rust/src/librustc/middle/region.rs
Felix S. Klock II d6bf04a22e Add CodeExtent::Remainder variant; pre-req for new scoping/drop rules.
This new variant introduces finer-grain code extents, i.e. we now
track that a binding lives only for a suffix of a block, and
(importantly) will be dropped when it goes out of scope *before* the
bindings that occurred earlier in the block.

Both of these notions are neatly captured by marking the block (and
each suffix) as an enclosing scope of the next suffix beneath it.

This is work that is part of the foundation for issue #8861.

(It actually has been seen in earlier posted pull requests; I have
just factored it out into its own PR to ease my own rebasing.)

----

These finer grained scopes do mean that some code is newly rejected by
`rustc`; for example:

```rust
let mut map : HashMap<u8, &u8> = HashMap::new();
let tmp = Box::new(2);
map.insert(43, &*tmp);
```

This will now fail to compile with a message that `*tmp` does not live
long enough, because the scope of `tmp` is now strictly smaller than
that of `map`, and the use of `&u8` in map's type requires that the
borrowed references are all to data that live at least as long as the
map.

The usual fix for a case like this is to move the binding for `tmp`
up above that of `map`; note that you can still leave the initialization
in the original spot, like so:

```rust
let tmp;
let mut map : HashMap<u8, &u8> = HashMap::new();
tmp = box 2;
map.insert(43, &*tmp);
```

Similarly, one can encounter an analogous situation with `Vec`: one
would need to rewrite:

```rust
let mut vec = Vec::new();
let tmp = 'c';
vec.push(&tmp);
```

as:

```
let tmp;
let mut vec = Vec::new();
tmp = 'c';
vec.push(&tmp);
```

----

In some corner cases, it does not suffice to reorder the bindings; in
particular, when the types for both bindings need to reflect exactly
the *same* code extent, and a parent/child relationship between them
does not work.

In pnkfelix's experience this has arisen most often when mixing uses
of cyclic data structures while also allowing a lifetime parameter
`'a` to flow into a type parameter context where the type is
*invariant* with respect to the type parameter. An important instance
of this is `arena::TypedArena<T>`, which is invariant with respect
to `T`.

(The reason that variance is relevant is this: *if* `TypedArena` were
covariant with respect to its type parameter, then we could assign it
the longer lifetime when it is initialized, and then convert it to a
subtype (via covariance) with a shorter lifetime when necessary.  But
`TypedArena` is invariant with respect to its type parameter, and thus
if `S` is a subtype of `T` (in particular, if `S` has a lifetime
parameter that is shorter than that of `T`), then a `TypedArena<S>` is
unrelated to `TypedArena<T>`.)

Concretely, consider code like this:

```rust
struct Node<'a> { sibling: Option<&'a Node<'a>> }
struct Context<'a> {
    // because of this field, `Context<'a>` is invariant with respect to `'a`.
    arena: &'a TypedArena<Node<'a>>,
    ...
}
fn new_ctxt<'a>(arena: &'a TypedArena<Node<'a>>) -> Context<'a> { ... }
fn use_ctxt<'a>(fcx: &'a Context<'a>) { ... }

let arena = TypedArena::new();
let ctxt = new_ctxt(&arena);

use_ctxt(&ctxt);
```

In these situations, if you try to introduce two bindings via two
distinct `let` statements, each is (with this commit) assigned a
distinct extent, and the region inference system cannot find a single
region to assign to the lifetime `'a` that works for both of the
bindings. So you get an error that `ctxt` does not live long enough;
but moving its binding up above that of `arena` just shifts the error
so now the compiler complains that `arena` does not live long enough.

SO: What to do? The easiest fix in this case is to ensure that the two
bindings *do* get assigned the same static extent, by stuffing both
bindings into the same let statement, like so:

```rust
let (arena, ctxt): (TypedArena, Context);
arena = TypedArena::new();
ctxt = new_ctxt(&arena);

use_ctxt(&ctxt);
```

Due to the new code rejections outlined above, this is a ...

