620 lines
20 KiB
Rust
620 lines
20 KiB
Rust
//! The arena, a fast but limited type of allocator.
|
|
//!
|
|
//! Arenas are a type of allocator that destroy the objects within, all at
|
|
//! once, once the arena itself is destroyed. They do not support deallocation
|
|
//! of individual objects while the arena itself is still alive. The benefit
|
|
//! of an arena is very fast allocation; just a pointer bump.
|
|
//!
|
|
//! This crate implements `TypedArena`, a simple arena that can only hold
|
|
//! objects of a single type.
|
|
|
|
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/",
|
|
test(no_crate_inject, attr(deny(warnings))))]
|
|
|
|
#![deny(rust_2018_idioms)]
|
|
#![deny(unused_lifetimes)]
|
|
|
|
#![feature(core_intrinsics)]
|
|
#![feature(dropck_eyepatch)]
|
|
#![feature(raw_vec_internals)]
|
|
#![cfg_attr(test, feature(test))]
|
|
|
|
#![allow(deprecated)]
|
|
|
|
extern crate alloc;
|
|
|
|
use rustc_data_structures::cold_path;
|
|
use rustc_data_structures::sync::MTLock;
|
|
use smallvec::SmallVec;
|
|
|
|
use std::cell::{Cell, RefCell};
|
|
use std::cmp;
|
|
use std::intrinsics;
|
|
use std::marker::{PhantomData, Send};
|
|
use std::mem;
|
|
use std::ptr;
|
|
use std::slice;
|
|
|
|
use alloc::raw_vec::RawVec;
|
|
|
|
/// An arena that can hold objects of only one type.
|
|
pub struct TypedArena<T> {
|
|
/// A pointer to the next object to be allocated.
|
|
ptr: Cell<*mut T>,
|
|
|
|
/// A pointer to the end of the allocated area. When this pointer is
|
|
/// reached, a new chunk is allocated.
|
|
end: Cell<*mut T>,
|
|
|
|
/// A vector of arena chunks.
|
|
chunks: RefCell<Vec<TypedArenaChunk<T>>>,
|
|
|
|
/// Marker indicating that dropping the arena causes its owned
|
|
/// instances of `T` to be dropped.
|
|
_own: PhantomData<T>,
|
|
}
|
|
|
|
struct TypedArenaChunk<T> {
|
|
/// The raw storage for the arena chunk.
|
|
storage: RawVec<T>,
|
|
/// The number of valid entries in the chunk.
|
|
entries: usize,
|
|
}
|
|
|
|
impl<T> TypedArenaChunk<T> {
|
|
#[inline]
|
|
unsafe fn new(capacity: usize) -> TypedArenaChunk<T> {
|
|
TypedArenaChunk {
|
|
storage: RawVec::with_capacity(capacity),
|
|
entries: 0,
|
|
}
|
|
}
|
|
|
|
/// Destroys this arena chunk.
|
|
#[inline]
|
|
unsafe fn destroy(&mut self, len: usize) {
|
|
// The branch on needs_drop() is an -O1 performance optimization.
|
|
// Without the branch, dropping TypedArena<u8> takes linear time.
|
|
if mem::needs_drop::<T>() {
|
|
let mut start = self.start();
|
|
// Destroy all allocated objects.
|
|
for _ in 0..len {
|
|
ptr::drop_in_place(start);
|
|
start = start.offset(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns a pointer to the first allocated object.
|
|
#[inline]
|
|
fn start(&self) -> *mut T {
|
|
self.storage.ptr()
|
|
}
|
|
|
|
// Returns a pointer to the end of the allocated space.
|
|
#[inline]
|
|
fn end(&self) -> *mut T {
|
|
unsafe {
|
|
if mem::size_of::<T>() == 0 {
|
|
// A pointer as large as possible for zero-sized elements.
|
|
!0 as *mut T
|
|
} else {
|
|
self.start().add(self.storage.cap())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const PAGE: usize = 4096;
|
|
|
|
impl<T> Default for TypedArena<T> {
|
|
/// Creates a new `TypedArena`.
|
|
fn default() -> TypedArena<T> {
|
|
TypedArena {
|
|
// We set both `ptr` and `end` to 0 so that the first call to
|
|
// alloc() will trigger a grow().
