().get(&expr.id).cloned() {
None => {
return DatumBlock::new(bcx, datum);
}
Some(adj) => { adj }
};
debug!("unadjusted datum for expr {}: {}, adjustment={}",
expr.repr(bcx.tcx()),
datum.to_string(bcx.ccx()),
adjustment.repr(bcx.tcx()));
match adjustment {
AdjustAddEnv(..) => {
datum = unpack_datum!(bcx, add_env(bcx, expr, datum));
}
AdjustDerefRef(ref adj) => {
let (autoderefs, use_autoref) = match adj.autoref {
// Extracting a value from a box counts as a deref, but if we are
// just converting Box<[T, ..n]> to Box<[T]> we aren't really doing
// a deref (and wouldn't if we could treat Box like a normal struct).
Some(ty::AutoUnsizeUniq(..)) => (adj.autoderefs - 1, true),
// We are a bit paranoid about adjustments and thus might have a re-
// borrow here which merely derefs and then refs again (it might have
// a different region or mutability, but we don't care here. It might
// also be just in case we need to unsize. But if there are no nested
// adjustments then it should be a no-op).
Some(ty::AutoPtr(_, _, None)) if adj.autoderefs == 1 => {
match datum.ty.sty {
// Don't skip a conversion from Box<T> to &T, etc.
ty::ty_rptr(..) => {
let method_call = MethodCall::autoderef(expr.id, adj.autoderefs-1);
let method = bcx.tcx().method_map.borrow().get(&method_call).is_some();
if method {
// Don't skip an overloaded deref.
(adj.autoderefs, true)
} else {
(adj.autoderefs - 1, false)
}
}
_ => (adj.autoderefs, true),
}
}
_ => (adj.autoderefs, true)
};
if autoderefs > 0 {
// Schedule cleanup.
let lval = unpack_datum!(bcx, datum.to_lvalue_datum(bcx, "auto_deref", expr.id));
datum = unpack_datum!(
bcx, deref_multiple(bcx, expr, lval.to_expr_datum(), autoderefs));
}
// (You might think there is a more elegant way to do this than a
// use_autoref bool, but then you remember that the borrow checker exists).
if let (true, &Some(ref a)) = (use_autoref, &adj.autoref) {
datum = unpack_datum!(bcx, apply_autoref(a,
bcx,
expr,
datum));
}
}
}
debug!("after adjustments, datum={}", datum.to_string(bcx.ccx()));
return DatumBlock::new(bcx, datum);
fn apply_autoref<'blk, 'tcx>(autoref: &ty::AutoRef<'tcx>,
bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
datum: Datum<'tcx, Expr>)
-> DatumBlock<'blk, 'tcx, Expr> {
let mut bcx = bcx;
let mut datum = datum;
let datum = match autoref {
&AutoPtr(_, _, ref a) | &AutoUnsafe(_, ref a) => {
debug!(" AutoPtr");
match a {
&Some(box ref a) => {
datum = unpack_datum!(bcx, apply_autoref(a, bcx, expr, datum));
}
&None => {}
}
unpack_datum!(bcx, ref_ptr(bcx, expr, datum))
}
&ty::AutoUnsize(ref k) => {
debug!(" AutoUnsize");
unpack_datum!(bcx, unsize_expr(bcx, expr, datum, k))
}
&ty::AutoUnsizeUniq(ty::UnsizeLength(len)) => {
debug!(" AutoUnsizeUniq(UnsizeLength)");
unpack_datum!(bcx, unsize_unique_vec(bcx, expr, datum, len))
}
&ty::AutoUnsizeUniq(ref k) => {
debug!(" AutoUnsizeUniq");
unpack_datum!(bcx, unsize_unique_expr(bcx, expr, datum, k))
}
};
DatumBlock::new(bcx, datum)
}
fn ref_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
datum: Datum<'tcx, Expr>)
-> DatumBlock<'blk, 'tcx, Expr> {
debug!("ref_ptr(expr={}, datum={})",
expr.repr(bcx.tcx()),
datum.to_string(bcx.ccx()));
if !ty::type_is_sized(bcx.tcx(), datum.ty) {
debug!("Taking address of unsized type {}",
bcx.ty_to_string(datum.ty));
ref_fat_ptr(bcx, expr, datum)
} else {
debug!("Taking address of sized type {}",
bcx.ty_to_string(datum.ty));
auto_ref(bcx, datum, expr)
}
}
// Retrieve the information we are losing (making dynamic) in an unsizing
// adjustment.
// When making a dtor, we need to do different things depending on the
// ownership of the object.. mk_ty is a function for turning `unadjusted_ty`
// into a type to be destructed. If we want to end up with a Box pointer,
// then mk_ty should make a Box pointer (T -> Box<T>), if we want a
// borrowed reference then it should be T -> &T.
fn unsized_info<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
kind: &ty::UnsizeKind<'tcx>,
id: ast::NodeId,
unadjusted_ty: Ty<'tcx>,
mk_ty: |Ty<'tcx>| -> Ty<'tcx>) -> ValueRef {
debug!("unsized_info(kind={}, id={}, unadjusted_ty={})",
kind, id, unadjusted_ty.repr(bcx.tcx()));
match kind {
&ty::UnsizeLength(len) => C_uint(bcx.ccx(), len),
&ty::UnsizeStruct(box ref k, tp_index) => match unadjusted_ty.sty {
ty::ty_struct(_, ref substs) => {
let ty_substs = substs.types.get_slice(subst::TypeSpace);
// The dtor for a field treats it like a value, so mk_ty
// should just be the identity function.
unsized_info(bcx, k, id, ty_substs[tp_index], |t| t)
}
_ => bcx.sess().bug(format!("UnsizeStruct with bad sty: {}",
bcx.ty_to_string(unadjusted_ty)).as_slice())
},
&ty::UnsizeVtable(ty::TyTrait { ref principal, .. }, _) => {
let substs = principal.substs.with_self_ty(unadjusted_ty).erase_regions();
let trait_ref =
Rc::new(ty::TraitRef { def_id: principal.def_id,
substs: substs });
let trait_ref = trait_ref.subst(bcx.tcx(), bcx.fcx.param_substs);
let box_ty = mk_ty(unadjusted_ty);
PointerCast(bcx,
meth::get_vtable(bcx, box_ty, trait_ref),
Type::vtable_ptr(bcx.ccx()))
}
}
}
fn unsize_expr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
datum: Datum<'tcx, Expr>,
k: &ty::UnsizeKind<'tcx>)
-> DatumBlock<'blk, 'tcx, Expr> {
let tcx = bcx.tcx();
let datum_ty = datum.ty;
let unsized_ty = ty::unsize_ty(tcx, datum_ty, k, expr.span);
debug!("unsized_ty={}", unsized_ty.repr(bcx.tcx()));
let dest_ty = ty::mk_open(tcx, unsized_ty);
debug!("dest_ty={}", unsized_ty.repr(bcx.tcx()));
// Closures for extracting and manipulating the data and payload parts of
// the fat pointer.
