232424d995
This commit stabilizes the `std::num` module: * The `Int` and `Float` traits are deprecated in favor of (1) the newly-added inherent methods and (2) the generic traits available in rust-lang/num. * The `Zero` and `One` traits are reintroduced in `std::num`, which together with various other traits allow you to recover the most common forms of generic programming. * The `FromStrRadix` trait, and associated free function, is deprecated in favor of inherent implementations. * A wide range of methods and constants for both integers and floating point numbers are now `#[stable]`, having been adjusted for integer guidelines. * `is_positive` and `is_negative` are renamed to `is_sign_positive` and `is_sign_negative`, in order to address #22985 * The `Wrapping` type is moved to `std::num` and stabilized; `WrappingOps` is deprecated in favor of inherent methods on the integer types, and direct implementation of operations on `Wrapping<X>` for each concrete integer type `X`. Closes #22985 Closes #21069 [breaking-change]
1883 lines
62 KiB
Rust
1883 lines
62 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Numeric traits and functions for generic mathematics
|
|
//!
|
|
//! These are implemented for the primitive numeric types in `std::{u8, u16,
|
|
//! u32, u64, usize, i8, i16, i32, i64, isize, f32, f64}`.
|
|
|
|
#![stable(feature = "rust1", since = "1.0.0")]
|
|
#![allow(missing_docs)]
|
|
#![allow(deprecated)]
|
|
|
|
#[cfg(test)] use fmt::Debug;
|
|
use ops::{Add, Sub, Mul, Div, Rem, Neg};
|
|
|
|
use marker::Copy;
|
|
use clone::Clone;
|
|
use cmp::{PartialOrd, PartialEq};
|
|
|
|
pub use core::num::{Int, SignedInt, Zero, One};
|
|
pub use core::num::{cast, FromPrimitive, NumCast, ToPrimitive};
|
|
pub use core::num::{from_int, from_i8, from_i16, from_i32, from_i64};
|
|
pub use core::num::{from_uint, from_u8, from_u16, from_u32, from_u64};
|
|
pub use core::num::{from_f32, from_f64};
|
|
pub use core::num::{FromStrRadix, from_str_radix};
|
|
pub use core::num::{FpCategory, ParseIntError, ParseFloatError};
|
|
pub use core::num::{wrapping, Wrapping};
|
|
|
|
use option::Option;
|
|
|
|
#[unstable(feature = "std_misc", reason = "likely to be removed")]
|
|
pub mod strconv;
|
|
|
|
/// Mathematical operations on primitive floating point numbers.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[deprecated(since = "1.0.0",
|
|
reason = "replaced by inherent methods; use rust-lang/num for generics")]
|
|
pub trait Float
|
|
: Copy + Clone
|
|
+ NumCast
|
|
+ PartialOrd
|
|
+ PartialEq
|
|
+ Neg<Output=Self>
|
|
+ Add<Output=Self>
|
|
+ Sub<Output=Self>
|
|
+ Mul<Output=Self>
|
|
+ Div<Output=Self>
|
|
+ Rem<Output=Self>
|
|
{
|
|
// inlined methods from `num::Float`
|
|
/// Returns the `NaN` value.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let nan: f32 = Float::nan();
|
|
///
|
|
/// assert!(nan.is_nan());
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "unsure about its place in the world")]
|
|
fn nan() -> Self;
|
|
/// Returns the infinite value.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
/// use std::f32;
|
|
///
|
|
/// let infinity: f32 = Float::infinity();
|
|
///
|
|
/// assert!(infinity.is_infinite());
|
|
/// assert!(!infinity.is_finite());
|
|
/// assert!(infinity > f32::MAX);
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "unsure about its place in the world")]
|
|
fn infinity() -> Self;
|
|
/// Returns the negative infinite value.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
/// use std::f32;
|
|
///
|
|
/// let neg_infinity: f32 = Float::neg_infinity();
|
|
///
|
|
/// assert!(neg_infinity.is_infinite());
|
|
/// assert!(!neg_infinity.is_finite());
|
|
/// assert!(neg_infinity < f32::MIN);
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "unsure about its place in the world")]
|
|
fn neg_infinity() -> Self;
|
|
/// Returns `0.0`.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let inf: f32 = Float::infinity();
|
|
/// let zero: f32 = Float::zero();
|
|
/// let neg_zero: f32 = Float::neg_zero();
|
|
///
|
|
/// assert_eq!(zero, neg_zero);
|
|
/// assert_eq!(7.0f32/inf, zero);
|
|
/// assert_eq!(zero * 10.0, zero);
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "unsure about its place in the world")]
|
|
fn zero() -> Self;
|
|
/// Returns `-0.0`.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let inf: f32 = Float::infinity();
|
|
/// let zero: f32 = Float::zero();
|
|
/// let neg_zero: f32 = Float::neg_zero();
|
|
///
|
|
/// assert_eq!(zero, neg_zero);
|
|
/// assert_eq!(7.0f32/inf, zero);
|
|
/// assert_eq!(zero * 10.0, zero);
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "unsure about its place in the world")]
|
|
fn neg_zero() -> Self;
|
|
/// Returns `1.0`.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let one: f32 = Float::one();
|
|
///
|
|
/// assert_eq!(one, 1.0f32);
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "unsure about its place in the world")]
|
|
fn one() -> Self;
|
|
|
|
// FIXME (#5527): These should be associated constants
|
|
|
|
/// Deprecated: use `std::f32::MANTISSA_DIGITS` or `std::f64::MANTISSA_DIGITS`
|
|
/// instead.