[breaking-change]
2015-01-27 10:26:52 +01:00

1105 lines
41 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This file actually contains two passes related to regions. The first
//! pass builds up the `scope_map`, which describes the parent links in
//! the region hierarchy. The second pass infers which types must be
//! region parameterized.
//!
//! Most of the documentation on regions can be found in
//! `middle/typeck/infer/region_inference.rs`
use session::Session;
use middle::ty::{self, Ty, FreeRegion};
use util::nodemap::{FnvHashMap, FnvHashSet, NodeMap};
use util::common::can_reach;
use std::cell::RefCell;
use syntax::codemap::{self, Span};
use syntax::{ast, visit};
use syntax::ast::{Block, Item, FnDecl, NodeId, Arm, Pat, Stmt, Expr, Local};
use syntax::ast_util::{stmt_id};
use syntax::ast_map;
use syntax::visit::{Visitor, FnKind};
/// CodeExtent represents a statically-describable extent that can be
/// used to bound the lifetime/region for values.
///
/// FIXME (pnkfelix): This currently derives `PartialOrd` and `Ord` to
/// placate the same deriving in `ty::FreeRegion`, but we may want to
/// actually attach a more meaningful ordering to scopes than the one
/// generated via deriving here.
#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, RustcEncodable,
RustcDecodable, Show, Copy)]
pub enum CodeExtent {
Misc(ast::NodeId),
Remainder(BlockRemainder),
}
/// Represents a subscope of `block` for a binding that is introduced
/// by `block.stmts[first_statement_index]`. Such subscopes represent
/// a suffix of the block. Note that each subscope does not include
/// the initializer expression, if any, for the statement indexed by
/// `first_statement_index`.
///
/// For example, given `{ let (a, b) = EXPR_1; let c = EXPR_2; ... }`:
///
/// * the subscope with `first_statement_index == 0` is scope of both
/// `a` and `b`; it does not include EXPR_1, but does include
/// everything after that first `let`. (If you want a scope that
/// includes EXPR_1 as well, then do not use `CodeExtent::Remainder`,
/// but instead another `CodeExtent` that encompasses the whole block,
/// e.g. `CodeExtent::Misc`.
///
/// * the subscope with `first_statement_index == 1` is scope of `c`,
/// and thus does not include EXPR_2, but covers the `...`.
#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, RustcEncodable,
RustcDecodable, Show, Copy)]
pub struct BlockRemainder {
pub block: ast::NodeId,
pub first_statement_index: uint,
}
impl CodeExtent {
/// Creates a scope that represents the dynamic extent associated
/// with `node_id`.
pub fn from_node_id(node_id: ast::NodeId) -> CodeExtent {
CodeExtent::Misc(node_id)
}
/// Returns a node id associated with this scope.
///
/// NB: likely to be replaced as API is refined; e.g. pnkfelix
/// anticipates `fn entry_node_id` and `fn each_exit_node_id`.
pub fn node_id(&self) -> ast::NodeId {
match *self {
CodeExtent::Misc(node_id) => node_id,
CodeExtent::Remainder(br) => br.block,
}
}
/// Maps this scope to a potentially new one according to the
/// NodeId transformer `f_id`.
pub fn map_id<F>(&self, f_id: F) -> CodeExtent where
F: FnOnce(ast::NodeId) -> ast::NodeId,
{
match *self {
CodeExtent::Misc(node_id) => CodeExtent::Misc(f_id(node_id)),
CodeExtent::Remainder(br) =>
CodeExtent::Remainder(BlockRemainder {
block: f_id(br.block), first_statement_index: br.first_statement_index }),
}
}
/// Returns the span of this CodeExtent. Note that in general the
/// returned span may not correspond to the span of any node id in
/// the AST.
pub fn span(&self, ast_map: &ast_map::Map) -> Option<Span> {
match ast_map.find(self.node_id()) {
Some(ast_map::NodeBlock(ref blk)) => {
match *self {
CodeExtent::Misc(_) => Some(blk.span),
CodeExtent::Remainder(r) => {
assert_eq!(r.block, blk.id);
// Want span for extent starting after the
// indexed statement and ending at end of
// `blk`; reuse span of `blk` and shift `lo`
// forward to end of indexed statement.
//
// (This is the special case aluded to in the
// doc-comment for this method)
let stmt_span = blk.stmts[r.first_statement_index].span;
Some(Span { lo: stmt_span.hi, ..blk.span })
}
}
}
Some(ast_map::NodeExpr(ref expr)) => Some(expr.span),
Some(ast_map::NodeStmt(ref stmt)) => Some(stmt.span),
Some(ast_map::NodeItem(ref item)) => Some(item.span),
Some(_) | None => None,
}
}
}
/// The region maps encode information about region relationships.
///
/// - `scope_map` maps from a scope id to the enclosing scope id; this is
/// usually corresponding to the lexical nesting, though in the case of
/// closures the parent scope is the innermost conditional expression or repeating
/// block. (Note that the enclosing scope id for the block