let base = match k {
&ty::UnsizeStruct(..) =>
|bcx, val| PointerCast(bcx,
val,
type_of::type_of(bcx.ccx(), unsized_ty).ptr_to()),
&ty::UnsizeLength(..) =>
|bcx, val| GEPi(bcx, val, &[0u, 0u]),
&ty::UnsizeVtable(..) =>
|_bcx, val| PointerCast(bcx, val, Type::i8p(bcx.ccx()))
};
let info = |bcx, _val| unsized_info(bcx,
k,
expr.id,
datum_ty,
|t| ty::mk_rptr(tcx,
ty::ReStatic,
ty::mt{
ty: t,
mutbl: ast::MutImmutable
}));
into_fat_ptr(bcx, expr, datum, dest_ty, base, info)
}
fn ref_fat_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
datum: Datum<'tcx, Expr>)
-> DatumBlock<'blk, 'tcx, Expr> {
let tcx = bcx.tcx();
let dest_ty = ty::close_type(tcx, datum.ty);
let base = |bcx, val| Load(bcx, get_dataptr(bcx, val));
let len = |bcx, val| Load(bcx, get_len(bcx, val));
into_fat_ptr(bcx, expr, datum, dest_ty, base, len)
}
fn into_fat_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
datum: Datum<'tcx, Expr>,
dest_ty: Ty<'tcx>,
base: |Block<'blk, 'tcx>, ValueRef| -> ValueRef,
info: |Block<'blk, 'tcx>, ValueRef| -> ValueRef)
-> DatumBlock<'blk, 'tcx, Expr> {
let mut bcx = bcx;
// Arrange cleanup
let lval = unpack_datum!(bcx,
datum.to_lvalue_datum(bcx, "into_fat_ptr", expr.id));
let base = base(bcx, lval.val);
let info = info(bcx, lval.val);
let scratch = rvalue_scratch_datum(bcx, dest_ty, "__fat_ptr");
Store(bcx, base, get_dataptr(bcx, scratch.val));
Store(bcx, info, get_len(bcx, scratch.val));
DatumBlock::new(bcx, scratch.to_expr_datum())
}
fn unsize_unique_vec<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
datum: Datum<'tcx, Expr>,
len: uint)
-> DatumBlock<'blk, 'tcx, Expr> {
let mut bcx = bcx;
let tcx = bcx.tcx();
let datum_ty = datum.ty;
// Arrange cleanup
let lval = unpack_datum!(bcx,
datum.to_lvalue_datum(bcx, "unsize_unique_vec", expr.id));
let ll_len = C_uint(bcx.ccx(), len);
let unit_ty = ty::sequence_element_type(tcx, ty::type_content(datum_ty));
let vec_ty = ty::mk_uniq(tcx, ty::mk_vec(tcx, unit_ty, None));
let scratch = rvalue_scratch_datum(bcx, vec_ty, "__unsize_unique");
let base = get_dataptr(bcx, scratch.val);
let base = PointerCast(bcx,
base,
type_of::type_of(bcx.ccx(), datum_ty).ptr_to());
bcx = lval.store_to(bcx, base);
Store(bcx, ll_len, get_len(bcx, scratch.val));
DatumBlock::new(bcx, scratch.to_expr_datum())
}
fn unsize_unique_expr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
datum: Datum<'tcx, Expr>,
k: &ty::UnsizeKind<'tcx>)
-> DatumBlock<'blk, 'tcx, Expr> {
let mut bcx = bcx;
let tcx = bcx.tcx();
let datum_ty = datum.ty;
let unboxed_ty = match datum_ty.sty {
ty::ty_uniq(t) => t,
_ => bcx.sess().bug(format!("Expected ty_uniq, found {}",
bcx.ty_to_string(datum_ty)).as_slice())
};
let result_ty = ty::mk_uniq(tcx, ty::unsize_ty(tcx, unboxed_ty, k, expr.span));
let lval = unpack_datum!(bcx,
datum.to_lvalue_datum(bcx, "unsize_unique_expr", expr.id));
let scratch = rvalue_scratch_datum(bcx, result_ty, "__uniq_fat_ptr");
let llbox_ty = type_of::type_of(bcx.ccx(), datum_ty);
let base = PointerCast(bcx, get_dataptr(bcx, scratch.val), llbox_ty.ptr_to());
bcx = lval.store_to(bcx, base);
let info = unsized_info(bcx, k, expr.id, unboxed_ty, |t| ty::mk_uniq(tcx, t));
Store(bcx, info, get_len(bcx, scratch.val));
let scratch = unpack_datum!(bcx,
scratch.to_expr_datum().to_lvalue_datum(bcx,
"fresh_uniq_fat_ptr",
expr.id));
DatumBlock::new(bcx, scratch.to_expr_datum())
}
fn add_env<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
datum: Datum<'tcx, Expr>)
-> DatumBlock<'blk, 'tcx, Expr> {
// This is not the most efficient thing possible; since closures
// are two words it'd be better if this were compiled in
// 'dest' mode, but I can't find a nice way to structure the
// code and keep it DRY that accommodates that use case at the
// moment.
let closure_ty = expr_ty_adjusted(bcx, expr);
let fn_ptr = datum.to_llscalarish(bcx);
let def = ty::resolve_expr(bcx.tcx(), expr);
closure::make_closure_from_bare_fn(bcx, closure_ty, def, fn_ptr)
}
}
/// Translates an expression in "lvalue" mode -- meaning that it returns a reference to the memory
/// that the expr represents.
///
/// If this expression is an rvalue, this implies introducing a temporary. In other words,
/// something like `x().f` is translated into roughly the equivalent of
///
/// { tmp = x(); tmp.f }
pub fn trans_to_lvalue<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
name: &str)
-> DatumBlock<'blk, 'tcx, Lvalue> {
let mut bcx = bcx;
let datum = unpack_datum!(bcx, trans(bcx, expr));
return datum.to_lvalue_datum(bcx, name, expr.id);
}
/// A version of `trans` that ignores adjustments. You almost certainly do not want to call this
/// directly.
fn trans_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr)
-> DatumBlock<'blk, 'tcx, Expr> {
let mut bcx = bcx;
debug!("trans_unadjusted(expr={})", bcx.expr_to_string(expr));
let _indenter = indenter();
debuginfo::set_source_location(bcx.fcx, expr.id, expr.span);
return match ty::expr_kind(bcx.tcx(), expr) {
ty::LvalueExpr | ty::RvalueDatumExpr => {
let datum = unpack_datum!(bcx, {
trans_datum_unadjusted(bcx, expr)
});
DatumBlock {bcx: bcx, datum: datum}
}
ty::RvalueStmtExpr => {
bcx = trans_rvalue_stmt_unadjusted(bcx, expr);
nil(bcx, expr_ty(bcx, expr))
}
ty::RvalueDpsExpr => {
let ty = expr_ty(bcx, expr);
if type_is_zero_size(bcx.ccx(), ty) {
bcx = trans_rvalue_dps_unadjusted(bcx, expr, Ignore);
nil(bcx, ty)
} else {
let scratch = rvalue_scratch_datum(bcx, ty, "");
bcx = trans_rvalue_dps_unadjusted(
bcx, expr, SaveIn(scratch.val));
// Note: this is not obviously a good idea. It causes
// immediate values to be loaded immediately after a
// return from a call or other similar expression,
// which in turn leads to alloca's having shorter
// lifetimes and hence larger stack frames. However,
// in turn it can lead to more register pressure.
// Still, in practice it seems to increase
// performance, since we have fewer problems with
// morestack churn.
let scratch = unpack_datum!(
bcx, scratch.to_appropriate_datum(bcx));
DatumBlock::new(bcx, scratch.to_expr_datum())
}
}
};
fn nil<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, ty: Ty<'tcx>)
-> DatumBlock<'blk, 'tcx, Expr> {
let llval = C_undef(type_of::type_of(bcx.ccx(), ty));
let datum = immediate_rvalue(llval, ty);
DatumBlock::new(bcx, datum.to_expr_datum())
}
}
fn trans_datum_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr)
-> DatumBlock<'blk, 'tcx, Expr> {
let mut bcx = bcx;
let fcx = bcx.fcx;
let _icx = push_ctxt("trans_datum_unadjusted");
match expr.node {
ast::ExprParen(ref e) => {
trans(bcx, &**e)
}
ast::ExprPath(_) => {
trans_def(bcx, expr, bcx.def(expr.id))
}
ast::ExprField(ref base, ident) => {
trans_rec_field(bcx, &**base, ident.node)
}
ast::ExprTupField(ref base, idx) => {
trans_rec_tup_field(bcx, &**base, idx.node)
}
ast::ExprIndex(ref base, ref idx) => {
trans_index(bcx, expr, &**base, &**idx, MethodCall::expr(expr.id))
}
ast::ExprSlice(ref base, ref start, ref end, _) => {
let _icx = push_ctxt("trans_slice");
let ccx = bcx.ccx();
let method_call = MethodCall::expr(expr.id);
let method_ty = ccx.tcx()
.method_map
.borrow()
.get(&method_call)
.map(|method| method.ty);
let base_datum = unpack_datum!(bcx, trans(bcx, &**base));
let mut args = vec![];
start.as_ref().map(|e| args.push((unpack_datum!(bcx, trans(bcx, &**e)), e.id)));
end.as_ref().map(|e| args.push((unpack_datum!(bcx, trans(bcx, &**e)), e.id)));
let result_ty = ty::ty_fn_ret(monomorphize_type(bcx, method_ty.unwrap())).unwrap();
let scratch = rvalue_scratch_datum(bcx, result_ty, "trans_slice");
unpack_result!(bcx,
trans_overloaded_op(bcx,
expr,
method_call,
base_datum,
args,
Some(SaveIn(scratch.val))));
DatumBlock::new(bcx, scratch.to_expr_datum())
}
ast::ExprBox(_, ref contents) => {
// Special case for `Box<T>`
let box_ty = expr_ty(bcx, expr);
let contents_ty = expr_ty(bcx, &**contents);
match box_ty.sty {
ty::ty_uniq(..) => {
trans_uniq_expr(bcx, box_ty, &**contents, contents_ty)
}
_ => bcx.sess().span_bug(expr.span,
"expected unique box")
}
}
ast::ExprLit(ref lit) => trans_immediate_lit(bcx, expr, &**lit),
ast::ExprBinary(op, ref lhs, ref rhs) => {
trans_binary(bcx, expr, op, &**lhs, &**rhs)
}
ast::ExprUnary(op, ref x) => {
trans_unary(bcx, expr, op, &**x)
}
ast::ExprAddrOf(_, ref x) => {
match x.node {
ast::ExprRepeat(..) | ast::ExprVec(..) => {
// Special case for slices.