|
|
#[unstable(feature = "std_misc")]
|
|
#[deprecated(since = "1.0.0",
|
|
reason = "use `std::f32::MANTISSA_DIGITS` or \
|
|
`std::f64::MANTISSA_DIGITS` as appropriate")]
|
|
fn mantissa_digits(unused_self: Option<Self>) -> usize;
|
|
/// Deprecated: use `std::f32::DIGITS` or `std::f64::DIGITS` instead.
|
|
#[unstable(feature = "std_misc")]
|
|
#[deprecated(since = "1.0.0",
|
|
reason = "use `std::f32::DIGITS` or `std::f64::DIGITS` as appropriate")]
|
|
fn digits(unused_self: Option<Self>) -> usize;
|
|
/// Deprecated: use `std::f32::EPSILON` or `std::f64::EPSILON` instead.
|
|
#[unstable(feature = "std_misc")]
|
|
#[deprecated(since = "1.0.0",
|
|
reason = "use `std::f32::EPSILON` or `std::f64::EPSILON` as appropriate")]
|
|
fn epsilon() -> Self;
|
|
/// Deprecated: use `std::f32::MIN_EXP` or `std::f64::MIN_EXP` instead.
|
|
#[unstable(feature = "std_misc")]
|
|
#[deprecated(since = "1.0.0",
|
|
reason = "use `std::f32::MIN_EXP` or `std::f64::MIN_EXP` as appropriate")]
|
|
fn min_exp(unused_self: Option<Self>) -> isize;
|
|
/// Deprecated: use `std::f32::MAX_EXP` or `std::f64::MAX_EXP` instead.
|
|
#[unstable(feature = "std_misc")]
|
|
#[deprecated(since = "1.0.0",
|
|
reason = "use `std::f32::MAX_EXP` or `std::f64::MAX_EXP` as appropriate")]
|
|
fn max_exp(unused_self: Option<Self>) -> isize;
|
|
/// Deprecated: use `std::f32::MIN_10_EXP` or `std::f64::MIN_10_EXP` instead.
|
|
#[unstable(feature = "std_misc")]
|
|
#[deprecated(since = "1.0.0",
|
|
reason = "use `std::f32::MIN_10_EXP` or `std::f64::MIN_10_EXP` as appropriate")]
|
|
fn min_10_exp(unused_self: Option<Self>) -> isize;
|
|
/// Deprecated: use `std::f32::MAX_10_EXP` or `std::f64::MAX_10_EXP` instead.
|
|
#[unstable(feature = "std_misc")]
|
|
#[deprecated(since = "1.0.0",
|
|
reason = "use `std::f32::MAX_10_EXP` or `std::f64::MAX_10_EXP` as appropriate")]
|
|
fn max_10_exp(unused_self: Option<Self>) -> isize;
|
|
|
|
/// Returns the smallest finite value that this type can represent.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let x: f64 = Float::min_value();
|
|
///
|
|
/// assert_eq!(x, f64::MIN);
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "unsure about its place in the world")]
|
|
fn min_value() -> Self;
|
|
/// Returns the smallest normalized positive number that this type can represent.
|
|
#[unstable(feature = "std_misc",
|
|
reason = "unsure about its place in the world")]
|
|
fn min_pos_value(unused_self: Option<Self>) -> Self;
|
|
/// Returns the largest finite value that this type can represent.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let x: f64 = Float::max_value();
|
|
/// assert_eq!(x, f64::MAX);
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "unsure about its place in the world")]
|
|
fn max_value() -> Self;
|
|
/// Returns `true` if this value is `NaN` and false otherwise.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let nan = f64::NAN;
|
|
/// let f = 7.0;
|
|
///
|
|
/// assert!(nan.is_nan());
|
|
/// assert!(!f.is_nan());
|
|
/// ```
|
|
#[unstable(feature = "std_misc", reason = "position is undecided")]
|
|
fn is_nan(self) -> bool;
|
|
/// Returns `true` if this value is positive infinity or negative infinity and
|
|
/// false otherwise.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
/// use std::f32;
|
|
///
|
|
/// let f = 7.0f32;
|
|
/// let inf: f32 = Float::infinity();
|
|
/// let neg_inf: f32 = Float::neg_infinity();
|
|
/// let nan: f32 = f32::NAN;
|
|
///
|
|
/// assert!(!f.is_infinite());
|
|
/// assert!(!nan.is_infinite());
|
|
///
|
|
/// assert!(inf.is_infinite());
|
|
/// assert!(neg_inf.is_infinite());
|
|
/// ```
|
|
#[unstable(feature = "std_misc", reason = "position is undecided")]
|
|
fn is_infinite(self) -> bool;
|
|
/// Returns `true` if this number is neither infinite nor `NaN`.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
/// use std::f32;
|
|
///
|
|
/// let f = 7.0f32;
|
|
/// let inf: f32 = Float::infinity();
|
|
/// let neg_inf: f32 = Float::neg_infinity();
|
|
/// let nan: f32 = f32::NAN;
|
|
///
|
|
/// assert!(f.is_finite());
|
|
///
|
|
/// assert!(!nan.is_finite());
|
|
/// assert!(!inf.is_finite());
|
|
/// assert!(!neg_inf.is_finite());
|
|
/// ```
|
|
#[unstable(feature = "std_misc", reason = "position is undecided")]
|
|
fn is_finite(self) -> bool;
|
|
|
|
/// Returns `true` if the number is neither zero, infinite,
|
|
/// [subnormal][subnormal], or `NaN`.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
/// use std::f32;
|
|
///
|
|
/// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
|
|
/// let max = f32::MAX;
|
|
/// let lower_than_min = 1.0e-40_f32;
|
|
/// let zero = 0.0f32;
|
|
///
|
|
/// assert!(min.is_normal());
|
|
/// assert!(max.is_normal());
|
|
///
|
|
/// assert!(!zero.is_normal());
|
|
/// assert!(!f32::NAN.is_normal());
|
|
/// assert!(!f32::INFINITY.is_normal());
|
|
/// // Values between `0` and `min` are Subnormal.