|
|
ptr: Cell::new(ptr::null_mut()),
|
|
end: Cell::new(ptr::null_mut()),
|
|
chunks: RefCell::new(vec![]),
|
|
_own: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T> TypedArena<T> {
|
|
pub fn in_arena(&self, ptr: *const T) -> bool {
|
|
let ptr = ptr as *const T as *mut T;
|
|
|
|
self.chunks.borrow().iter().any(|chunk| chunk.start() <= ptr && ptr < chunk.end())
|
|
}
|
|
/// Allocates an object in the `TypedArena`, returning a reference to it.
|
|
#[inline]
|
|
pub fn alloc(&self, object: T) -> &mut T {
|
|
if self.ptr == self.end {
|
|
self.grow(1)
|
|
}
|
|
|
|
unsafe {
|
|
if mem::size_of::<T>() == 0 {
|
|
self.ptr
|
|
.set(intrinsics::arith_offset(self.ptr.get() as *mut u8, 1)
|
|
as *mut T);
|
|
let ptr = mem::align_of::<T>() as *mut T;
|
|
// Don't drop the object. This `write` is equivalent to `forget`.
|
|
ptr::write(ptr, object);
|
|
&mut *ptr
|
|
} else {
|
|
let ptr = self.ptr.get();
|
|
// Advance the pointer.
|
|
self.ptr.set(self.ptr.get().offset(1));
|
|
// Write into uninitialized memory.
|
|
ptr::write(ptr, object);
|
|
&mut *ptr
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn can_allocate(&self, len: usize) -> bool {
|
|
let available_capacity_bytes = self.end.get() as usize - self.ptr.get() as usize;
|
|
let at_least_bytes = len.checked_mul(mem::size_of::<T>()).unwrap();
|
|
available_capacity_bytes >= at_least_bytes
|
|
}
|
|
|
|
/// Ensures there's enough space in the current chunk to fit `len` objects.
|
|
#[inline]
|
|
fn ensure_capacity(&self, len: usize) {
|
|
if !self.can_allocate(len) {
|
|
self.grow(len);
|
|
debug_assert!(self.can_allocate(len));
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn alloc_raw_slice(&self, len: usize) -> *mut T {
|
|
assert!(mem::size_of::<T>() != 0);
|
|
assert!(len != 0);
|
|
|
|
self.ensure_capacity(len);
|
|
|
|
let start_ptr = self.ptr.get();
|
|
self.ptr.set(start_ptr.add(len));
|
|
start_ptr
|
|
}
|
|
|
|
/// Allocates a slice of objects that are copied into the `TypedArena`, returning a mutable
|
|
/// reference to it. Will panic if passed a zero-sized types.
|
|
///
|
|
/// Panics:
|
|
///
|
|
/// - Zero-sized types
|
|
/// - Zero-length slices
|
|
#[inline]
|
|
pub fn alloc_slice(&self, slice: &[T]) -> &mut [T]
|
|
where
|
|
T: Copy,
|
|
{
|
|
unsafe {
|
|
let len = slice.len();
|
|
let start_ptr = self.alloc_raw_slice(len);
|
|
slice.as_ptr().copy_to_nonoverlapping(start_ptr, len);
|
|
slice::from_raw_parts_mut(start_ptr, len)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn alloc_from_iter<I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
|
|
assert!(mem::size_of::<T>() != 0);
|
|
let mut iter = iter.into_iter();
|
|
let size_hint = iter.size_hint();
|
|
|
|
match size_hint {
|
|
(min, Some(max)) if min == max => {
|
|
// We know the exact number of elements the iterator will produce here
|
|
let len = min;
|
|
|
|
if len == 0 {
|
|
return &mut [];
|
|
}
|
|
|
|
self.ensure_capacity(len);
|
|
|
|
let slice = self.ptr.get();
|
|
|
|
unsafe {
|
|
let mut ptr = self.ptr.get();
|
|
for _ in 0..len {
|
|
// Write into uninitialized memory.
|
|
ptr::write(ptr, iter.next().unwrap());
|
|
// Advance the pointer.
|
|
ptr = ptr.offset(1);
|
|
// Update the pointer per iteration so if `iter.next()` panics
|
|
// we destroy the correct amount
|
|
self.ptr.set(ptr);
|
|
}
|
|
slice::from_raw_parts_mut(slice, len)
|
|
}
|
|
}
|
|
_ => {
|
|
cold_path(move || -> &mut [T] {
|
|
let mut vec: SmallVec<[_; 8]> = iter.collect();
|
|
if vec.is_empty() {
|
|
return &mut [];
|
|
}
|
|
// Move the content to the arena by copying it and then forgetting
|
|
// the content of the SmallVec
|
|
unsafe {
|
|
let len = vec.len();
|
|
let start_ptr = self.alloc_raw_slice(len);
|
|
vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
|
|
vec.set_len(0);
|
|
slice::from_raw_parts_mut(start_ptr, len)
|
|
}
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Grows the arena.