let cleanup_debug_loc =
debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(),
x.id,
x.span,
false);
fcx.push_ast_cleanup_scope(cleanup_debug_loc);
let datum = unpack_datum!(
bcx, tvec::trans_slice_vec(bcx, expr, &**x));
bcx = fcx.pop_and_trans_ast_cleanup_scope(bcx, x.id);
DatumBlock::new(bcx, datum)
}
_ => {
trans_addr_of(bcx, expr, &**x)
}
}
}
ast::ExprCast(ref val, _) => {
// Datum output mode means this is a scalar cast:
trans_imm_cast(bcx, &**val, expr.id)
}
_ => {
bcx.tcx().sess.span_bug(
expr.span,
format!("trans_rvalue_datum_unadjusted reached \
fall-through case: {}",
expr.node).as_slice());
}
}
}
fn trans_field<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
base: &ast::Expr,
get_idx: |&'blk ty::ctxt<'tcx>, &[ty::field<'tcx>]| -> uint)
-> DatumBlock<'blk, 'tcx, Expr> {
let mut bcx = bcx;
let _icx = push_ctxt("trans_rec_field");
let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, base, "field"));
let bare_ty = ty::unopen_type(base_datum.ty);
let repr = adt::represent_type(bcx.ccx(), bare_ty);
with_field_tys(bcx.tcx(), bare_ty, None, |discr, field_tys| {
let ix = get_idx(bcx.tcx(), field_tys);
let d = base_datum.get_element(
bcx,
field_tys[ix].mt.ty,
|srcval| adt::trans_field_ptr(bcx, &*repr, srcval, discr, ix));
if ty::type_is_sized(bcx.tcx(), d.ty) {
DatumBlock { datum: d.to_expr_datum(), bcx: bcx }
} else {
let scratch = rvalue_scratch_datum(bcx, ty::mk_open(bcx.tcx(), d.ty), "");
Store(bcx, d.val, get_dataptr(bcx, scratch.val));
let info = Load(bcx, get_len(bcx, base_datum.val));
Store(bcx, info, get_len(bcx, scratch.val));
DatumBlock::new(bcx, scratch.to_expr_datum())
}
})
}
/// Translates `base.field`.
fn trans_rec_field<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
base: &ast::Expr,
field: ast::Ident)
-> DatumBlock<'blk, 'tcx, Expr> {
trans_field(bcx, base, |tcx, field_tys| ty::field_idx_strict(tcx, field.name, field_tys))
}
/// Translates `base.<idx>`.
fn trans_rec_tup_field<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
base: &ast::Expr,
idx: uint)
-> DatumBlock<'blk, 'tcx, Expr> {
trans_field(bcx, base, |_, _| idx)
}
fn trans_index<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
index_expr: &ast::Expr,
base: &ast::Expr,
idx: &ast::Expr,
method_call: MethodCall)
-> DatumBlock<'blk, 'tcx, Expr> {
//! Translates `base[idx]`.
let _icx = push_ctxt("trans_index");
let ccx = bcx.ccx();
let mut bcx = bcx;
// Check for overloaded index.
let method_ty = ccx.tcx()
.method_map
.borrow()
.get(&method_call)
.map(|method| method.ty);
let elt_datum = match method_ty {
Some(method_ty) => {
let base_datum = unpack_datum!(bcx, trans(bcx, base));
// Translate index expression.
let ix_datum = unpack_datum!(bcx, trans(bcx, idx));
let ref_ty = ty::ty_fn_ret(monomorphize_type(bcx, method_ty)).unwrap();
let elt_ty = match ty::deref(ref_ty, true) {
None => {
bcx.tcx().sess.span_bug(index_expr.span,
"index method didn't return a \
dereferenceable type?!")
}
Some(elt_tm) => elt_tm.ty,
};
// Overloaded. Evaluate `trans_overloaded_op`, which will
// invoke the user's index() method, which basically yields
// a `&T` pointer. We can then proceed down the normal
// path (below) to dereference that `&T`.
let scratch = rvalue_scratch_datum(bcx, ref_ty, "overloaded_index_elt");
unpack_result!(bcx,
trans_overloaded_op(bcx,
index_expr,
method_call,
base_datum,
vec![(ix_datum, idx.id)],
Some(SaveIn(scratch.val))));
let datum = scratch.to_expr_datum();
if ty::type_is_sized(bcx.tcx(), elt_ty) {
Datum::new(datum.to_llscalarish(bcx), elt_ty, LvalueExpr)
} else {
Datum::new(datum.val, ty::mk_open(bcx.tcx(), elt_ty), LvalueExpr)
}
}
None => {
let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx,
base,
"index"));
// Translate index expression and cast to a suitable LLVM integer.
// Rust is less strict than LLVM in this regard.
let ix_datum = unpack_datum!(bcx, trans(bcx, idx));
let ix_val = ix_datum.to_llscalarish(bcx);
let ix_size = machine::llbitsize_of_real(bcx.ccx(),
val_ty(ix_val));
let int_size = machine::llbitsize_of_real(bcx.ccx(),
ccx.int_type());
let ix_val = {
if ix_size < int_size {
if ty::type_is_signed(expr_ty(bcx, idx)) {
SExt(bcx, ix_val, ccx.int_type())
} else { ZExt(bcx, ix_val, ccx.int_type()) }
} else if ix_size > int_size {
Trunc(bcx, ix_val, ccx.int_type())
} else {
ix_val
}
};
let vt =
tvec::vec_types(bcx,
ty::sequence_element_type(bcx.tcx(),
base_datum.ty));
base::maybe_name_value(bcx.ccx(), vt.llunit_size, "unit_sz");
let (base, len) = base_datum.get_vec_base_and_len(bcx);
debug!("trans_index: base {}", bcx.val_to_string(base));
debug!("trans_index: len {}", bcx.val_to_string(len));
let bounds_check = ICmp(bcx, llvm::IntUGE, ix_val, len);
let expect = ccx.get_intrinsic(&("llvm.expect.i1"));
let expected = Call(bcx,
expect,
&[bounds_check, C_bool(ccx, false)],
None);
bcx = with_cond(bcx, expected, |bcx| {
controlflow::trans_fail_bounds_check(bcx,
index_expr.span,
ix_val,
len)
});
let elt = InBoundsGEP(bcx, base, &[ix_val]);
let elt = PointerCast(bcx, elt, vt.llunit_ty.ptr_to());
Datum::new(elt, vt.unit_ty, LvalueExpr)
}
};
DatumBlock::new(bcx, elt_datum)
}
fn trans_def<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
ref_expr: &ast::Expr,
def: def::Def)
-> DatumBlock<'blk, 'tcx, Expr> {
//! Translates a reference to a path.
let _icx = push_ctxt("trans_def_lvalue");
match def {
def::DefFn(..) | def::DefStaticMethod(..) | def::DefMethod(..) |
def::DefStruct(_) | def::DefVariant(..) => {
trans_def_fn_unadjusted(bcx, ref_expr, def)
}
def::DefStatic(did, _) => {
// There are two things that may happen here:
// 1) If the static item is defined in this crate, it will be
// translated using `get_item_val`, and we return a pointer to
// the result.
// 2) If the static item is defined in another crate then we add
// (or reuse) a declaration of an external global, and return a
// pointer to that.
let const_ty = expr_ty(bcx, ref_expr);
fn get_val<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, did: ast::DefId,
const_ty: Ty<'tcx>) -> ValueRef {
// For external constants, we don't inline.
if did.krate == ast::LOCAL_CRATE {
// Case 1.
// The LLVM global has the type of its initializer,
// which may not be equal to the enum's type for
// non-C-like enums.
let val = base::get_item_val(bcx.ccx(), did.node);
let pty = type_of::type_of(bcx.ccx(), const_ty).ptr_to();
PointerCast(bcx, val, pty)
} else {
// Case 2.
base::get_extern_const(bcx.ccx(), did, const_ty)
}
}
let val = get_val(bcx, did, const_ty);
DatumBlock::new(bcx, Datum::new(val, const_ty, LvalueExpr))
}
def::DefConst(did) => {
// First, inline any external constants into the local crate so we
// can be sure to get the LLVM value corresponding to it.
let did = inline::maybe_instantiate_inline(bcx.ccx(), did);
if did.krate != ast::LOCAL_CRATE {
bcx.tcx().sess.span_bug(ref_expr.span,
"cross crate constant could not \
be inlined");
}
let val = base::get_item_val(bcx.ccx(), did.node);
// Next, we need to crate a ByRef rvalue datum to return. We can't
// use the normal .to_ref_datum() function because the type of
// `val` is not actually the same as `const_ty`.
//
// To get around this, we make a custom alloca slot with the
// appropriate type (const_ty), and then we cast it to a pointer of
// typeof(val), store the value, and then hand this slot over to
// the datum infrastructure.
let const_ty = expr_ty(bcx, ref_expr);
let llty = type_of::type_of(bcx.ccx(), const_ty);
let slot = alloca(bcx, llty, "const");
let pty = Type::from_ref(unsafe { llvm::LLVMTypeOf(val) }).ptr_to();
Store(bcx, val, PointerCast(bcx, slot, pty));
let datum = Datum::new(slot, const_ty, Rvalue::new(ByRef));
DatumBlock::new(bcx, datum.to_expr_datum())
}
_ => {
DatumBlock::new(bcx, trans_local_var(bcx, def).to_expr_datum())
}
}
}
fn trans_rvalue_stmt_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr)
-> Block<'blk, 'tcx> {
let mut bcx = bcx;
let _icx = push_ctxt("trans_rvalue_stmt");
if bcx.unreachable.get() {
return bcx;
}
debuginfo::set_source_location(bcx.fcx, expr.id, expr.span);
match expr.node {
ast::ExprParen(ref e) => {
trans_into(bcx, &**e, Ignore)
}
ast::ExprBreak(label_opt) => {
controlflow::trans_break(bcx, expr.id, label_opt)
}
ast::ExprAgain(label_opt) => {
controlflow::trans_cont(bcx, expr.id, label_opt)
}
ast::ExprRet(ref ex) => {
controlflow::trans_ret(bcx, ex.as_ref().map(|e| &**e))
}
ast::ExprWhile(ref cond, ref body, _) => {
controlflow::trans_while(bcx, expr.id, &**cond, &**body)
}
ast::ExprForLoop(ref pat, ref head, ref body, _) => {
controlflow::trans_for(bcx,
expr_info(expr),
&**pat,
&**head,
&**body)
}
ast::ExprLoop(ref body, _) => {
controlflow::trans_loop(bcx, expr.id, &**body)
}
ast::ExprAssign(ref dst, ref src) => {
let src_datum = unpack_datum!(bcx, trans(bcx, &**src));
let dst_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, &**dst, "assign"));
if ty::type_needs_drop(bcx.tcx(), dst_datum.ty) {
// If there are destructors involved, make sure we
// are copying from an rvalue, since that cannot possible
// alias an lvalue. We are concerned about code like:
//
// a = a
//
// but also
//
// a = a.b
//
// where e.g. a : Option<Foo> and a.b :
// Option<Foo>. In that case, freeing `a` before the
// assignment may also free `a.b`!