|
|
/// assert!(!lower_than_min.is_normal());
|
|
/// ```
|
|
/// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number
|
|
#[unstable(feature = "std_misc", reason = "position is undecided")]
|
|
fn is_normal(self) -> bool;
|
|
|
|
/// Returns the floating point category of the number. If only one property
|
|
/// is going to be tested, it is generally faster to use the specific
|
|
/// predicate instead.
|
|
///
|
|
/// ```
|
|
/// # #![feature(core)]
|
|
/// use std::num::{Float, FpCategory};
|
|
/// use std::f32;
|
|
///
|
|
/// let num = 12.4f32;
|
|
/// let inf = f32::INFINITY;
|
|
///
|
|
/// assert_eq!(num.classify(), FpCategory::Normal);
|
|
/// assert_eq!(inf.classify(), FpCategory::Infinite);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn classify(self) -> FpCategory;
|
|
|
|
/// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
|
|
/// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
|
|
/// The floating point encoding is documented in the [Reference][floating-point].
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let num = 2.0f32;
|
|
///
|
|
/// // (8388608, -22, 1)
|
|
/// let (mantissa, exponent, sign) = num.integer_decode();
|
|
/// let sign_f = sign as f32;
|
|
/// let mantissa_f = mantissa as f32;
|
|
/// let exponent_f = num.powf(exponent as f32);
|
|
///
|
|
/// // 1 * 8388608 * 2^(-22) == 2
|
|
/// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
/// [floating-point]: ../../../../../reference.html#machine-types
|
|
#[unstable(feature = "std_misc", reason = "signature is undecided")]
|
|
fn integer_decode(self) -> (u64, i16, i8);
|
|
|
|
/// Returns the largest integer less than or equal to a number.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let f = 3.99;
|
|
/// let g = 3.0;
|
|
///
|
|
/// assert_eq!(f.floor(), 3.0);
|
|
/// assert_eq!(g.floor(), 3.0);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn floor(self) -> Self;
|
|
/// Returns the smallest integer greater than or equal to a number.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let f = 3.01;
|
|
/// let g = 4.0;
|
|
///
|
|
/// assert_eq!(f.ceil(), 4.0);
|
|
/// assert_eq!(g.ceil(), 4.0);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn ceil(self) -> Self;
|
|
/// Returns the nearest integer to a number. Round half-way cases away from
|
|
/// `0.0`.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let f = 3.3;
|
|
/// let g = -3.3;
|
|
///
|
|
/// assert_eq!(f.round(), 3.0);
|
|
/// assert_eq!(g.round(), -3.0);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn round(self) -> Self;
|
|
/// Return the integer part of a number.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let f = 3.3;
|
|
/// let g = -3.7;
|
|
///
|
|
/// assert_eq!(f.trunc(), 3.0);
|
|
/// assert_eq!(g.trunc(), -3.0);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn trunc(self) -> Self;
|
|
/// Returns the fractional part of a number.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let x = 3.5;
|
|
/// let y = -3.5;
|
|
/// let abs_difference_x = (x.fract() - 0.5).abs();
|
|
/// let abs_difference_y = (y.fract() - (-0.5)).abs();
|
|
///
|
|
/// assert!(abs_difference_x < 1e-10);
|
|
/// assert!(abs_difference_y < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn fract(self) -> Self;
|
|
/// Computes the absolute value of `self`. Returns `Float::nan()` if the
|
|
/// number is `Float::nan()`.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let x = 3.5;
|
|
/// let y = -3.5;
|
|
///
|
|
/// let abs_difference_x = (x.abs() - x).abs();
|
|
/// let abs_difference_y = (y.abs() - (-y)).abs();
|
|
///
|
|
/// assert!(abs_difference_x < 1e-10);
|
|
/// assert!(abs_difference_y < 1e-10);
|
|
///
|
|
/// assert!(f64::NAN.abs().is_nan());
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn abs(self) -> Self;
|
|
/// Returns a number that represents the sign of `self`.