/// associated with a closure is the closure itself.)
///
/// - `var_map` maps from a variable or binding id to the block in which
/// that variable is declared.
///
/// - `free_region_map` maps from a free region `a` to a list of free
/// regions `bs` such that `a <= b for all b in bs`
/// - the free region map is populated during type check as we check
/// each function. See the function `relate_free_regions` for
/// more information.
///
/// - `rvalue_scopes` includes entries for those expressions whose cleanup
/// scope is larger than the default. The map goes from the expression
/// id to the cleanup scope id. For rvalues not present in this table,
/// the appropriate cleanup scope is the innermost enclosing statement,
/// conditional expression, or repeating block (see `terminating_scopes`).
///
/// - `terminating_scopes` is a set containing the ids of each statement,
/// or conditional/repeating expression. These scopes are calling "terminating
/// scopes" because, when attempting to find the scope of a temporary, by
/// default we search up the enclosing scopes until we encounter the
/// terminating scope. A conditional/repeating
/// expression is one which is not guaranteed to execute exactly once
/// upon entering the parent scope. This could be because the expression
/// only executes conditionally, such as the expression `b` in `a && b`,
/// or because the expression may execute many times, such as a loop
/// body. The reason that we distinguish such expressions is that, upon
/// exiting the parent scope, we cannot statically know how many times
/// the expression executed, and thus if the expression creates
/// temporaries we cannot know statically how many such temporaries we
/// would have to cleanup. Therefore we ensure that the temporaries never
/// outlast the conditional/repeating expression, preventing the need
/// for dynamic checks and/or arbitrary amounts of stack space.
pub struct RegionMaps {
scope_map: RefCell<FnvHashMap<CodeExtent, CodeExtent>>,
var_map: RefCell<NodeMap<CodeExtent>>,
free_region_map: RefCell<FnvHashMap<FreeRegion, Vec<FreeRegion>>>,
rvalue_scopes: RefCell<NodeMap<CodeExtent>>,
terminating_scopes: RefCell<FnvHashSet<CodeExtent>>,
}
/// Carries the node id for the innermost block or match expression,
/// for building up the `var_map` which maps ids to the blocks in
/// which they were declared.
#[derive(PartialEq, Eq, Show, Copy)]
enum InnermostDeclaringBlock {
None,
Block(ast::NodeId),
Statement(DeclaringStatementContext),
Match(ast::NodeId),
}
impl InnermostDeclaringBlock {
fn to_code_extent(&self) -> Option<CodeExtent> {
let extent = match *self {
InnermostDeclaringBlock::None => {
return Option::None;
}
InnermostDeclaringBlock::Block(id) |
InnermostDeclaringBlock::Match(id) => CodeExtent::from_node_id(id),
InnermostDeclaringBlock::Statement(s) => s.to_code_extent(),
};
Option::Some(extent)
}
}
/// Contextual information for declarations introduced by a statement
/// (i.e. `let`). It carries node-id's for statement and enclosing
/// block both, as well as the statement's index within the block.
#[derive(PartialEq, Eq, Show, Copy)]
struct DeclaringStatementContext {
stmt_id: ast::NodeId,
block_id: ast::NodeId,
stmt_index: uint,
}
impl DeclaringStatementContext {
fn to_code_extent(&self) -> CodeExtent {
CodeExtent::Remainder(BlockRemainder {
block: self.block_id,
first_statement_index: self.stmt_index,
})
}
}
#[derive(PartialEq, Eq, Show, Copy)]
enum InnermostEnclosingExpr {
None,
Some(ast::NodeId),
Statement(DeclaringStatementContext),
}
impl InnermostEnclosingExpr {
fn to_code_extent(&self) -> Option<CodeExtent> {
let extent = match *self {
InnermostEnclosingExpr::None => {
return Option::None;
}
InnermostEnclosingExpr::Statement(s) =>
s.to_code_extent(),
InnermostEnclosingExpr::Some(parent_id) =>
CodeExtent::from_node_id(parent_id),
};
Some(extent)
}
}
#[derive(Show, Copy)]
pub struct Context {
var_parent: InnermostDeclaringBlock,
parent: InnermostEnclosingExpr,
}
struct RegionResolutionVisitor<'a> {
sess: &'a Session,
// Generated maps:
region_maps: &'a RegionMaps,
cx: Context
}
impl RegionMaps {
pub fn relate_free_regions(&self, sub: FreeRegion, sup: FreeRegion) {
match self.free_region_map.borrow_mut().get_mut(&sub) {
Some(sups) => {
if !sups.iter().any(|x| x == &sup) {
sups.push(sup);
}
return;
}
None => {}
}
debug!("relate_free_regions(sub={:?}, sup={:?})", sub, sup);
self.free_region_map.borrow_mut().insert(sub, vec!(sup));
}
pub fn record_encl_scope(&self, sub: CodeExtent, sup: CodeExtent) {
debug!("record_encl_scope(sub={:?}, sup={:?})", sub, sup);
assert!(sub != sup);
self.scope_map.borrow_mut().insert(sub, sup);
}
pub fn record_var_scope(&self, var: ast::NodeId, lifetime: CodeExtent) {