//
// We could avoid this intermediary with some analysis
// to determine whether `dst` may possibly own `src`.
debuginfo::set_source_location(bcx.fcx, expr.id, expr.span);
let src_datum = unpack_datum!(
bcx, src_datum.to_rvalue_datum(bcx, "ExprAssign"));
bcx = glue::drop_ty(bcx,
dst_datum.val,
dst_datum.ty,
Some(NodeInfo { id: expr.id, span: expr.span }));
src_datum.store_to(bcx, dst_datum.val)
} else {
src_datum.store_to(bcx, dst_datum.val)
}
}
ast::ExprAssignOp(op, ref dst, ref src) => {
trans_assign_op(bcx, expr, op, &**dst, &**src)
}
ast::ExprInlineAsm(ref a) => {
asm::trans_inline_asm(bcx, a)
}
_ => {
bcx.tcx().sess.span_bug(
expr.span,
format!("trans_rvalue_stmt_unadjusted reached \
fall-through case: {}",
expr.node).as_slice());
}
}
}
fn trans_rvalue_dps_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
dest: Dest)
-> Block<'blk, 'tcx> {
let _icx = push_ctxt("trans_rvalue_dps_unadjusted");
let mut bcx = bcx;
let tcx = bcx.tcx();
debuginfo::set_source_location(bcx.fcx, expr.id, expr.span);
match expr.node {
ast::ExprParen(ref e) => {
trans_into(bcx, &**e, dest)
}
ast::ExprPath(_) => {
trans_def_dps_unadjusted(bcx, expr, bcx.def(expr.id), dest)
}
ast::ExprIf(ref cond, ref thn, ref els) => {
controlflow::trans_if(bcx, expr.id, &**cond, &**thn, els.as_ref().map(|e| &**e), dest)
}
ast::ExprMatch(ref discr, ref arms, _) => {
_match::trans_match(bcx, expr, &**discr, arms.as_slice(), dest)
}
ast::ExprBlock(ref blk) => {
controlflow::trans_block(bcx, &**blk, dest)
}
ast::ExprStruct(_, ref fields, ref base) => {
trans_struct(bcx,
fields.as_slice(),
base.as_ref().map(|e| &**e),
expr.span,
expr.id,
dest)
}
ast::ExprTup(ref args) => {
let numbered_fields: Vec<(uint, &ast::Expr)> =
args.iter().enumerate().map(|(i, arg)| (i, &**arg)).collect();
trans_adt(bcx,
expr_ty(bcx, expr),
0,
numbered_fields.as_slice(),
None,
dest,
Some(NodeInfo { id: expr.id, span: expr.span }))
}
ast::ExprLit(ref lit) => {
match lit.node {
ast::LitStr(ref s, _) => {
tvec::trans_lit_str(bcx, expr, (*s).clone(), dest)
}
_ => {
bcx.tcx()
.sess
.span_bug(expr.span,
"trans_rvalue_dps_unadjusted shouldn't be \
translating this type of literal")
}
}
}
ast::ExprVec(..) | ast::ExprRepeat(..) => {
tvec::trans_fixed_vstore(bcx, expr, dest)
}
ast::ExprClosure(_, _, ref decl, ref body) |
ast::ExprProc(ref decl, ref body) => {
// Check the side-table to see whether this is an unboxed
// closure or an older, legacy style closure. Store this
// into a variable to ensure the the RefCell-lock is
// released before we recurse.
let is_unboxed_closure =
bcx.tcx().unboxed_closures.borrow().contains_key(&ast_util::local_def(expr.id));
if is_unboxed_closure {
closure::trans_unboxed_closure(bcx, &**decl, &**body, expr.id, dest)
} else {
let expr_ty = expr_ty(bcx, expr);
let store = ty::ty_closure_store(expr_ty);
debug!("translating block function {} with type {}",
expr_to_string(expr), expr_ty.repr(tcx));
closure::trans_expr_fn(bcx, store, &**decl, &**body, expr.id, dest)
}
}
ast::ExprCall(ref f, ref args) => {
if bcx.tcx().is_method_call(expr.id) {
trans_overloaded_call(bcx,
expr,
&**f,
args.as_slice(),
Some(dest))
} else {
callee::trans_call(bcx,
expr,
&**f,
callee::ArgExprs(args.as_slice()),
dest)
}
}
ast::ExprMethodCall(_, _, ref args) => {
callee::trans_method_call(bcx,
expr,
&*args[0],
callee::ArgExprs(args.as_slice()),
dest)
}
ast::ExprBinary(_, ref lhs, ref rhs) => {
// if not overloaded, would be RvalueDatumExpr
let lhs = unpack_datum!(bcx, trans(bcx, &**lhs));
let rhs_datum = unpack_datum!(bcx, trans(bcx, &**rhs));
trans_overloaded_op(bcx, expr, MethodCall::expr(expr.id), lhs,
vec![(rhs_datum, rhs.id)], Some(dest)).bcx
}
ast::ExprUnary(_, ref subexpr) => {
// if not overloaded, would be RvalueDatumExpr
let arg = unpack_datum!(bcx, trans(bcx, &**subexpr));
trans_overloaded_op(bcx, expr, MethodCall::expr(expr.id),
arg, Vec::new(), Some(dest)).bcx
}
ast::ExprIndex(ref base, ref idx) => {
// if not overloaded, would be RvalueDatumExpr
let base = unpack_datum!(bcx, trans(bcx, &**base));
let idx_datum = unpack_datum!(bcx, trans(bcx, &**idx));
trans_overloaded_op(bcx, expr, MethodCall::expr(expr.id), base,
vec![(idx_datum, idx.id)], Some(dest)).bcx
}
ast::ExprCast(ref val, _) => {
// DPS output mode means this is a trait cast:
if ty::type_is_trait(node_id_type(bcx, expr.id)) {
let trait_ref =
bcx.tcx().object_cast_map.borrow()
.get(&expr.id)
.map(|t| (*t).clone())
.unwrap();
let trait_ref = trait_ref.subst(bcx.tcx(), bcx.fcx.param_substs);
let datum = unpack_datum!(bcx, trans(bcx, &**val));
meth::trans_trait_cast(bcx, datum, expr.id,
trait_ref, dest)
} else {
bcx.tcx().sess.span_bug(expr.span,
"expr_cast of non-trait");
}
}
ast::ExprAssignOp(op, ref dst, ref src) => {
trans_assign_op(bcx, expr, op, &**dst, &**src)
}
_ => {
bcx.tcx().sess.span_bug(
expr.span,
format!("trans_rvalue_dps_unadjusted reached fall-through \
case: {}",
expr.node).as_slice());
}
}
}
fn trans_def_dps_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
ref_expr: &ast::Expr,
def: def::Def,
dest: Dest)
-> Block<'blk, 'tcx> {
let _icx = push_ctxt("trans_def_dps_unadjusted");
let lldest = match dest {
SaveIn(lldest) => lldest,
Ignore => { return bcx; }
};
match def {
def::DefVariant(tid, vid, _) => {
let variant_info = ty::enum_variant_with_id(bcx.tcx(), tid, vid);
if variant_info.args.len() > 0u {
// N-ary variant.
let llfn = callee::trans_fn_ref(bcx, vid, ExprId(ref_expr.id));
Store(bcx, llfn, lldest);
return bcx;
} else {
// Nullary variant.