|
|
///
|
|
/// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
|
|
/// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
|
|
/// - `Float::nan()` if the number is `Float::nan()`
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let f = 3.5;
|
|
///
|
|
/// assert_eq!(f.signum(), 1.0);
|
|
/// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
|
|
///
|
|
/// assert!(f64::NAN.signum().is_nan());
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn signum(self) -> Self;
|
|
/// Returns `true` if `self` is positive, including `+0.0` and
|
|
/// `Float::infinity()`.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let nan: f64 = f64::NAN;
|
|
///
|
|
/// let f = 7.0;
|
|
/// let g = -7.0;
|
|
///
|
|
/// assert!(f.is_positive());
|
|
/// assert!(!g.is_positive());
|
|
/// // Requires both tests to determine if is `NaN`
|
|
/// assert!(!nan.is_positive() && !nan.is_negative());
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn is_positive(self) -> bool;
|
|
/// Returns `true` if `self` is negative, including `-0.0` and
|
|
/// `Float::neg_infinity()`.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let nan = f64::NAN;
|
|
///
|
|
/// let f = 7.0;
|
|
/// let g = -7.0;
|
|
///
|
|
/// assert!(!f.is_negative());
|
|
/// assert!(g.is_negative());
|
|
/// // Requires both tests to determine if is `NaN`.
|
|
/// assert!(!nan.is_positive() && !nan.is_negative());
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn is_negative(self) -> bool;
|
|
|
|
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
|
|
/// error. This produces a more accurate result with better performance than
|
|
/// a separate multiplication operation followed by an add.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let m = 10.0;
|
|
/// let x = 4.0;
|
|
/// let b = 60.0;
|
|
///
|
|
/// // 100.0
|
|
/// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "unsure about its place in the world")]
|
|
fn mul_add(self, a: Self, b: Self) -> Self;
|
|
/// Take the reciprocal (inverse) of a number, `1/x`.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let x = 2.0;
|
|
/// let abs_difference = (x.recip() - (1.0/x)).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "unsure about its place in the world")]
|
|
fn recip(self) -> Self;
|
|
|
|
/// Raise a number to an integer power.
|
|
///
|
|
/// Using this function is generally faster than using `powf`
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let x = 2.0;
|
|
/// let abs_difference = (x.powi(2) - x*x).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn powi(self, n: i32) -> Self;
|
|
/// Raise a number to a floating point power.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let x = 2.0;
|
|
/// let abs_difference = (x.powf(2.0) - x*x).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn powf(self, n: Self) -> Self;
|
|
/// Take the square root of a number.
|
|
///
|
|
/// Returns NaN if `self` is a negative number.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let positive = 4.0;
|
|
/// let negative = -4.0;
|
|
///
|
|
/// let abs_difference = (positive.sqrt() - 2.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// assert!(negative.sqrt().is_nan());
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn sqrt(self) -> Self;
|
|
|
|
/// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let f = 4.0;
|
|
///
|
|
/// let abs_difference = (f.rsqrt() - 0.5).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "unsure about its place in the world")]
|
|
fn rsqrt(self) -> Self;
|
|
|
|
/// Returns `e^(self)`, (the exponential function).
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let one = 1.0;
|
|
/// // e^1
|
|
/// let e = one.exp();
|
|
///
|
|
/// // ln(e) - 1 == 0
|
|
/// let abs_difference = (e.ln() - 1.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn exp(self) -> Self;
|
|
/// Returns `2^(self)`.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let f = 2.0;
|
|
///
|
|
/// // 2^2 - 4 == 0
|
|
/// let abs_difference = (f.exp2() - 4.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn exp2(self) -> Self;
|
|
/// Returns the natural logarithm of the number.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let one = 1.0;
|
|
/// // e^1
|
|
/// let e = one.exp();
|
|
///
|
|
/// // ln(e) - 1 == 0
|
|
/// let abs_difference = (e.ln() - 1.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn ln(self) -> Self;
|
|
/// Returns the logarithm of the number with respect to an arbitrary base.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let ten = 10.0;
|
|
/// let two = 2.0;
|
|
///
|
|
/// // log10(10) - 1 == 0
|
|
/// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
|
|
///
|
|
/// // log2(2) - 1 == 0
|
|
/// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
|
|
///
|
|
/// assert!(abs_difference_10 < 1e-10);
|
|
/// assert!(abs_difference_2 < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn log(self, base: Self) -> Self;
|
|
/// Returns the base 2 logarithm of the number.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let two = 2.0;
|
|
///
|
|
/// // log2(2) - 1 == 0
|
|
/// let abs_difference = (two.log2() - 1.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn log2(self) -> Self;
|
|
/// Returns the base 10 logarithm of the number.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let ten = 10.0;
|
|
///
|
|
/// // log10(10) - 1 == 0
|
|
/// let abs_difference = (ten.log10() - 1.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn log10(self) -> Self;
|
|
|
|
/// Convert radians to degrees.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc, core)]
|
|
/// use std::num::Float;
|
|
/// use std::f64::consts;
|
|
///
|
|
/// let angle = consts::PI;
|
|
///
|
|
/// let abs_difference = (angle.to_degrees() - 180.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[unstable(feature = "std_misc", reason = "desirability is unclear")]
|
|
fn to_degrees(self) -> Self;
|
|
/// Convert degrees to radians.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc, core)]
|
|
/// use std::num::Float;
|
|
/// use std::f64::consts;
|
|
///
|
|
/// let angle = 180.0;
|
|
///
|
|
/// let abs_difference = (angle.to_radians() - consts::PI).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[unstable(feature = "std_misc", reason = "desirability is unclear")]
|
|
fn to_radians(self) -> Self;
|
|
