rust/clippy_lints/src/derivable_impls.rs

119 lines
4.4 KiB
Rust

use clippy_utils::diagnostics::span_lint_and_help;
use clippy_utils::{in_macro, is_automatically_derived, is_default_equivalent, remove_blocks};
use rustc_hir::{
def::{DefKind, Res},
Body, Expr, ExprKind, GenericArg, Impl, ImplItemKind, Item, ItemKind, Node, PathSegment, QPath, TyKind,
};
use rustc_lint::{LateContext, LateLintPass};
use rustc_session::{declare_lint_pass, declare_tool_lint};
use rustc_span::sym;
declare_clippy_lint! {
/// ### What it does
/// Detects manual `std::default::Default` implementations that are identical to a derived implementation.
///
/// ### Why is this bad?
/// It is less concise.
///
/// ### Example
/// ```rust
/// struct Foo {
/// bar: bool
/// }
///
/// impl std::default::Default for Foo {
/// fn default() -> Self {
/// Self {
/// bar: false
/// }
/// }
/// }
/// ```
///
/// Could be written as:
///
/// ```rust
/// #[derive(Default)]
/// struct Foo {
/// bar: bool
/// }
/// ```
///
/// ### Known problems
/// Derive macros [sometimes use incorrect bounds](https://github.com/rust-lang/rust/issues/26925)
/// in generic types and the user defined `impl` maybe is more generalized or
/// specialized than what derive will produce. This lint can't detect the manual `impl`
/// has exactly equal bounds, and therefore this lint is disabled for types with
/// generic parameters.
///
pub DERIVABLE_IMPLS,
complexity,
"manual implementation of the `Default` trait which is equal to a derive"
}
declare_lint_pass!(DerivableImpls => [DERIVABLE_IMPLS]);
fn is_path_self(e: &Expr<'_>) -> bool {
if let ExprKind::Path(QPath::Resolved(_, p)) = e.kind {
matches!(p.res, Res::SelfCtor(..) | Res::Def(DefKind::Ctor(..), _))
} else {
false
}
}
impl<'tcx> LateLintPass<'tcx> for DerivableImpls {
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) {
if_chain! {
if let ItemKind::Impl(Impl {
of_trait: Some(ref trait_ref),
items: [child],
self_ty,
..
}) = item.kind;
if let attrs = cx.tcx.hir().attrs(item.hir_id());
if !is_automatically_derived(attrs);
if !in_macro(item.span);
if let Some(def_id) = trait_ref.trait_def_id();
if cx.tcx.is_diagnostic_item(sym::Default, def_id);
if let impl_item_hir = child.id.hir_id();
if let Some(Node::ImplItem(impl_item)) = cx.tcx.hir().find(impl_item_hir);
if let ImplItemKind::Fn(_, b) = &impl_item.kind;
if let Body { value: func_expr, .. } = cx.tcx.hir().body(*b);
if let Some(adt_def) = cx.tcx.type_of(item.def_id).ty_adt_def();
if !attrs.iter().any(|attr| attr.doc_str().is_some());
if let child_attrs = cx.tcx.hir().attrs(impl_item_hir);
if !child_attrs.iter().any(|attr| attr.doc_str().is_some());
if adt_def.is_struct();
then {
if let TyKind::Path(QPath::Resolved(_, p)) = self_ty.kind {
if let Some(PathSegment { args: Some(a), .. }) = p.segments.last() {
for arg in a.args {
if !matches!(arg, GenericArg::Lifetime(_)) {
return;
}
}
}
}
let should_emit = match remove_blocks(func_expr).kind {
ExprKind::Tup(fields) => fields.iter().all(|e| is_default_equivalent(cx, e)),
ExprKind::Call(callee, args)
if is_path_self(callee) => args.iter().all(|e| is_default_equivalent(cx, e)),
ExprKind::Struct(_, fields, _) => fields.iter().all(|ef| is_default_equivalent(cx, ef.expr)),
_ => false,
};
if should_emit {
let path_string = cx.tcx.def_path_str(adt_def.did);
span_lint_and_help(
cx,
DERIVABLE_IMPLS,
item.span,
"this `impl` can be derived",
None,
&format!("try annotating `{}` with `#[derive(Default)]`", path_string),
);
}
}
}
}
}