let ty = expr_ty(bcx, ref_expr);
let repr = adt::represent_type(bcx.ccx(), ty);
adt::trans_set_discr(bcx, &*repr, lldest,
variant_info.disr_val);
return bcx;
}
}
def::DefStruct(_) => {
let ty = expr_ty(bcx, ref_expr);
match ty.sty {
ty::ty_struct(did, _) if ty::has_dtor(bcx.tcx(), did) => {
let repr = adt::represent_type(bcx.ccx(), ty);
adt::trans_set_discr(bcx, &*repr, lldest, 0);
}
_ => {}
}
bcx
}
_ => {
bcx.tcx().sess.span_bug(ref_expr.span, format!(
"Non-DPS def {} referened by {}",
def, bcx.node_id_to_string(ref_expr.id)).as_slice());
}
}
}
fn trans_def_fn_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
ref_expr: &ast::Expr,
def: def::Def)
-> DatumBlock<'blk, 'tcx, Expr> {
let _icx = push_ctxt("trans_def_datum_unadjusted");
let llfn = match def {
def::DefFn(did, _) |
def::DefStruct(did) | def::DefVariant(_, did, _) |
def::DefStaticMethod(did, def::FromImpl(_)) |
def::DefMethod(did, _, def::FromImpl(_)) => {
callee::trans_fn_ref(bcx, did, ExprId(ref_expr.id))
}
def::DefStaticMethod(impl_did, def::FromTrait(trait_did)) |
def::DefMethod(impl_did, _, def::FromTrait(trait_did)) => {
meth::trans_static_method_callee(bcx, impl_did,
trait_did, ref_expr.id)
}
_ => {
bcx.tcx().sess.span_bug(ref_expr.span, format!(
"trans_def_fn_unadjusted invoked on: {} for {}",
def,
ref_expr.repr(bcx.tcx())).as_slice());
}
};
let fn_ty = expr_ty(bcx, ref_expr);
DatumBlock::new(bcx, Datum::new(llfn, fn_ty, RvalueExpr(Rvalue::new(ByValue))))
}
/// Translates a reference to a local variable or argument. This always results in an lvalue datum.
pub fn trans_local_var<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
def: def::Def)
-> Datum<'tcx, Lvalue> {
let _icx = push_ctxt("trans_local_var");
match def {
def::DefUpvar(nid, _, _) => {
// Can't move upvars, so this is never a ZeroMemLastUse.
let local_ty = node_id_type(bcx, nid);
match bcx.fcx.llupvars.borrow().get(&nid) {
Some(&val) => Datum::new(val, local_ty, Lvalue),
None => {
bcx.sess().bug(format!(
"trans_local_var: no llval for upvar {} found",
nid).as_slice());
}
}
}
def::DefLocal(nid) => {
let datum = match bcx.fcx.lllocals.borrow().get(&nid) {
Some(&v) => v,
None => {
bcx.sess().bug(format!(
"trans_local_var: no datum for local/arg {} found",
nid).as_slice());
}
};
debug!("take_local(nid={}, v={}, ty={})",
nid, bcx.val_to_string(datum.val), bcx.ty_to_string(datum.ty));
datum
}
_ => {
bcx.sess().unimpl(format!(
"unsupported def type in trans_local_var: {}",
def).as_slice());
}
}
}
/// Helper for enumerating the field types of structs, enums, or records. The optional node ID here
/// is the node ID of the path identifying the enum variant in use. If none, this cannot possibly
/// an enum variant (so, if it is and `node_id_opt` is none, this function panics).
pub fn with_field_tys<'tcx, R>(tcx: &ty::ctxt<'tcx>,
ty: Ty<'tcx>,
node_id_opt: Option<ast::NodeId>,
op: |ty::Disr, (&[ty::field<'tcx>])| -> R)
-> R {
match ty.sty {
ty::ty_struct(did, ref substs) => {
op(0, struct_fields(tcx, did, substs).as_slice())
}
ty::ty_tup(ref v) => {
op(0, tup_fields(v.as_slice()).as_slice())
}
ty::ty_enum(_, ref substs) => {
// We want the *variant* ID here, not the enum ID.
match node_id_opt {
None => {
tcx.sess.bug(format!(
"cannot get field types from the enum type {} \
without a node ID",
ty.repr(tcx)).as_slice());
}
Some(node_id) => {
let def = tcx.def_map.borrow()[node_id].clone();
match def {
def::DefVariant(enum_id, variant_id, _) => {
let variant_info = ty::enum_variant_with_id(
tcx, enum_id, variant_id);
op(variant_info.disr_val,
struct_fields(tcx,
variant_id,
substs).as_slice())
}
_ => {
tcx.sess.bug("resolve didn't map this expr to a \
variant ID")
}
}
}
}
}
_ => {
tcx.sess.bug(format!(
"cannot get field types from the type {}",
ty.repr(tcx)).as_slice());
}
}
}
fn trans_struct<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
fields: &[ast::Field],
base: Option<&ast::Expr>,
expr_span: codemap::Span,
expr_id: ast::NodeId,
dest: Dest) -> Block<'blk, 'tcx> {
let _icx = push_ctxt("trans_rec");
let ty = node_id_type(bcx, expr_id);
let tcx = bcx.tcx();
with_field_tys(tcx, ty, Some(expr_id), |discr, field_tys| {
let mut need_base = Vec::from_elem(field_tys.len(), true);
let numbered_fields = fields.iter().map(|field| {
let opt_pos =
field_tys.iter().position(|field_ty|
field_ty.name == field.ident.node.name);
match opt_pos {
Some(i) => {
need_base[i] = false;
(i, &*field.expr)
}
None => {
tcx.sess.span_bug(field.span,
"Couldn't find field in struct type")
}
}
}).collect::<Vec<_>>();
let optbase = match base {
Some(base_expr) => {
let mut leftovers = Vec::new();
for (i, b) in need_base.iter().enumerate() {
if *b {
leftovers.push((i, field_tys[i].mt.ty))
}
}
Some(StructBaseInfo {expr: base_expr,
fields: leftovers })
}
None => {
if need_base.iter().any(|b| *b) {
tcx.sess.span_bug(expr_span, "missing fields and no base expr")
}
None
}
};
trans_adt(bcx,
ty,
discr,
numbered_fields.as_slice(),
optbase,
dest,
Some(NodeInfo { id: expr_id, span: expr_span }))
})
}
/// Information that `trans_adt` needs in order to fill in the fields
/// of a struct copied from a base struct (e.g., from an expression
/// like `Foo { a: b, ..base }`.
///
/// Note that `fields` may be empty; the base expression must always be
/// evaluated for side-effects.
pub struct StructBaseInfo<'a, 'tcx> {
/// The base expression; will be evaluated after all explicit fields.
expr: &'a ast::Expr,
/// The indices of fields to copy paired with their types.
fields: Vec<(uint, Ty<'tcx>)>
}
/// Constructs an ADT instance:
///
/// - `fields` should be a list of field indices paired with the
/// expression to store into that field. The initializers will be
/// evaluated in the order specified by `fields`.
///
/// - `optbase` contains information on the base struct (if any) from
/// which remaining fields are copied; see comments on `StructBaseInfo`.
pub fn trans_adt<'a, 'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
ty: Ty<'tcx>,
discr: ty::Disr,
fields: &[(uint, &ast::Expr)],
optbase: Option<StructBaseInfo<'a, 'tcx>>,
dest: Dest,
source_location: Option<NodeInfo>)
-> Block<'blk, 'tcx> {
let _icx = push_ctxt("trans_adt");
let fcx = bcx.fcx;
let repr = adt::represent_type(bcx.ccx(), ty);
match source_location {
Some(src_loc) => debuginfo::set_source_location(bcx.fcx,
src_loc.id,
src_loc.span),
None => {}
};
// If we don't care about the result, just make a
// temporary stack slot
let addr = match dest {
SaveIn(pos) => pos,
Ignore => alloc_ty(bcx, ty, "temp"),
};
// This scope holds intermediates that must be cleaned should
// panic occur before the ADT as a whole is ready.
let custom_cleanup_scope = fcx.push_custom_cleanup_scope();
// First we trans the base, if we have one, to the dest
for base in optbase.iter() {
assert_eq!(discr, 0);
match ty::expr_kind(bcx.tcx(), &*base.expr) {
ty::RvalueDpsExpr | ty::RvalueDatumExpr if !ty::type_needs_drop(bcx.tcx(), ty) => {
bcx = trans_into(bcx, &*base.expr, SaveIn(addr));
},
ty::RvalueStmtExpr => bcx.tcx().sess.bug("unexpected expr kind for struct base expr"),
_ => {
let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, &*base.expr, "base"));
for &(i, t) in base.fields.iter() {
let datum = base_datum.get_element(
bcx, t, |srcval| adt::trans_field_ptr(bcx, &*repr, srcval, discr, i));
assert!(ty::type_is_sized(bcx.tcx(), datum.ty));
let dest = adt::trans_field_ptr(bcx, &*repr, addr, discr, i);
bcx = datum.store_to(bcx, dest);
}
}
}
}
match source_location {
Some(src_loc) => debuginfo::set_source_location(bcx.fcx,
src_loc.id,
src_loc.span),
None => {}
};
if ty::type_is_simd(bcx.tcx(), ty) {
// This is the constructor of a SIMD type, such types are
// always primitive machine types and so do not have a
// destructor or require any clean-up.
let llty = type_of::type_of(bcx.ccx(), ty);
// keep a vector as a register, and running through the field
// `insertelement`ing them directly into that register
// (i.e. avoid GEPi and `store`s to an alloca) .