/// Constructs a floating point number of `x*2^exp`.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// // 3*2^2 - 12 == 0
|
|
/// let abs_difference = (Float::ldexp(3.0, 2) - 12.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "pending integer conventions")]
|
|
fn ldexp(self, exp: isize) -> Self;
|
|
/// Breaks the number into a normalized fraction and a base-2 exponent,
|
|
/// satisfying:
|
|
///
|
|
/// * `self = x * 2^exp`
|
|
/// * `0.5 <= abs(x) < 1.0`
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let x = 4.0;
|
|
///
|
|
/// // (1/2)*2^3 -> 1 * 8/2 -> 4.0
|
|
/// let f = x.frexp();
|
|
/// let abs_difference_0 = (f.0 - 0.5).abs();
|
|
/// let abs_difference_1 = (f.1 as f64 - 3.0).abs();
|
|
///
|
|
/// assert!(abs_difference_0 < 1e-10);
|
|
/// assert!(abs_difference_1 < 1e-10);
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "pending integer conventions")]
|
|
fn frexp(self) -> (Self, isize);
|
|
/// Returns the next representable floating-point value in the direction of
|
|
/// `other`.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let x = 1.0f32;
|
|
///
|
|
/// let abs_diff = (x.next_after(2.0) - 1.00000011920928955078125_f32).abs();
|
|
///
|
|
/// assert!(abs_diff < 1e-10);
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "unsure about its place in the world")]
|
|
fn next_after(self, other: Self) -> Self;
|
|
|
|
/// Returns the maximum of the two numbers.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let x = 1.0;
|
|
/// let y = 2.0;
|
|
///
|
|
/// assert_eq!(x.max(y), y);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn max(self, other: Self) -> Self;
|
|
/// Returns the minimum of the two numbers.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let x = 1.0;
|
|
/// let y = 2.0;
|
|
///
|
|
/// assert_eq!(x.min(y), x);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn min(self, other: Self) -> Self;
|
|
|
|
/// The positive difference of two numbers.
|
|
///
|
|
/// * If `self <= other`: `0:0`
|
|
/// * Else: `self - other`
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let x = 3.0;
|
|
/// let y = -3.0;
|
|
///
|
|
/// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
|
|
/// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
|
|
///
|
|
/// assert!(abs_difference_x < 1e-10);
|
|
/// assert!(abs_difference_y < 1e-10);
|
|
/// ```
|
|
#[unstable(feature = "std_misc", reason = "may be renamed")]
|
|
fn abs_sub(self, other: Self) -> Self;
|
|
/// Take the cubic root of a number.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let x = 8.0;
|
|
///
|
|
/// // x^(1/3) - 2 == 0
|
|
/// let abs_difference = (x.cbrt() - 2.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[unstable(feature = "std_misc", reason = "may be renamed")]
|
|
fn cbrt(self) -> Self;
|
|
/// Calculate the length of the hypotenuse of a right-angle triangle given
|
|
/// legs of length `x` and `y`.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let x = 2.0;
|
|
/// let y = 3.0;
|
|
///
|
|
/// // sqrt(x^2 + y^2)
|
|
/// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[unstable(feature = "std_misc",
|
|
reason = "unsure about its place in the world")]
|
|
fn hypot(self, other: Self) -> Self;
|
|
|
|
/// Computes the sine of a number (in radians).
|
|
///
|
|
/// ```
|
|
/// # #![feature(core)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let x = f64::consts::PI/2.0;
|
|
///
|
|
/// let abs_difference = (x.sin() - 1.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn sin(self) -> Self;
|
|
/// Computes the cosine of a number (in radians).
|
|
///
|
|
/// ```
|
|
/// # #![feature(core)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let x = 2.0*f64::consts::PI;
|
|
///
|
|
/// let abs_difference = (x.cos() - 1.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn cos(self) -> Self;
|
|
/// Computes the tangent of a number (in radians).
|
|
///
|
|
/// ```
|
|
/// # #![feature(core)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let x = f64::consts::PI/4.0;
|
|
/// let abs_difference = (x.tan() - 1.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-14);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn tan(self) -> Self;
|
|
/// Computes the arcsine of a number. Return value is in radians in
|
|
/// the range [-pi/2, pi/2] or NaN if the number is outside the range
|
|
/// [-1, 1].
|
|
///
|
|
/// ```
|
|
/// # #![feature(core)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let f = f64::consts::PI / 2.0;
|
|
///
|
|
/// // asin(sin(pi/2))
|
|
/// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn asin(self) -> Self;
|
|
/// Computes the arccosine of a number. Return value is in radians in
|
|
/// the range [0, pi] or NaN if the number is outside the range
|
|
/// [-1, 1].
|
|
///
|
|
/// ```
|
|
/// # #![feature(core)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let f = f64::consts::PI / 4.0;
|
|
///
|
|
/// // acos(cos(pi/4))
|
|
/// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn acos(self) -> Self;
|
|
/// Computes the arctangent of a number. Return value is in radians in the
|
|
/// range [-pi/2, pi/2];
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let f = 1.0;
|
|
///
|
|
/// // atan(tan(1))
|
|
/// let abs_difference = (f.tan().atan() - 1.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn atan(self) -> Self;
|
|
/// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
|
|
///
|
|
/// * `x = 0`, `y = 0`: `0`
|
|
/// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
|
|
/// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
|
|
/// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
|
|
///
|
|
/// ```
|
|
/// # #![feature(core)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let pi = f64::consts::PI;
|
|
/// // All angles from horizontal right (+x)
|
|
/// // 45 deg counter-clockwise
|
|
/// let x1 = 3.0;
|
|
/// let y1 = -3.0;
|
|
///
|
|
/// // 135 deg clockwise
|
|
/// let x2 = -3.0;
|
|
/// let y2 = 3.0;
|
|
///
|
|
/// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
|
|
/// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
|
|
///
|
|
/// assert!(abs_difference_1 < 1e-10);
|
|
/// assert!(abs_difference_2 < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn atan2(self, other: Self) -> Self;
|
|
/// Simultaneously computes the sine and cosine of the number, `x`. Returns
|
|
/// `(sin(x), cos(x))`.