debug!("record_var_scope(sub={:?}, sup={:?})", var, lifetime);
assert!(var != lifetime.node_id());
self.var_map.borrow_mut().insert(var, lifetime);
}
pub fn record_rvalue_scope(&self, var: ast::NodeId, lifetime: CodeExtent) {
debug!("record_rvalue_scope(sub={:?}, sup={:?})", var, lifetime);
assert!(var != lifetime.node_id());
self.rvalue_scopes.borrow_mut().insert(var, lifetime);
}
/// Records that a scope is a TERMINATING SCOPE. Whenever we create automatic temporaries --
/// e.g. by an expression like `a().f` -- they will be freed within the innermost terminating
/// scope.
pub fn mark_as_terminating_scope(&self, scope_id: CodeExtent) {
debug!("record_terminating_scope(scope_id={:?})", scope_id);
self.terminating_scopes.borrow_mut().insert(scope_id);
}
pub fn opt_encl_scope(&self, id: CodeExtent) -> Option<CodeExtent> {
//! Returns the narrowest scope that encloses `id`, if any.
self.scope_map.borrow().get(&id).map(|x| *x)
}
#[allow(dead_code)] // used in middle::cfg
pub fn encl_scope(&self, id: CodeExtent) -> CodeExtent {
//! Returns the narrowest scope that encloses `id`, if any.
match self.scope_map.borrow().get(&id) {
Some(&r) => r,
None => { panic!("no enclosing scope for id {:?}", id); }
}
}
/// Returns the lifetime of the local variable `var_id`
pub fn var_scope(&self, var_id: ast::NodeId) -> CodeExtent {
match self.var_map.borrow().get(&var_id) {
Some(&r) => r,
None => { panic!("no enclosing scope for id {:?}", var_id); }
}
}
pub fn temporary_scope(&self, expr_id: ast::NodeId) -> Option<CodeExtent> {
//! Returns the scope when temp created by expr_id will be cleaned up
// check for a designated rvalue scope
match self.rvalue_scopes.borrow().get(&expr_id) {
Some(&s) => {
debug!("temporary_scope({:?}) = {:?} [custom]", expr_id, s);
return Some(s);
}
None => { }
}
// else, locate the innermost terminating scope
// if there's one. Static items, for instance, won't
// have an enclosing scope, hence no scope will be
// returned.
let mut id = match self.opt_encl_scope(CodeExtent::from_node_id(expr_id)) {
Some(i) => i,
None => { return None; }
};
while !self.terminating_scopes.borrow().contains(&id) {
match self.opt_encl_scope(id) {
Some(p) => {
id = p;
}
None => {
debug!("temporary_scope({:?}) = None", expr_id);
return None;
}
}
}
debug!("temporary_scope({:?}) = {:?} [enclosing]", expr_id, id);
return Some(id);
}
pub fn var_region(&self, id: ast::NodeId) -> ty::Region {
//! Returns the lifetime of the variable `id`.
let scope = ty::ReScope(self.var_scope(id));
debug!("var_region({:?}) = {:?}", id, scope);
scope
}
pub fn scopes_intersect(&self, scope1: CodeExtent, scope2: CodeExtent)
-> bool {
self.is_subscope_of(scope1, scope2) ||
self.is_subscope_of(scope2, scope1)
}
/// Returns true if `subscope` is equal to or is lexically nested inside `superscope` and false
/// otherwise.
pub fn is_subscope_of(&self,
subscope: CodeExtent,
superscope: CodeExtent)
-> bool {
let mut s = subscope;
while superscope != s {
match self.scope_map.borrow().get(&s) {
None => {
debug!("is_subscope_of({:?}, {:?}, s={:?})=false",
subscope, superscope, s);
return false;
}
Some(&scope) => s = scope
}
}
debug!("is_subscope_of({:?}, {:?})=true",
subscope, superscope);
return true;
}
/// Determines whether two free regions have a subregion relationship
/// by walking the graph encoded in `free_region_map`. Note that
/// it is possible that `sub != sup` and `sub <= sup` and `sup <= sub`
/// (that is, the user can give two different names to the same lifetime).
pub fn sub_free_region(&self, sub: FreeRegion, sup: FreeRegion) -> bool {
can_reach(&*self.free_region_map.borrow(), sub, sup)
}
/// Determines whether one region is a subregion of another. This is intended to run *after
/// inference* and sadly the logic is somewhat duplicated with the code in infer.rs.
pub fn is_subregion_of(&self,
sub_region: ty::Region,
super_region: ty::Region)
-> bool {
debug!("is_subregion_of(sub_region={:?}, super_region={:?})",
sub_region, super_region);
sub_region == super_region || {
match (sub_region, super_region) {
(ty::ReEmpty, _) |
(_, ty::ReStatic) => {
true
}
(ty::ReScope(sub_scope), ty::ReScope(super_scope)) => {
self.is_subscope_of(sub_scope, super_scope)
}
(ty::ReScope(sub_scope), ty::ReFree(ref fr)) => {
self.is_subscope_of(sub_scope, fr.scope)
}
(ty::ReFree(sub_fr), ty::ReFree(super_fr)) => {
self.sub_free_region(sub_fr, super_fr)
}
(ty::ReEarlyBound(param_id_a, param_space_a, index_a, _),
ty::ReEarlyBound(param_id_b, param_space_b, index_b, _)) => {
// This case is used only to make sure that explicitly-
// specified `Self` types match the real self type in
// implementations.
param_id_a == param_id_b &&
param_space_a == param_space_b &&