let mut vec_val = C_undef(llty);
for &(i, ref e) in fields.iter() {
let block_datum = trans(bcx, &**e);
bcx = block_datum.bcx;
let position = C_uint(bcx.ccx(), i);
let value = block_datum.datum.to_llscalarish(bcx);
vec_val = InsertElement(bcx, vec_val, value, position);
}
Store(bcx, vec_val, addr);
} else {
// Now, we just overwrite the fields we've explicitly specified
for &(i, ref e) in fields.iter() {
let dest = adt::trans_field_ptr(bcx, &*repr, addr, discr, i);
let e_ty = expr_ty_adjusted(bcx, &**e);
bcx = trans_into(bcx, &**e, SaveIn(dest));
let scope = cleanup::CustomScope(custom_cleanup_scope);
fcx.schedule_lifetime_end(scope, dest);
fcx.schedule_drop_mem(scope, dest, e_ty);
}
}
adt::trans_set_discr(bcx, &*repr, addr, discr);
fcx.pop_custom_cleanup_scope(custom_cleanup_scope);
// If we don't care about the result drop the temporary we made
match dest {
SaveIn(_) => bcx,
Ignore => {
bcx = glue::drop_ty(bcx, addr, ty, source_location);
base::call_lifetime_end(bcx, addr);
bcx
}
}
}
fn trans_immediate_lit<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
lit: &ast::Lit)
-> DatumBlock<'blk, 'tcx, Expr> {
// must not be a string constant, that is a RvalueDpsExpr
let _icx = push_ctxt("trans_immediate_lit");
let ty = expr_ty(bcx, expr);
let v = consts::const_lit(bcx.ccx(), expr, lit);
immediate_rvalue_bcx(bcx, v, ty).to_expr_datumblock()
}
fn trans_unary<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
op: ast::UnOp,
sub_expr: &ast::Expr)
-> DatumBlock<'blk, 'tcx, Expr> {
let ccx = bcx.ccx();
let mut bcx = bcx;
let _icx = push_ctxt("trans_unary_datum");
let method_call = MethodCall::expr(expr.id);
// The only overloaded operator that is translated to a datum
// is an overloaded deref, since it is always yields a `&T`.
// Otherwise, we should be in the RvalueDpsExpr path.
assert!(
op == ast::UnDeref ||
!ccx.tcx().method_map.borrow().contains_key(&method_call));
let un_ty = expr_ty(bcx, expr);
match op {
ast::UnNot => {
let datum = unpack_datum!(bcx, trans(bcx, sub_expr));
let llresult = Not(bcx, datum.to_llscalarish(bcx));
immediate_rvalue_bcx(bcx, llresult, un_ty).to_expr_datumblock()
}
ast::UnNeg => {
let datum = unpack_datum!(bcx, trans(bcx, sub_expr));
let val = datum.to_llscalarish(bcx);
let llneg = {
if ty::type_is_fp(un_ty) {
FNeg(bcx, val)
} else {
Neg(bcx, val)
}
};
immediate_rvalue_bcx(bcx, llneg, un_ty).to_expr_datumblock()
}
ast::UnUniq => {
trans_uniq_expr(bcx, un_ty, sub_expr, expr_ty(bcx, sub_expr))
}
ast::UnDeref => {
let datum = unpack_datum!(bcx, trans(bcx, sub_expr));
deref_once(bcx, expr, datum, method_call)
}
}
}
fn trans_uniq_expr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
box_ty: Ty<'tcx>,
contents: &ast::Expr,
contents_ty: Ty<'tcx>)
-> DatumBlock<'blk, 'tcx, Expr> {
let _icx = push_ctxt("trans_uniq_expr");
let fcx = bcx.fcx;
assert!(ty::type_is_sized(bcx.tcx(), contents_ty));
let llty = type_of::type_of(bcx.ccx(), contents_ty);
let size = llsize_of(bcx.ccx(), llty);
let align = C_uint(bcx.ccx(), type_of::align_of(bcx.ccx(), contents_ty));
let llty_ptr = llty.ptr_to();
let Result { bcx, val } = malloc_raw_dyn(bcx, llty_ptr, box_ty, size, align);
// Unique boxes do not allocate for zero-size types. The standard library
// may assume that `free` is never called on the pointer returned for
// `Box<ZeroSizeType>`.
let bcx = if llsize_of_alloc(bcx.ccx(), llty) == 0 {
trans_into(bcx, contents, SaveIn(val))
} else {
let custom_cleanup_scope = fcx.push_custom_cleanup_scope();
fcx.schedule_free_value(cleanup::CustomScope(custom_cleanup_scope),
val, cleanup::HeapExchange, contents_ty);
let bcx = trans_into(bcx, contents, SaveIn(val));
fcx.pop_custom_cleanup_scope(custom_cleanup_scope);
bcx
};
immediate_rvalue_bcx(bcx, val, box_ty).to_expr_datumblock()
}
fn trans_addr_of<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
subexpr: &ast::Expr)
-> DatumBlock<'blk, 'tcx, Expr> {
let _icx = push_ctxt("trans_addr_of");
let mut bcx = bcx;
let sub_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, subexpr, "addr_of"));
match sub_datum.ty.sty {
ty::ty_open(_) => {
// Opened DST value, close to a fat pointer
debug!("Closing fat pointer {}", bcx.ty_to_string(sub_datum.ty));
let scratch = rvalue_scratch_datum(bcx,
ty::close_type(bcx.tcx(), sub_datum.ty),
"fat_addr_of");
let base = Load(bcx, get_dataptr(bcx, sub_datum.val));
Store(bcx, base, get_dataptr(bcx, scratch.val));
let len = Load(bcx, get_len(bcx, sub_datum.val));
Store(bcx, len, get_len(bcx, scratch.val));
DatumBlock::new(bcx, scratch.to_expr_datum())
}
_ => {
// Sized value, ref to a thin pointer
let ty = expr_ty(bcx, expr);
immediate_rvalue_bcx(bcx, sub_datum.val, ty).to_expr_datumblock()
}
}
}
// Important to get types for both lhs and rhs, because one might be _|_
// and the other not.
fn trans_eager_binop<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
binop_expr: &ast::Expr,
binop_ty: Ty<'tcx>,
op: ast::BinOp,
lhs_t: Ty<'tcx>,
lhs: ValueRef,
rhs_t: Ty<'tcx>,
rhs: ValueRef)
-> DatumBlock<'blk, 'tcx, Expr> {
let _icx = push_ctxt("trans_eager_binop");
let tcx = bcx.tcx();
let is_simd = ty::type_is_simd(tcx, lhs_t);
let intype = {
if is_simd { ty::simd_type(tcx, lhs_t) }
else { lhs_t }
};
let is_float = ty::type_is_fp(intype);
let is_signed = ty::type_is_signed(intype);
let rhs = base::cast_shift_expr_rhs(bcx, op, lhs, rhs);
let mut bcx = bcx;
let val = match op {
ast::BiAdd => {
if is_float { FAdd(bcx, lhs, rhs) }
else { Add(bcx, lhs, rhs) }
}
ast::BiSub => {
if is_float { FSub(bcx, lhs, rhs) }
else { Sub(bcx, lhs, rhs) }
}
ast::BiMul => {
if is_float { FMul(bcx, lhs, rhs) }
else { Mul(bcx, lhs, rhs) }
}
ast::BiDiv => {
if is_float {
FDiv(bcx, lhs, rhs)
} else {
// Only zero-check integers; fp /0 is NaN
bcx = base::fail_if_zero_or_overflows(bcx, binop_expr.span,
op, lhs, rhs, rhs_t);
if is_signed {
SDiv(bcx, lhs, rhs)
} else {
UDiv(bcx, lhs, rhs)
}
}
}
ast::BiRem => {
if is_float {
FRem(bcx, lhs, rhs)
} else {
// Only zero-check integers; fp %0 is NaN
bcx = base::fail_if_zero_or_overflows(bcx, binop_expr.span,
op, lhs, rhs, rhs_t);
if is_signed {
SRem(bcx, lhs, rhs)
} else {
URem(bcx, lhs, rhs)
}
}
}
ast::BiBitOr => Or(bcx, lhs, rhs),
ast::BiBitAnd => And(bcx, lhs, rhs),
ast::BiBitXor => Xor(bcx, lhs, rhs),
ast::BiShl => Shl(bcx, lhs, rhs),
ast::BiShr => {
if is_signed {
AShr(bcx, lhs, rhs)
} else { LShr(bcx, lhs, rhs) }
}
ast::BiEq | ast::BiNe | ast::BiLt | ast::BiGe | ast::BiLe | ast::BiGt => {
if ty::type_is_scalar(rhs_t) {
unpack_result!(bcx, base::compare_scalar_types(bcx, lhs, rhs, rhs_t, op))
} else if is_simd {
base::compare_simd_types(bcx, lhs, rhs, intype, ty::simd_size(tcx, lhs_t), op)
} else {
bcx.tcx().sess.span_bug(binop_expr.span, "comparison operator unsupported for type")
}
}
_ => {
bcx.tcx().sess.span_bug(binop_expr.span, "unexpected binop");
}
};
immediate_rvalue_bcx(bcx, val, binop_ty).to_expr_datumblock()
}
// refinement types would obviate the need for this
enum lazy_binop_ty {
lazy_and,
lazy_or,
}
fn trans_lazy_binop<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
binop_expr: &ast::Expr,
op: lazy_binop_ty,
a: &ast::Expr,
b: &ast::Expr)
-> DatumBlock<'blk, 'tcx, Expr> {
let _icx = push_ctxt("trans_lazy_binop");
let binop_ty = expr_ty(bcx, binop_expr);
let fcx = bcx.fcx;
let DatumBlock {bcx: past_lhs, datum: lhs} = trans(bcx, a);
let lhs = lhs.to_llscalarish(past_lhs);
if past_lhs.unreachable.get() {
return immediate_rvalue_bcx(past_lhs, lhs, binop_ty).to_expr_datumblock();
}
let join = fcx.new_id_block("join", binop_expr.id);
let before_rhs = fcx.new_id_block("before_rhs", b.id);
match op {
lazy_and => CondBr(past_lhs, lhs, before_rhs.llbb, join.llbb),
lazy_or => CondBr(past_lhs, lhs, join.llbb, before_rhs.llbb)
}
let DatumBlock {bcx: past_rhs, datum: rhs} = trans(before_rhs, b);
let rhs = rhs.to_llscalarish(past_rhs);
if past_rhs.unreachable.get() {
return immediate_rvalue_bcx(join, lhs, binop_ty).to_expr_datumblock();