|
|
///
|
|
/// ```
|
|
/// # #![feature(core)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let x = f64::consts::PI/4.0;
|
|
/// let f = x.sin_cos();
|
|
///
|
|
/// let abs_difference_0 = (f.0 - x.sin()).abs();
|
|
/// let abs_difference_1 = (f.1 - x.cos()).abs();
|
|
///
|
|
/// assert!(abs_difference_0 < 1e-10);
|
|
/// assert!(abs_difference_0 < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn sin_cos(self) -> (Self, Self);
|
|
|
|
/// Returns `e^(self) - 1` in a way that is accurate even if the
|
|
/// number is close to zero.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc)]
|
|
/// use std::num::Float;
|
|
///
|
|
/// let x = 7.0;
|
|
///
|
|
/// // e^(ln(7)) - 1
|
|
/// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[unstable(feature = "std_misc", reason = "may be renamed")]
|
|
fn exp_m1(self) -> Self;
|
|
/// Returns `ln(1+n)` (natural logarithm) more accurately than if
|
|
/// the operations were performed separately.
|
|
///
|
|
/// ```
|
|
/// # #![feature(std_misc, core)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let x = f64::consts::E - 1.0;
|
|
///
|
|
/// // ln(1 + (e - 1)) == ln(e) == 1
|
|
/// let abs_difference = (x.ln_1p() - 1.0).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[unstable(feature = "std_misc", reason = "may be renamed")]
|
|
fn ln_1p(self) -> Self;
|
|
|
|
/// Hyperbolic sine function.
|
|
///
|
|
/// ```
|
|
/// # #![feature(core)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let e = f64::consts::E;
|
|
/// let x = 1.0;
|
|
///
|
|
/// let f = x.sinh();
|
|
/// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
|
|
/// let g = (e*e - 1.0)/(2.0*e);
|
|
/// let abs_difference = (f - g).abs();
|
|
///
|
|
/// assert!(abs_difference < 1e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn sinh(self) -> Self;
|
|
/// Hyperbolic cosine function.
|
|
///
|
|
/// ```
|
|
/// # #![feature(core)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let e = f64::consts::E;
|
|
/// let x = 1.0;
|
|
/// let f = x.cosh();
|
|
/// // Solving cosh() at 1 gives this result
|
|
/// let g = (e*e + 1.0)/(2.0*e);
|
|
/// let abs_difference = (f - g).abs();
|
|
///
|
|
/// // Same result
|
|
/// assert!(abs_difference < 1.0e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn cosh(self) -> Self;
|
|
/// Hyperbolic tangent function.
|
|
///
|
|
/// ```
|
|
/// # #![feature(core)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let e = f64::consts::E;
|
|
/// let x = 1.0;
|
|
///
|
|
/// let f = x.tanh();
|
|
/// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
|
|
/// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
|
|
/// let abs_difference = (f - g).abs();
|
|
///
|
|
/// assert!(abs_difference < 1.0e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn tanh(self) -> Self;
|
|
/// Inverse hyperbolic sine function.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let x = 1.0;
|
|
/// let f = x.sinh().asinh();
|
|
///
|
|
/// let abs_difference = (f - x).abs();
|
|
///
|
|
/// assert!(abs_difference < 1.0e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn asinh(self) -> Self;
|
|
/// Inverse hyperbolic cosine function.
|
|
///
|
|
/// ```
|
|
/// use std::num::Float;
|
|
///
|
|
/// let x = 1.0;
|
|
/// let f = x.cosh().acosh();
|
|
///
|
|
/// let abs_difference = (f - x).abs();
|
|
///
|
|
/// assert!(abs_difference < 1.0e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn acosh(self) -> Self;
|
|
/// Inverse hyperbolic tangent function.