|
|
#[inline(never)]
|
|
#[cold]
|
|
fn grow(&self, n: usize) {
|
|
unsafe {
|
|
let mut chunks = self.chunks.borrow_mut();
|
|
let (chunk, mut new_capacity);
|
|
if let Some(last_chunk) = chunks.last_mut() {
|
|
let used_bytes = self.ptr.get() as usize - last_chunk.start() as usize;
|
|
let currently_used_cap = used_bytes / mem::size_of::<T>();
|
|
last_chunk.entries = currently_used_cap;
|
|
if last_chunk.storage.reserve_in_place(currently_used_cap, n) {
|
|
self.end.set(last_chunk.end());
|
|
return;
|
|
} else {
|
|
new_capacity = last_chunk.storage.cap();
|
|
loop {
|
|
new_capacity = new_capacity.checked_mul(2).unwrap();
|
|
if new_capacity >= currently_used_cap + n {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
let elem_size = cmp::max(1, mem::size_of::<T>());
|
|
new_capacity = cmp::max(n, PAGE / elem_size);
|
|
}
|
|
chunk = TypedArenaChunk::<T>::new(new_capacity);
|
|
self.ptr.set(chunk.start());
|
|
self.end.set(chunk.end());
|
|
chunks.push(chunk);
|
|
}
|
|
}
|
|
|
|
/// Clears the arena. Deallocates all but the longest chunk which may be reused.
|
|
pub fn clear(&mut self) {
|
|
unsafe {
|
|
// Clear the last chunk, which is partially filled.
|
|
let mut chunks_borrow = self.chunks.borrow_mut();
|
|
if let Some(mut last_chunk) = chunks_borrow.last_mut() {
|
|
self.clear_last_chunk(&mut last_chunk);
|
|
let len = chunks_borrow.len();
|
|
// If `T` is ZST, code below has no effect.
|
|
for mut chunk in chunks_borrow.drain(..len-1) {
|
|
chunk.destroy(chunk.entries);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Drops the contents of the last chunk. The last chunk is partially empty, unlike all other
|
|
// chunks.
|
|
fn clear_last_chunk(&self, last_chunk: &mut TypedArenaChunk<T>) {
|
|
// Determine how much was filled.
|
|
let start = last_chunk.start() as usize;
|
|
// We obtain the value of the pointer to the first uninitialized element.
|
|
let end = self.ptr.get() as usize;
|
|
// We then calculate the number of elements to be dropped in the last chunk,
|
|
// which is the filled area's length.
|
|
let diff = if mem::size_of::<T>() == 0 {
|
|
// `T` is ZST. It can't have a drop flag, so the value here doesn't matter. We get
|
|
// the number of zero-sized values in the last and only chunk, just out of caution.
|
|
// Recall that `end` was incremented for each allocated value.
|
|
end - start
|
|
} else {
|
|
(end - start) / mem::size_of::<T>()
|
|
};
|
|
// Pass that to the `destroy` method.
|
|
unsafe {
|
|
last_chunk.destroy(diff);
|
|
}
|
|
// Reset the chunk.
|
|
self.ptr.set(last_chunk.start());
|
|
}
|
|
}
|
|
|
|
unsafe impl<#[may_dangle] T> Drop for TypedArena<T> {
|
|
fn drop(&mut self) {
|
|
unsafe {
|
|
// Determine how much was filled.
|
|
let mut chunks_borrow = self.chunks.borrow_mut();
|
|
if let Some(mut last_chunk) = chunks_borrow.pop() {
|
|
// Drop the contents of the last chunk.
|
|
self.clear_last_chunk(&mut last_chunk);
|
|
// The last chunk will be dropped. Destroy all other chunks.
|
|
for chunk in chunks_borrow.iter_mut() {
|
|
chunk.destroy(chunk.entries);
|
|
}
|
|
}
|
|
// RawVec handles deallocation of `last_chunk` and `self.chunks`.
|
|
}
|
|
}
|
|
}
|
|
|
|
unsafe impl<T: Send> Send for TypedArena<T> {}
|
|
|
|
pub struct DroplessArena {
|
|
/// A pointer to the next object to be allocated.
|
|
ptr: Cell<*mut u8>,
|
|
|
|
/// A pointer to the end of the allocated area. When this pointer is
|
|
/// reached, a new chunk is allocated.