}
Br(past_rhs, join.llbb);
let phi = Phi(join, Type::i1(bcx.ccx()), &[lhs, rhs],
&[past_lhs.llbb, past_rhs.llbb]);
return immediate_rvalue_bcx(join, phi, binop_ty).to_expr_datumblock();
}
fn trans_binary<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
op: ast::BinOp,
lhs: &ast::Expr,
rhs: &ast::Expr)
-> DatumBlock<'blk, 'tcx, Expr> {
let _icx = push_ctxt("trans_binary");
let ccx = bcx.ccx();
// if overloaded, would be RvalueDpsExpr
assert!(!ccx.tcx().method_map.borrow().contains_key(&MethodCall::expr(expr.id)));
match op {
ast::BiAnd => {
trans_lazy_binop(bcx, expr, lazy_and, lhs, rhs)
}
ast::BiOr => {
trans_lazy_binop(bcx, expr, lazy_or, lhs, rhs)
}
_ => {
let mut bcx = bcx;
let lhs_datum = unpack_datum!(bcx, trans(bcx, lhs));
let rhs_datum = unpack_datum!(bcx, trans(bcx, rhs));
let binop_ty = expr_ty(bcx, expr);
debug!("trans_binary (expr {}): lhs_datum={}",
expr.id,
lhs_datum.to_string(ccx));
let lhs_ty = lhs_datum.ty;
let lhs = lhs_datum.to_llscalarish(bcx);
debug!("trans_binary (expr {}): rhs_datum={}",
expr.id,
rhs_datum.to_string(ccx));
let rhs_ty = rhs_datum.ty;
let rhs = rhs_datum.to_llscalarish(bcx);
trans_eager_binop(bcx, expr, binop_ty, op,
lhs_ty, lhs, rhs_ty, rhs)
}
}
}
fn trans_overloaded_op<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
method_call: MethodCall,
lhs: Datum<'tcx, Expr>,
rhs: Vec<(Datum<'tcx, Expr>, ast::NodeId)>,
dest: Option<Dest>)
-> Result<'blk, 'tcx> {
let method_ty = (*bcx.tcx().method_map.borrow())[method_call].ty;
callee::trans_call_inner(bcx,
Some(expr_info(expr)),
monomorphize_type(bcx, method_ty),
|bcx, arg_cleanup_scope| {
meth::trans_method_callee(bcx,
method_call,
None,
arg_cleanup_scope)
},
callee::ArgOverloadedOp(lhs, rhs),
dest)
}
fn trans_overloaded_call<'a, 'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
callee: &'a ast::Expr,
args: &'a [P<ast::Expr>],
dest: Option<Dest>)
-> Block<'blk, 'tcx> {
let method_call = MethodCall::expr(expr.id);
let method_type = (*bcx.tcx()
.method_map
.borrow())[method_call]
.ty;
let mut all_args = vec!(callee);
all_args.extend(args.iter().map(|e| &**e));
unpack_result!(bcx,
callee::trans_call_inner(bcx,
Some(expr_info(expr)),
monomorphize_type(bcx,
method_type),
|bcx, arg_cleanup_scope| {
meth::trans_method_callee(
bcx,
method_call,
None,
arg_cleanup_scope)
},
callee::ArgOverloadedCall(all_args),
dest));
bcx
}
fn int_cast(bcx: Block,
lldsttype: Type,
llsrctype: Type,
llsrc: ValueRef,
signed: bool)
-> ValueRef {
let _icx = push_ctxt("int_cast");
unsafe {
let srcsz = llvm::LLVMGetIntTypeWidth(llsrctype.to_ref());
let dstsz = llvm::LLVMGetIntTypeWidth(lldsttype.to_ref());
return if dstsz == srcsz {
BitCast(bcx, llsrc, lldsttype)
} else if srcsz > dstsz {
TruncOrBitCast(bcx, llsrc, lldsttype)
} else if signed {
SExtOrBitCast(bcx, llsrc, lldsttype)
} else {
ZExtOrBitCast(bcx, llsrc, lldsttype)
};
}
}
fn float_cast(bcx: Block,
lldsttype: Type,
llsrctype: Type,
llsrc: ValueRef)
-> ValueRef {
let _icx = push_ctxt("float_cast");
let srcsz = llsrctype.float_width();
let dstsz = lldsttype.float_width();
return if dstsz > srcsz {
FPExt(bcx, llsrc, lldsttype)
} else if srcsz > dstsz {
FPTrunc(bcx, llsrc, lldsttype)
} else { llsrc };
}
#[deriving(PartialEq, Show)]
pub enum cast_kind {
cast_pointer,
cast_integral,
cast_float,
cast_enum,
cast_other,
}
impl Copy for cast_kind {}
pub fn cast_type_kind<'tcx>(tcx: &ty::ctxt<'tcx>, t: Ty<'tcx>) -> cast_kind {
match t.sty {
ty::ty_char => cast_integral,
ty::ty_float(..) => cast_float,
ty::ty_rptr(_, mt) | ty::ty_ptr(mt) => {
if ty::type_is_sized(tcx, mt.ty) {
cast_pointer
} else {
cast_other
}
}
ty::ty_bare_fn(..) => cast_pointer,
ty::ty_int(..) => cast_integral,
ty::ty_uint(..) => cast_integral,
ty::ty_bool => cast_integral,
ty::ty_enum(..) => cast_enum,
_ => cast_other
}
}
fn cast_is_noop<'tcx>(t_in: Ty<'tcx>, t_out: Ty<'tcx>) -> bool {
match (ty::deref(t_in, true), ty::deref(t_out, true)) {
(Some(ty::mt{ ty: t_in, .. }), Some(ty::mt{ ty: t_out, .. })) => {
t_in == t_out
}
_ => false
}
}
fn trans_imm_cast<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
id: ast::NodeId)
-> DatumBlock<'blk, 'tcx, Expr> {
let _icx = push_ctxt("trans_cast");
let mut bcx = bcx;
let ccx = bcx.ccx();
let t_in = expr_ty(bcx, expr);
let t_out = node_id_type(bcx, id);
let k_in = cast_type_kind(bcx.tcx(), t_in);
let k_out = cast_type_kind(bcx.tcx(), t_out);
let s_in = k_in == cast_integral && ty::type_is_signed(t_in);
let ll_t_in = type_of::arg_type_of(ccx, t_in);
let ll_t_out = type_of::arg_type_of(ccx, t_out);
// Convert the value to be cast into a ValueRef, either by-ref or
// by-value as appropriate given its type:
let mut datum = unpack_datum!(bcx, trans(bcx, expr));
if cast_is_noop(datum.ty, t_out) {
datum.ty = t_out;
return DatumBlock::new(bcx, datum);
}
let newval = match (k_in, k_out) {
(cast_integral, cast_integral) => {
let llexpr = datum.to_llscalarish(bcx);
int_cast(bcx, ll_t_out, ll_t_in, llexpr, s_in)
}
(cast_float, cast_float) => {
let llexpr = datum.to_llscalarish(bcx);
float_cast(bcx, ll_t_out, ll_t_in, llexpr)
}
(cast_integral, cast_float) => {
let llexpr = datum.to_llscalarish(bcx);
if s_in {
SIToFP(bcx, llexpr, ll_t_out)
} else { UIToFP(bcx, llexpr, ll_t_out) }
}
(cast_float, cast_integral) => {
let llexpr = datum.to_llscalarish(bcx);
if ty::type_is_signed(t_out) {
FPToSI(bcx, llexpr, ll_t_out)
} else { FPToUI(bcx, llexpr, ll_t_out) }
}
(cast_integral, cast_pointer) => {
let llexpr = datum.to_llscalarish(bcx);
IntToPtr(bcx, llexpr, ll_t_out)
}
(cast_pointer, cast_integral) => {
let llexpr = datum.to_llscalarish(bcx);
PtrToInt(bcx, llexpr, ll_t_out)
}
(cast_pointer, cast_pointer) => {
let llexpr = datum.to_llscalarish(bcx);
PointerCast(bcx, llexpr, ll_t_out)
}
(cast_enum, cast_integral) |
(cast_enum, cast_float) => {
let mut bcx = bcx;
let repr = adt::represent_type(ccx, t_in);
let datum = unpack_datum!(
bcx, datum.to_lvalue_datum(bcx, "trans_imm_cast", expr.id));
let llexpr_ptr = datum.to_llref();
let lldiscrim_a =
adt::trans_get_discr(bcx, &*repr, llexpr_ptr, Some(Type::i64(ccx)));
match k_out {
cast_integral => int_cast(bcx, ll_t_out,
val_ty(lldiscrim_a),
lldiscrim_a, true),
cast_float => SIToFP(bcx, lldiscrim_a, ll_t_out),
_ => {
ccx.sess().bug(format!("translating unsupported cast: \
{} ({}) -> {} ({})",
t_in.repr(bcx.tcx()),
k_in,
t_out.repr(bcx.tcx()),
k_out).as_slice())
}
}
}
_ => ccx.sess().bug(format!("translating unsupported cast: \
{} ({}) -> {} ({})",
t_in.repr(bcx.tcx()),
k_in,
t_out.repr(bcx.tcx()),
k_out).as_slice())
};
return immediate_rvalue_bcx(bcx, newval, t_out).to_expr_datumblock();
}
fn trans_assign_op<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
op: ast::BinOp,
dst: &ast::Expr,
src: &ast::Expr)
-> Block<'blk, 'tcx> {
let _icx = push_ctxt("trans_assign_op");
let mut bcx = bcx;
debug!("trans_assign_op(expr={})", bcx.expr_to_string(expr));
// User-defined operator methods cannot be used with `+=` etc right now
assert!(!bcx.tcx().method_map.borrow().contains_key(&MethodCall::expr(expr.id)));
// Evaluate LHS (destination), which should be an lvalue
let dst_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, dst, "assign_op"));
assert!(!ty::type_needs_drop(bcx.tcx(), dst_datum.ty));
let dst_ty = dst_datum.ty;
let dst = load_ty(bcx, dst_datum.val, dst_datum.ty);
// Evaluate RHS
let rhs_datum = unpack_datum!(bcx, trans(bcx, &*src));
let rhs_ty = rhs_datum.ty;
let rhs = rhs_datum.to_llscalarish(bcx);
// Perform computation and store the result
let result_datum = unpack_datum!(
bcx, trans_eager_binop(bcx, expr, dst_datum.ty, op,
dst_ty, dst, rhs_ty, rhs));
return result_datum.store_to(bcx, dst_datum.val);
}
fn auto_ref<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
datum: Datum<'tcx, Expr>,
expr: &ast::Expr)
-> DatumBlock<'blk, 'tcx, Expr> {
let mut bcx = bcx;
// Ensure cleanup of `datum` if not already scheduled and obtain
// a "by ref" pointer.