|
|
///
|
|
/// ```
|
|
/// # #![feature(core)]
|
|
/// use std::num::Float;
|
|
/// use std::f64;
|
|
///
|
|
/// let e = f64::consts::E;
|
|
/// let f = e.tanh().atanh();
|
|
///
|
|
/// let abs_difference = (f - e).abs();
|
|
///
|
|
/// assert!(abs_difference < 1.0e-10);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn atanh(self) -> Self;
|
|
}
|
|
|
|
/// Helper function for testing numeric operations
|
|
#[cfg(test)]
|
|
pub fn test_num<T>(ten: T, two: T) where
|
|
T: PartialEq + NumCast
|
|
+ Add<Output=T> + Sub<Output=T>
|
|
+ Mul<Output=T> + Div<Output=T>
|
|
+ Rem<Output=T> + Debug
|
|
+ Copy
|
|
{
|
|
assert_eq!(ten.add(two), cast(12).unwrap());
|
|
assert_eq!(ten.sub(two), cast(8).unwrap());
|
|
assert_eq!(ten.mul(two), cast(20).unwrap());
|
|
assert_eq!(ten.div(two), cast(5).unwrap());
|
|
assert_eq!(ten.rem(two), cast(0).unwrap());
|
|
|
|
assert_eq!(ten.add(two), ten + two);
|
|
assert_eq!(ten.sub(two), ten - two);
|
|
assert_eq!(ten.mul(two), ten * two);
|
|
assert_eq!(ten.div(two), ten / two);
|
|
assert_eq!(ten.rem(two), ten % two);
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use core::prelude::*;
|
|
use super::*;
|
|
use i8;
|
|
use i16;
|
|
use i32;
|
|
use i64;
|
|
use isize;
|
|
use u8;
|
|
use u16;
|
|
use u32;
|
|
use u64;
|
|
use usize;
|
|
use string::ToString;
|
|
|
|
macro_rules! test_cast_20 {
|
|
($_20:expr) => ({
|
|
let _20 = $_20;
|
|
|
|
assert_eq!(20usize, _20.to_uint().unwrap());
|
|
assert_eq!(20u8, _20.to_u8().unwrap());
|
|
assert_eq!(20u16, _20.to_u16().unwrap());
|
|
assert_eq!(20u32, _20.to_u32().unwrap());
|
|
assert_eq!(20u64, _20.to_u64().unwrap());
|
|
assert_eq!(20, _20.to_int().unwrap());
|
|
assert_eq!(20i8, _20.to_i8().unwrap());
|
|
assert_eq!(20i16, _20.to_i16().unwrap());
|
|
assert_eq!(20i32, _20.to_i32().unwrap());
|
|
assert_eq!(20i64, _20.to_i64().unwrap());
|
|
assert_eq!(20f32, _20.to_f32().unwrap());
|
|
assert_eq!(20f64, _20.to_f64().unwrap());
|
|
|
|
assert_eq!(_20, NumCast::from(20usize).unwrap());
|
|
assert_eq!(_20, NumCast::from(20u8).unwrap());
|
|
assert_eq!(_20, NumCast::from(20u16).unwrap());
|
|
assert_eq!(_20, NumCast::from(20u32).unwrap());
|
|
assert_eq!(_20, NumCast::from(20u64).unwrap());
|
|
assert_eq!(_20, NumCast::from(20).unwrap());
|
|
assert_eq!(_20, NumCast::from(20i8).unwrap());
|
|
assert_eq!(_20, NumCast::from(20i16).unwrap());
|
|
assert_eq!(_20, NumCast::from(20i32).unwrap());
|
|
assert_eq!(_20, NumCast::from(20i64).unwrap());
|
|
assert_eq!(_20, NumCast::from(20f32).unwrap());
|
|
assert_eq!(_20, NumCast::from(20f64).unwrap());
|
|
|
|
assert_eq!(_20, cast(20usize).unwrap());
|
|
assert_eq!(_20, cast(20u8).unwrap());
|
|
assert_eq!(_20, cast(20u16).unwrap());
|
|
assert_eq!(_20, cast(20u32).unwrap());
|
|
assert_eq!(_20, cast(20u64).unwrap());
|
|
assert_eq!(_20, cast(20).unwrap());
|
|
assert_eq!(_20, cast(20i8).unwrap());
|
|
assert_eq!(_20, cast(20i16).unwrap());
|
|
assert_eq!(_20, cast(20i32).unwrap());
|
|
assert_eq!(_20, cast(20i64).unwrap());
|
|
assert_eq!(_20, cast(20f32).unwrap());
|
|
assert_eq!(_20, cast(20f64).unwrap());
|
|
})
|
|
}
|
|
|
|
#[test] fn test_u8_cast() { test_cast_20!(20u8) }
|
|
#[test] fn test_u16_cast() { test_cast_20!(20u16) }
|
|
#[test] fn test_u32_cast() { test_cast_20!(20u32) }
|
|
#[test] fn test_u64_cast() { test_cast_20!(20u64) }
|
|
#[test] fn test_uint_cast() { test_cast_20!(20usize) }
|
|
#[test] fn test_i8_cast() { test_cast_20!(20i8) }
|
|
#[test] fn test_i16_cast() { test_cast_20!(20i16) }
|
|
#[test] fn test_i32_cast() { test_cast_20!(20i32) }
|
|
#[test] fn test_i64_cast() { test_cast_20!(20i64) }
|
|
#[test] fn test_int_cast() { test_cast_20!(20) }
|
|
#[test] fn test_f32_cast() { test_cast_20!(20f32) }
|
|
#[test] fn test_f64_cast() { test_cast_20!(20f64) }
|
|
|
|
#[test]
|
|
fn test_cast_range_int_min() {
|
|
assert_eq!(isize::MIN.to_int(), Some(isize::MIN as isize));
|
|
assert_eq!(isize::MIN.to_i8(), None);
|
|
assert_eq!(isize::MIN.to_i16(), None);
|
|