index_a == index_b
}
_ => {
false
}
}
}
}
/// Finds the nearest common ancestor (if any) of two scopes. That is, finds the smallest
/// scope which is greater than or equal to both `scope_a` and `scope_b`.
pub fn nearest_common_ancestor(&self,
scope_a: CodeExtent,
scope_b: CodeExtent)
-> Option<CodeExtent> {
if scope_a == scope_b { return Some(scope_a); }
let a_ancestors = ancestors_of(self, scope_a);
let b_ancestors = ancestors_of(self, scope_b);
let mut a_index = a_ancestors.len() - 1u;
let mut b_index = b_ancestors.len() - 1u;
// Here, ~[ab]_ancestors is a vector going from narrow to broad.
// The end of each vector will be the item where the scope is
// defined; if there are any common ancestors, then the tails of
// the vector will be the same. So basically we want to walk
// backwards from the tail of each vector and find the first point
// where they diverge. If one vector is a suffix of the other,
// then the corresponding scope is a superscope of the other.
if a_ancestors[a_index] != b_ancestors[b_index] {
return None;
}
loop {
// Loop invariant: a_ancestors[a_index] == b_ancestors[b_index]
// for all indices between a_index and the end of the array
if a_index == 0u { return Some(scope_a); }
if b_index == 0u { return Some(scope_b); }
a_index -= 1u;
b_index -= 1u;
if a_ancestors[a_index] != b_ancestors[b_index] {
return Some(a_ancestors[a_index + 1]);
}
}
fn ancestors_of(this: &RegionMaps, scope: CodeExtent)
-> Vec<CodeExtent> {
// debug!("ancestors_of(scope={:?})", scope);
let mut result = vec!(scope);
let mut scope = scope;
loop {
match this.scope_map.borrow().get(&scope) {
None => return result,
Some(&superscope) => {
result.push(superscope);
scope = superscope;
}
}
// debug!("ancestors_of_loop(scope={:?})", scope);
}
}
}
}
/// Records the current parent (if any) as the parent of `child_scope`.
fn record_superlifetime(visitor: &mut RegionResolutionVisitor,
child_scope: CodeExtent,
_sp: Span) {
match visitor.cx.parent.to_code_extent() {
Some(parent_scope) =>
visitor.region_maps.record_encl_scope(child_scope, parent_scope),
None => {}
}
}
/// Records the lifetime of a local variable as `cx.var_parent`
fn record_var_lifetime(visitor: &mut RegionResolutionVisitor,
var_id: ast::NodeId,
_sp: Span) {
match visitor.cx.var_parent.to_code_extent() {
Some(parent_scope) =>
visitor.region_maps.record_var_scope(var_id, parent_scope),
None => {
// this can happen in extern fn declarations like
//
// extern fn isalnum(c: c_int) -> c_int
}
}
}
fn resolve_block(visitor: &mut RegionResolutionVisitor, blk: &ast::Block) {
debug!("resolve_block(blk.id={:?})", blk.id);
let prev_cx = visitor.cx;
let blk_scope = CodeExtent::Misc(blk.id);
record_superlifetime(visitor, blk_scope, blk.span);
// We treat the tail expression in the block (if any) somewhat
// differently from the statements. The issue has to do with
// temporary lifetimes. Consider the following:
//
// quux({
// let inner = ... (&bar()) ...;
//
// (... (&foo()) ...) // (the tail expression)
// }, other_argument());
//
// Each of the statements within the block is a terminating
// scope, and thus a temporary (e.g. the result of calling
// `bar()` in the initalizer expression for `let inner = ...;`)
// will be cleaned up immediately after its corresponding
// statement (i.e. `let inner = ...;`) executes.
//
// On the other hand, temporaries associated with evaluating the
// tail expression for the block are assigned lifetimes so that
// they will be cleaned up as part of the terminating scope
// *surrounding* the block expression. Here, the terminating
// scope for the block expression is the `quux(..)` call; so
// those temporaries will only be cleaned up *after* both
// `other_argument()` has run and also the call to `quux(..)`
// itself has returned.
visitor.cx = Context {
var_parent: InnermostDeclaringBlock::Block(blk.id),
parent: InnermostEnclosingExpr::Some(blk.id),
};
{
// This block should be kept approximately in sync with
// `visit::walk_block`. (We manually walk the block, rather
// than call `walk_block`, in order to maintain precise
// `InnermostDeclaringBlock` information.)
for (i, statement) in blk.stmts.iter().enumerate() {
if let ast::StmtDecl(_, stmt_id) = statement.node {
// Each StmtDecl introduces a subscope for bindings
// introduced by the declaration; this subscope covers
// a suffix of the block . Each subscope in a block
// has the previous subscope in the block as a parent,
// except for the first such subscope, which has the
// block itself as a parent.
let declaring = DeclaringStatementContext {
stmt_id: stmt_id,
block_id: blk.id,
stmt_index: i,
};
record_superlifetime(
visitor, declaring.to_code_extent(), statement.span);
visitor.cx = Context {