let lv_datum = unpack_datum!(bcx, datum.to_lvalue_datum(bcx, "autoref", expr.id));
// Compute final type. Note that we are loose with the region and
// mutability, since those things don't matter in trans.
let referent_ty = lv_datum.ty;
let ptr_ty = ty::mk_imm_rptr(bcx.tcx(), ty::ReStatic, referent_ty);
// Get the pointer.
let llref = lv_datum.to_llref();
// Construct the resulting datum, using what was the "by ref"
// ValueRef of type `referent_ty` to be the "by value" ValueRef
// of type `&referent_ty`.
DatumBlock::new(bcx, Datum::new(llref, ptr_ty, RvalueExpr(Rvalue::new(ByValue))))
}
fn deref_multiple<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
datum: Datum<'tcx, Expr>,
times: uint)
-> DatumBlock<'blk, 'tcx, Expr> {
let mut bcx = bcx;
let mut datum = datum;
for i in range(0, times) {
let method_call = MethodCall::autoderef(expr.id, i);
datum = unpack_datum!(bcx, deref_once(bcx, expr, datum, method_call));
}
DatumBlock { bcx: bcx, datum: datum }
}
fn deref_once<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
datum: Datum<'tcx, Expr>,
method_call: MethodCall)
-> DatumBlock<'blk, 'tcx, Expr> {
let ccx = bcx.ccx();
debug!("deref_once(expr={}, datum={}, method_call={})",
expr.repr(bcx.tcx()),
datum.to_string(ccx),
method_call);
let mut bcx = bcx;
// Check for overloaded deref.
let method_ty = ccx.tcx().method_map.borrow()
.get(&method_call).map(|method| method.ty);
let datum = match method_ty {
Some(method_ty) => {
// Overloaded. Evaluate `trans_overloaded_op`, which will
// invoke the user's deref() method, which basically
// converts from the `Smaht<T>` pointer that we have into
// a `&T` pointer. We can then proceed down the normal
// path (below) to dereference that `&T`.
let datum = match method_call.adjustment {
// Always perform an AutoPtr when applying an overloaded auto-deref
ty::AutoDeref(_) => unpack_datum!(bcx, auto_ref(bcx, datum, expr)),
_ => datum
};
let ref_ty = ty::ty_fn_ret(monomorphize_type(bcx, method_ty)).unwrap();
let scratch = rvalue_scratch_datum(bcx, ref_ty, "overloaded_deref");
unpack_result!(bcx, trans_overloaded_op(bcx, expr, method_call,
datum, Vec::new(), Some(SaveIn(scratch.val))));
scratch.to_expr_datum()
}
None => {
// Not overloaded. We already have a pointer we know how to deref.
datum
}
};
let r = match datum.ty.sty {
ty::ty_uniq(content_ty) => {
if ty::type_is_sized(bcx.tcx(), content_ty) {
deref_owned_pointer(bcx, expr, datum, content_ty)
} else {
// A fat pointer and an opened DST value have the same
// representation just different types. Since there is no
// temporary for `*e` here (because it is unsized), we cannot
// emulate the sized object code path for running drop glue and
// free. Instead, we schedule cleanup for `e`, turning it into
// an lvalue.
let datum = unpack_datum!(
bcx, datum.to_lvalue_datum(bcx, "deref", expr.id));
let datum = Datum::new(datum.val, ty::mk_open(bcx.tcx(), content_ty), LvalueExpr);
DatumBlock::new(bcx, datum)
}
}
ty::ty_ptr(ty::mt { ty: content_ty, .. }) |
ty::ty_rptr(_, ty::mt { ty: content_ty, .. }) => {
if ty::type_is_sized(bcx.tcx(), content_ty) {
let ptr = datum.to_llscalarish(bcx);
// Always generate an lvalue datum, even if datum.mode is
// an rvalue. This is because datum.mode is only an
// rvalue for non-owning pointers like &T or *T, in which
// case cleanup *is* scheduled elsewhere, by the true
// owner (or, in the case of *T, by the user).
DatumBlock::new(bcx, Datum::new(ptr, content_ty, LvalueExpr))
} else {
// A fat pointer and an opened DST value have the same representation
// just different types.
DatumBlock::new(bcx, Datum::new(datum.val,
ty::mk_open(bcx.tcx(), content_ty),
LvalueExpr))
}
}
_ => {
bcx.tcx().sess.span_bug(
expr.span,
format!("deref invoked on expr of illegal type {}",
datum.ty.repr(bcx.tcx())).as_slice());
}
};
debug!("deref_once(expr={}, method_call={}, result={})",
expr.id, method_call, r.datum.to_string(ccx));
return r;
/// We microoptimize derefs of owned pointers a bit here. Basically, the idea is to make the
/// deref of an rvalue result in an rvalue. This helps to avoid intermediate stack slots in the
/// resulting LLVM. The idea here is that, if the `Box<T>` pointer is an rvalue, then we can
/// schedule a *shallow* free of the `Box<T>` pointer, and then return a ByRef rvalue into the
/// pointer. Because the free is shallow, it is legit to return an rvalue, because we know that
/// the contents are not yet scheduled to be freed. The language rules ensure that the contents
/// will be used (or moved) before the free occurs.
fn deref_owned_pointer<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
expr: &ast::Expr,
datum: Datum<'tcx, Expr>,
content_ty: Ty<'tcx>)
-> DatumBlock<'blk, 'tcx, Expr> {
match datum.kind {
RvalueExpr(Rvalue { mode: ByRef }) => {
let scope = cleanup::temporary_scope(bcx.tcx(), expr.id);
let ptr = Load(bcx, datum.val);
if !type_is_zero_size(bcx.ccx(), content_ty) {
bcx.fcx.schedule_free_value(scope, ptr, cleanup::HeapExchange, content_ty);
}
}
RvalueExpr(Rvalue { mode: ByValue }) => {
let scope = cleanup::temporary_scope(bcx.tcx(), expr.id);
if !type_is_zero_size(bcx.ccx(), content_ty) {
bcx.fcx.schedule_free_value(scope, datum.val, cleanup::HeapExchange,
content_ty);
}
}
LvalueExpr => { }
}
// If we had an rvalue in, we produce an rvalue out.
let (llptr, kind) = match datum.kind {
LvalueExpr => {
(Load(bcx, datum.val), LvalueExpr)
}
RvalueExpr(Rvalue { mode: ByRef }) => {
(Load(bcx, datum.val), RvalueExpr(Rvalue::new(ByRef)))
}
RvalueExpr(Rvalue { mode: ByValue }) => {
(datum.val, RvalueExpr(Rvalue::new(ByRef)))
}
};
let datum = Datum { ty: content_ty, val: llptr, kind: kind };
DatumBlock { bcx: bcx, datum: datum }
}
}