|
|
end: Cell<*mut u8>,
|
|
|
|
/// A vector of arena chunks.
|
|
chunks: RefCell<Vec<TypedArenaChunk<u8>>>,
|
|
}
|
|
|
|
unsafe impl Send for DroplessArena {}
|
|
|
|
impl Default for DroplessArena {
|
|
#[inline]
|
|
fn default() -> DroplessArena {
|
|
DroplessArena {
|
|
ptr: Cell::new(ptr::null_mut()),
|
|
end: Cell::new(ptr::null_mut()),
|
|
chunks: Default::default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl DroplessArena {
|
|
pub fn in_arena<T: ?Sized>(&self, ptr: *const T) -> bool {
|
|
let ptr = ptr as *const u8 as *mut u8;
|
|
|
|
self.chunks.borrow().iter().any(|chunk| chunk.start() <= ptr && ptr < chunk.end())
|
|
}
|
|
|
|
#[inline]
|
|
fn align(&self, align: usize) {
|
|
let final_address = ((self.ptr.get() as usize) + align - 1) & !(align - 1);
|
|
self.ptr.set(final_address as *mut u8);
|
|
assert!(self.ptr <= self.end);
|
|
}
|
|
|
|
#[inline(never)]
|
|
#[cold]
|
|
fn grow(&self, needed_bytes: usize) {
|
|
unsafe {
|
|
let mut chunks = self.chunks.borrow_mut();
|
|
let (chunk, mut new_capacity);
|
|
if let Some(last_chunk) = chunks.last_mut() {
|
|
let used_bytes = self.ptr.get() as usize - last_chunk.start() as usize;
|
|
if last_chunk
|
|
.storage
|
|
.reserve_in_place(used_bytes, needed_bytes)
|
|
{
|
|
self.end.set(last_chunk.end());
|
|
return;
|
|
} else {
|
|
new_capacity = last_chunk.storage.cap();
|
|
loop {
|
|
new_capacity = new_capacity.checked_mul(2).unwrap();
|
|
if new_capacity >= used_bytes + needed_bytes {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
new_capacity = cmp::max(needed_bytes, PAGE);
|
|
}
|
|
chunk = TypedArenaChunk::<u8>::new(new_capacity);
|
|
self.ptr.set(chunk.start());
|
|
self.end.set(chunk.end());
|
|
chunks.push(chunk);
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn alloc_raw(&self, bytes: usize, align: usize) -> &mut [u8] {
|
|
unsafe {
|
|
assert!(bytes != 0);
|
|
|
|
self.align(align);
|
|
|
|
let future_end = intrinsics::arith_offset(self.ptr.get(), bytes as isize);
|
|
if (future_end as *mut u8) >= self.end.get() {
|
|
self.grow(bytes);
|
|
}
|
|
|
|
let ptr = self.ptr.get();
|
|
// Set the pointer past ourselves
|
|
self.ptr.set(
|
|
intrinsics::arith_offset(self.ptr.get(), bytes as isize) as *mut u8,
|
|
);
|
|
slice::from_raw_parts_mut(ptr, bytes)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn alloc<T>(&self, object: T) -> &mut T {
|
|
assert!(!mem::needs_drop::<T>());
|
|
|
|
let mem = self.alloc_raw(
|
|
mem::size_of::<T>(),
|
|
mem::align_of::<T>()) as *mut _ as *mut T;
|
|
|
|
unsafe {
|
|
// Write into uninitialized memory.
|
|
ptr::write(mem, object);
|
|
&mut *mem
|
|
}
|
|
}
|
|
|
|
/// Allocates a slice of objects that are copied into the `DroplessArena`, returning a mutable
|
|
/// reference to it. Will panic if passed a zero-sized type.