var_parent: InnermostDeclaringBlock::Statement(declaring),
parent: InnermostEnclosingExpr::Statement(declaring),
};
}
visitor.visit_stmt(&**statement)
}
visit::walk_expr_opt(visitor, &blk.expr)
}
visitor.cx = prev_cx;
}
fn resolve_arm(visitor: &mut RegionResolutionVisitor, arm: &ast::Arm) {
let arm_body_scope = CodeExtent::from_node_id(arm.body.id);
visitor.region_maps.mark_as_terminating_scope(arm_body_scope);
match arm.guard {
Some(ref expr) => {
let guard_scope = CodeExtent::from_node_id(expr.id);
visitor.region_maps.mark_as_terminating_scope(guard_scope);
}
None => { }
}
visit::walk_arm(visitor, arm);
}
fn resolve_pat(visitor: &mut RegionResolutionVisitor, pat: &ast::Pat) {
record_superlifetime(visitor, CodeExtent::from_node_id(pat.id), pat.span);
// If this is a binding (or maybe a binding, I'm too lazy to check
// the def map) then record the lifetime of that binding.
match pat.node {
ast::PatIdent(..) => {
record_var_lifetime(visitor, pat.id, pat.span);
}
_ => { }
}
visit::walk_pat(visitor, pat);
}
fn resolve_stmt(visitor: &mut RegionResolutionVisitor, stmt: &ast::Stmt) {
let stmt_id = stmt_id(stmt);
debug!("resolve_stmt(stmt.id={:?})", stmt_id);
let stmt_scope = CodeExtent::from_node_id(stmt_id);
// Every statement will clean up the temporaries created during
// execution of that statement. Therefore each statement has an
// associated destruction scope that represents the extent of the
// statement plus its destructors, and thus the extent for which
// regions referenced by the destructors need to survive.
visitor.region_maps.mark_as_terminating_scope(stmt_scope);
record_superlifetime(visitor, stmt_scope, stmt.span);
let prev_parent = visitor.cx.parent;
visitor.cx.parent = InnermostEnclosingExpr::Some(stmt_id);
visit::walk_stmt(visitor, stmt);
visitor.cx.parent = prev_parent;
}
fn resolve_expr(visitor: &mut RegionResolutionVisitor, expr: &ast::Expr) {
debug!("resolve_expr(expr.id={:?})", expr.id);
let expr_scope = CodeExtent::Misc(expr.id);
record_superlifetime(visitor, expr_scope, expr.span);
let prev_cx = visitor.cx;
visitor.cx.parent = InnermostEnclosingExpr::Some(expr.id);
{
let region_maps = &mut visitor.region_maps;
let terminating = |&: id| {
let scope = CodeExtent::from_node_id(id);
region_maps.mark_as_terminating_scope(scope)
};
match expr.node {
// Conditional or repeating scopes are always terminating
// scopes, meaning that temporaries cannot outlive them.
// This ensures fixed size stacks.
ast::ExprBinary(codemap::Spanned { node: ast::BiAnd, .. }, _, ref r) |
ast::ExprBinary(codemap::Spanned { node: ast::BiOr, .. }, _, ref r) => {
// For shortcircuiting operators, mark the RHS as a terminating
// scope since it only executes conditionally.
terminating(r.id);
}
ast::ExprIf(_, ref then, Some(ref otherwise)) => {
terminating(then.id);
terminating(otherwise.id);
}
ast::ExprIf(ref expr, ref then, None) => {
terminating(expr.id);
terminating(then.id);
}
ast::ExprLoop(ref body, _) => {
terminating(body.id);
}
ast::ExprWhile(ref expr, ref body, _) => {
terminating(expr.id);
terminating(body.id);
}
ast::ExprForLoop(ref _pat, ref _head, ref body, _) => {
terminating(body.id);
// The variable parent of everything inside (most importantly, the
// pattern) is the body.
visitor.cx.var_parent = InnermostDeclaringBlock::Block(body.id);
}
ast::ExprMatch(..) => {
visitor.cx.var_parent = InnermostDeclaringBlock::Match(expr.id);
}
ast::ExprAssignOp(..) | ast::ExprIndex(..) |
ast::ExprUnary(..) | ast::ExprCall(..) | ast::ExprMethodCall(..) => {
// FIXME(#6268) Nested method calls
//
// The lifetimes for a call or method call look as follows:
//
// call.id
// - arg0.id
// - ...
// - argN.id
// - call.callee_id
//
// The idea is that call.callee_id represents *the time when
// the invoked function is actually running* and call.id
// represents *the time to prepare the arguments and make the
// call*. See the section "Borrows in Calls" borrowck/doc.rs
// for an extended explanation of why this distinction is
// important.
//
// record_superlifetime(new_cx, expr.callee_id);
}
_ => {}
}
}
visit::walk_expr(visitor, expr);
visitor.cx = prev_cx;
}
fn resolve_local(visitor: &mut RegionResolutionVisitor, local: &ast::Local) {
debug!("resolve_local(local.id={:?},local.init={:?})",
local.id,local.init.is_some());
// For convenience in trans, associate with the local-id the var
// scope that will be used for any bindings declared in this
// pattern.
let blk_scope = visitor.cx.var_parent.to_code_extent()
.unwrap_or_else(|| visitor.sess.span_bug(
local.span, "local without enclosing block"));
visitor.region_maps.record_var_scope(local.id, blk_scope);
// As an exception to the normal rules governing temporary