|
|
///
|
|
/// Panics:
|
|
///
|
|
/// - Zero-sized types
|
|
/// - Zero-length slices
|
|
#[inline]
|
|
pub fn alloc_slice<T>(&self, slice: &[T]) -> &mut [T]
|
|
where
|
|
T: Copy,
|
|
{
|
|
assert!(!mem::needs_drop::<T>());
|
|
assert!(mem::size_of::<T>() != 0);
|
|
assert!(!slice.is_empty());
|
|
|
|
let mem = self.alloc_raw(
|
|
slice.len() * mem::size_of::<T>(),
|
|
mem::align_of::<T>()) as *mut _ as *mut T;
|
|
|
|
unsafe {
|
|
let arena_slice = slice::from_raw_parts_mut(mem, slice.len());
|
|
arena_slice.copy_from_slice(slice);
|
|
arena_slice
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn write_from_iter<T, I: Iterator<Item = T>>(
|
|
&self,
|
|
mut iter: I,
|
|
len: usize,
|
|
mem: *mut T,
|
|
) -> &mut [T] {
|
|
let mut i = 0;
|
|
// Use a manual loop since LLVM manages to optimize it better for
|
|
// slice iterators
|
|
loop {
|
|
let value = iter.next();
|
|
if i >= len || value.is_none() {
|
|
// We only return as many items as the iterator gave us, even
|
|
// though it was supposed to give us `len`
|
|
return slice::from_raw_parts_mut(mem, i);
|
|
}
|
|
ptr::write(mem.offset(i as isize), value.unwrap());
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
|
|
let iter = iter.into_iter();
|
|
assert!(mem::size_of::<T>() != 0);
|
|
assert!(!mem::needs_drop::<T>());
|
|
|
|
let size_hint = iter.size_hint();
|
|
|
|
match size_hint {
|
|
(min, Some(max)) if min == max => {
|
|
// We know the exact number of elements the iterator will produce here
|
|
let len = min;
|
|
|
|
if len == 0 {
|
|
return &mut []
|
|
}
|
|
let size = len.checked_mul(mem::size_of::<T>()).unwrap();
|
|
let mem = self.alloc_raw(size, mem::align_of::<T>()) as *mut _ as *mut T;
|
|
unsafe {
|
|
self.write_from_iter(iter, len, mem)
|
|
}
|
|
}
|
|
(_, _) => {
|
|
cold_path(move || -> &mut [T] {
|
|
let mut vec: SmallVec<[_; 8]> = iter.collect();
|
|
if vec.is_empty() {
|
|
return &mut [];
|
|
}
|
|
// Move the content to the arena by copying it and then forgetting
|
|
// the content of the SmallVec
|
|
unsafe {
|
|
let len = vec.len();
|
|
let start_ptr = self.alloc_raw(
|
|
len * mem::size_of::<T>(),
|
|
mem::align_of::<T>()
|
|
) as *mut _ as *mut T;
|
|
vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
|
|
vec.set_len(0);
|
|
slice::from_raw_parts_mut(start_ptr, len)
|
|
}
|
|
})
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Default)]
|
|
// FIXME(@Zoxc): this type is entirely unused in rustc
|
|
pub struct SyncTypedArena<T> {
|
|
lock: MTLock<TypedArena<T>>,
|
|
}
|
|
|
|
impl<T> SyncTypedArena<T> {
|
|
#[inline(always)]
|
|
pub fn alloc(&self, object: T) -> &mut T {
|
|
// Extend the lifetime of the result since it's limited to the lock guard
|
|
unsafe { &mut *(self.lock.lock().alloc(object) as *mut T) }
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn alloc_slice(&self, slice: &[T]) -> &mut [T]
|
|
where
|
|
T: Copy,
|
|
{
|
|
// Extend the lifetime of the result since it's limited to the lock guard
|
|
unsafe { &mut *(self.lock.lock().alloc_slice(slice) as *mut [T]) }
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn clear(&mut self) {
|
|
self.lock.get_mut().clear();
|
|
}
|
|
}
|
|
|
|
#[derive(Default)]
|
|
pub struct SyncDroplessArena {
|
|
lock: MTLock<DroplessArena>,
|
|
}
|
|
|
|
impl SyncDroplessArena {
|
|
#[inline(always)]
|
|
pub fn in_arena<T: ?Sized>(&self, ptr: *const T) -> bool {
|
|
self.lock.lock().in_arena(ptr)
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn alloc_raw(&self, bytes: usize, align: usize) -> &mut [u8] {
|
|
// Extend the lifetime of the result since it's limited to the lock guard
|
|
unsafe { &mut *(self.lock.lock().alloc_raw(bytes, align) as *mut [u8]) }
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn alloc<T>(&self, object: T) -> &mut T {
|
|
// Extend the lifetime of the result since it's limited to the lock guard
|
|
unsafe { &mut *(self.lock.lock().alloc(object) as *mut T) }
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn alloc_slice<T>(&self, slice: &[T]) -> &mut [T]
|
|
where
|
|
T: Copy,
|
|
{
|
|
// Extend the lifetime of the result since it's limited to the lock guard
|
|
unsafe { &mut *(self.lock.lock().alloc_slice(slice) as *mut [T]) }
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests;
|