// lifetimes, initializers in a let have a temporary lifetime
// of the enclosing block. This means that e.g. a program
// like the following is legal:
//
// let ref x = HashMap::new();
//
// Because the hash map will be freed in the enclosing block.
//
// We express the rules more formally based on 3 grammars (defined
// fully in the helpers below that implement them):
//
// 1. `E&`, which matches expressions like `&<rvalue>` that
// own a pointer into the stack.
//
// 2. `P&`, which matches patterns like `ref x` or `(ref x, ref
// y)` that produce ref bindings into the value they are
// matched against or something (at least partially) owned by
// the value they are matched against. (By partially owned,
// I mean that creating a binding into a ref-counted or managed value
// would still count.)
//
// 3. `ET`, which matches both rvalues like `foo()` as well as lvalues
// based on rvalues like `foo().x[2].y`.
//
// A subexpression `<rvalue>` that appears in a let initializer
// `let pat [: ty] = expr` has an extended temporary lifetime if
// any of the following conditions are met:
//
// A. `pat` matches `P&` and `expr` matches `ET`
// (covers cases where `pat` creates ref bindings into an rvalue
// produced by `expr`)
// B. `ty` is a borrowed pointer and `expr` matches `ET`
// (covers cases where coercion creates a borrow)
// C. `expr` matches `E&`
// (covers cases `expr` borrows an rvalue that is then assigned
// to memory (at least partially) owned by the binding)
//
// Here are some examples hopefully giving an intuition where each
// rule comes into play and why:
//
// Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)`
// would have an extended lifetime, but not `foo()`.
//
// Rule B. `let x: &[...] = [foo().x]`. The rvalue `[foo().x]`
// would have an extended lifetime, but not `foo()`.
//
// Rule C. `let x = &foo().x`. The rvalue ``foo()` would have extended
// lifetime.
//
// In some cases, multiple rules may apply (though not to the same
// rvalue). For example:
//
// let ref x = [&a(), &b()];
//
// Here, the expression `[...]` has an extended lifetime due to rule
// A, but the inner rvalues `a()` and `b()` have an extended lifetime
// due to rule C.
//
// FIXME(#6308) -- Note that `[]` patterns work more smoothly post-DST.
match local.init {
Some(ref expr) => {
record_rvalue_scope_if_borrow_expr(visitor, &**expr, blk_scope);
let is_borrow =
if let Some(ref ty) = local.ty { is_borrowed_ty(&**ty) } else { false };
if is_binding_pat(&*local.pat) || is_borrow {
record_rvalue_scope(visitor, &**expr, blk_scope);
}
}
None => { }
}
visit::walk_local(visitor, local);
/// True if `pat` match the `P&` nonterminal:
///
/// P& = ref X
/// | StructName { ..., P&, ... }
/// | VariantName(..., P&, ...)
/// | [ ..., P&, ... ]
/// | ( ..., P&, ... )
/// | box P&
fn is_binding_pat(pat: &ast::Pat) -> bool {
match pat.node {
ast::PatIdent(ast::BindByRef(_), _, _) => true,
ast::PatStruct(_, ref field_pats, _) => {
field_pats.iter().any(|fp| is_binding_pat(&*fp.node.pat))
}
ast::PatVec(ref pats1, ref pats2, ref pats3) => {
pats1.iter().any(|p| is_binding_pat(&**p)) ||
pats2.iter().any(|p| is_binding_pat(&**p)) ||
pats3.iter().any(|p| is_binding_pat(&**p))
}
ast::PatEnum(_, Some(ref subpats)) |
ast::PatTup(ref subpats) => {
subpats.iter().any(|p| is_binding_pat(&**p))
}
ast::PatBox(ref subpat) => {
is_binding_pat(&**subpat)
}
_ => false,
}
}
/// True if `ty` is a borrowed pointer type like `&int` or `&[...]`.
fn is_borrowed_ty(ty: &ast::Ty) -> bool {
match ty.node {
ast::TyRptr(..) => true,
_ => false
}
}
/// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate:
///
/// E& = & ET
/// | StructName { ..., f: E&, ... }
/// | [ ..., E&, ... ]
/// | ( ..., E&, ... )
/// | {...; E&}
/// | box E&
/// | E& as ...
/// | ( E& )
fn record_rvalue_scope_if_borrow_expr(visitor: &mut RegionResolutionVisitor,
expr: &ast::Expr,
blk_id: CodeExtent) {
match expr.node {
ast::ExprAddrOf(_, ref subexpr) => {
record_rvalue_scope_if_borrow_expr(visitor, &**subexpr, blk_id);
record_rvalue_scope(visitor, &**subexpr, blk_id);
}
ast::ExprStruct(_, ref fields, _) => {
for field in fields.iter() {
record_rvalue_scope_if_borrow_expr(
visitor, &*field.expr, blk_id);
}
}
ast::ExprVec(ref subexprs) |
ast::ExprTup(ref subexprs) => {
for subexpr in subexprs.iter() {
record_rvalue_scope_if_borrow_expr(
visitor, &**subexpr, blk_id);
}
}
ast::ExprUnary(ast::UnUniq, ref subexpr) => {
record_rvalue_scope_if_borrow_expr(visitor, &**subexpr, blk_id);
}
ast::ExprCast(ref subexpr, _) |
ast::ExprParen(ref subexpr) => {
record_rvalue_scope_if_borrow_expr(visitor, &**subexpr, blk_id)
}
ast::ExprBlock(ref block) => {
match block.expr {
Some(ref subexpr) => {
record_rvalue_scope_if_borrow_expr(
visitor, &**subexpr, blk_id);
}
None => { }
}
}
_ => {
}
}
}
/// Applied to an expression `expr` if `expr` -- or something owned or partially owned by
/// `expr` -- is going to be indirectly referenced by a variable in a let statement. In that
/// case, the "temporary lifetime" or `expr` is extended to be the block enclosing the `let`
/// statement.
///
/// More formally, if `expr` matches the grammar `ET`, record the rvalue scope of the matching
/// `<rvalue>` as `blk_id`:
///
/// ET = *ET
/// | ET[...]
/// | ET.f
/// | (ET)
/// | <rvalue>
///
/// Note: ET is intended to match "rvalues or lvalues based on rvalues".
fn record_rvalue_scope<'a>(visitor: &mut RegionResolutionVisitor,
expr: &'a ast::Expr,
blk_scope: CodeExtent) {
let mut expr = expr;
loop {
// Note: give all the expressions matching `ET` with the
// extended temporary lifetime, not just the innermost rvalue,
// because in trans if we must compile e.g. `*rvalue()`
// into a temporary, we request the temporary scope of the
// outer expression.
visitor.region_maps.record_rvalue_scope(expr.id, blk_scope);
match expr.node {
ast::ExprAddrOf(_, ref subexpr) |
ast::ExprUnary(ast::UnDeref, ref subexpr) |
ast::ExprField(ref subexpr, _) |
ast::ExprTupField(ref subexpr, _) |
ast::ExprIndex(ref subexpr, _) |
ast::ExprParen(ref subexpr) => {
expr = &**subexpr;
}
_ => {
return;
}
}
}
}
}
fn resolve_item(visitor: &mut RegionResolutionVisitor, item: &ast::Item) {
// Items create a new outer block scope as far as we're concerned.
let prev_cx = visitor.cx;
visitor.cx = Context {
var_parent: InnermostDeclaringBlock::None,
parent: InnermostEnclosingExpr::None
};
visit::walk_item(visitor, item);
visitor.cx = prev_cx;
}
fn resolve_fn(visitor: &mut RegionResolutionVisitor,
fk: FnKind,
decl: &ast::FnDecl,
body: &ast::Block,
sp: Span,
id: ast::NodeId) {
debug!("region::resolve_fn(id={:?}, \
span={:?}, \
body.id={:?}, \
cx.parent={:?})",
id,
visitor.sess.codemap().span_to_string(sp),
body.id,
visitor.cx.parent);
let body_scope = CodeExtent::from_node_id(body.id);
visitor.region_maps.mark_as_terminating_scope(body_scope);
let outer_cx = visitor.cx;
// The arguments and `self` are parented to the body of the fn.
visitor.cx = Context {
parent: InnermostEnclosingExpr::Some(body.id),
var_parent: InnermostDeclaringBlock::Block(body.id)
};
visit::walk_fn_decl(visitor, decl);
// The body of the fn itself is either a root scope (top-level fn)
// or it continues with the inherited scope (closures).
match fk {
visit::FkItemFn(..) | visit::FkMethod(..) => {
visitor.cx = Context {
parent: InnermostEnclosingExpr::None,
var_parent: InnermostDeclaringBlock::None
};
visitor.visit_block(body);
visitor.cx = outer_cx;
}
visit::FkFnBlock(..) => {
// FIXME(#3696) -- at present we are place the closure body
// within the region hierarchy exactly where it appears lexically.
// This is wrong because the closure may live longer
// than the enclosing expression. We should probably fix this,
// but the correct fix is a bit subtle, and I am also not sure
// that the present approach is unsound -- it may not permit
// any illegal programs. See issue for more details.
visitor.cx = outer_cx;
visitor.visit_block(body);
}
}
}
impl<'a, 'v> Visitor<'v> for RegionResolutionVisitor<'a> {
fn visit_block(&mut self, b: &Block) {
resolve_block(self, b);
}
fn visit_item(&mut self, i: &Item) {
resolve_item(self, i);
}
fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v FnDecl,
b: &'v Block, s: Span, n: NodeId) {
resolve_fn(self, fk, fd, b, s, n);
}
fn visit_arm(&mut self, a: &Arm) {
resolve_arm(self, a);
}
fn visit_pat(&mut self, p: &Pat) {
resolve_pat(self, p);
}
fn visit_stmt(&mut self, s: &Stmt) {
resolve_stmt(self, s);
}
fn visit_expr(&mut self, ex: &Expr) {
resolve_expr(self, ex);
}
fn visit_local(&mut self, l: &Local) {
resolve_local(self, l);
}
}
pub fn resolve_crate(sess: &Session, krate: &ast::Crate) -> RegionMaps {
let maps = RegionMaps {
scope_map: RefCell::new(FnvHashMap()),
var_map: RefCell::new(NodeMap()),
free_region_map: RefCell::new(FnvHashMap()),
rvalue_scopes: RefCell::new(NodeMap()),
terminating_scopes: RefCell::new(FnvHashSet()),
};
{
let mut visitor = RegionResolutionVisitor {
sess: sess,
region_maps: &maps,
cx: Context {
parent: InnermostEnclosingExpr::None,
var_parent: InnermostDeclaringBlock::None,
}
};
visit::walk_crate(&mut visitor, krate);
}
return maps;
}
pub fn resolve_inlined_item(sess: &Session,
region_maps: &RegionMaps,
item: &ast::InlinedItem) {
let mut visitor = RegionResolutionVisitor {
sess: sess,
region_maps: region_maps,
cx: Context {
parent: InnermostEnclosingExpr::None,
var_parent: InnermostDeclaringBlock::None
}
};
visit::walk_inlined_item(&mut visitor, item);
}