// isize::MIN.to_i32() is word-size specific
|
|
assert_eq!(isize::MIN.to_i64(), Some(isize::MIN as i64));
|
|
assert_eq!(isize::MIN.to_uint(), None);
|
|
assert_eq!(isize::MIN.to_u8(), None);
|
|
assert_eq!(isize::MIN.to_u16(), None);
|
|
assert_eq!(isize::MIN.to_u32(), None);
|
|
assert_eq!(isize::MIN.to_u64(), None);
|
|
|
|
#[cfg(target_pointer_width = "32")]
|
|
fn check_word_size() {
|
|
assert_eq!(isize::MIN.to_i32(), Some(isize::MIN as i32));
|
|
}
|
|
|
|
#[cfg(target_pointer_width = "64")]
|
|
fn check_word_size() {
|
|
assert_eq!(isize::MIN.to_i32(), None);
|
|
}
|
|
|
|
check_word_size();
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i8_min() {
|
|
assert_eq!(i8::MIN.to_int(), Some(i8::MIN as isize));
|
|
assert_eq!(i8::MIN.to_i8(), Some(i8::MIN as i8));
|
|
assert_eq!(i8::MIN.to_i16(), Some(i8::MIN as i16));
|
|
assert_eq!(i8::MIN.to_i32(), Some(i8::MIN as i32));
|
|
assert_eq!(i8::MIN.to_i64(), Some(i8::MIN as i64));
|
|
assert_eq!(i8::MIN.to_uint(), None);
|
|
assert_eq!(i8::MIN.to_u8(), None);
|
|
assert_eq!(i8::MIN.to_u16(), None);
|
|
assert_eq!(i8::MIN.to_u32(), None);
|
|
assert_eq!(i8::MIN.to_u64(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i16_min() {
|
|
assert_eq!(i16::MIN.to_int(), Some(i16::MIN as isize));
|
|
assert_eq!(i16::MIN.to_i8(), None);
|
|
assert_eq!(i16::MIN.to_i16(), Some(i16::MIN as i16));
|
|
assert_eq!(i16::MIN.to_i32(), Some(i16::MIN as i32));
|
|
assert_eq!(i16::MIN.to_i64(), Some(i16::MIN as i64));
|
|
assert_eq!(i16::MIN.to_uint(), None);
|
|
assert_eq!(i16::MIN.to_u8(), None);
|
|
assert_eq!(i16::MIN.to_u16(), None);
|
|
assert_eq!(i16::MIN.to_u32(), None);
|
|
assert_eq!(i16::MIN.to_u64(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i32_min() {
|
|
assert_eq!(i32::MIN.to_int(), Some(i32::MIN as isize));
|
|
assert_eq!(i32::MIN.to_i8(), None);
|
|
assert_eq!(i32::MIN.to_i16(), None);
|
|
assert_eq!(i32::MIN.to_i32(), Some(i32::MIN as i32));
|
|
assert_eq!(i32::MIN.to_i64(), Some(i32::MIN as i64));
|
|
assert_eq!(i32::MIN.to_uint(), None);
|
|
assert_eq!(i32::MIN.to_u8(), None);
|
|
assert_eq!(i32::MIN.to_u16(), None);
|
|
assert_eq!(i32::MIN.to_u32(), None);
|
|
assert_eq!(i32::MIN.to_u64(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i64_min() {
|
|
// i64::MIN.to_int() is word-size specific
|
|
assert_eq!(i64::MIN.to_i8(), None);
|
|
assert_eq!(i64::MIN.to_i16(), None);
|
|
assert_eq!(i64::MIN.to_i32(), None);
|
|
assert_eq!(i64::MIN.to_i64(), Some(i64::MIN as i64));
|
|
assert_eq!(i64::MIN.to_uint(), None);
|
|
assert_eq!(i64::MIN.to_u8(), None);
|
|
assert_eq!(i64::MIN.to_u16(), None);
|
|
assert_eq!(i64::MIN.to_u32(), None);
|
|
assert_eq!(i64::MIN.to_u64(), None);
|
|
|
|
#[cfg(target_pointer_width = "32")]
|
|
fn check_word_size() {
|
|
assert_eq!(i64::MIN.to_int(), None);
|
|
}
|
|
|
|
#[cfg(target_pointer_width = "64")]
|
|
fn check_word_size() {
|
|
assert_eq!(i64::MIN.to_int(), Some(i64::MIN as isize));
|
|
}
|
|
|
|
check_word_size();
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_int_max() {
|
|
assert_eq!(isize::MAX.to_int(), Some(isize::MAX as isize));
|
|
assert_eq!(isize::MAX.to_i8(), None);
|
|
assert_eq!(isize::MAX.to_i16(), None);
|
|
// isize::MAX.to_i32() is word-size specific
|
|
assert_eq!(isize::MAX.to_i64(), Some(isize::MAX as i64));
|
|
assert_eq!(isize::MAX.to_u8(), None);
|
|
assert_eq!(isize::MAX.to_u16(), None);
|
|
// isize::MAX.to_u32() is word-size specific
|
|
assert_eq!(isize::MAX.to_u64(), Some(isize::MAX as u64));
|
|
|
|
#[cfg(target_pointer_width = "32")]
|
|
fn check_word_size() {
|
|
assert_eq!(isize::MAX.to_i32(), Some(isize::MAX as i32));
|
|
assert_eq!(isize::MAX.to_u32(), Some(isize::MAX as u32));
|
|
}
|
|
|
|
#[cfg(target_pointer_width = "64")]
|
|
fn check_word_size() {
|
|
assert_eq!(isize::MAX.to_i32(), None);
|
|
assert_eq!(isize::MAX.to_u32(), None);
|
|
}
|
|
|
|
check_word_size();
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i8_max() {
|
|
assert_eq!(i8::MAX.to_int(), Some(i8::MAX as isize));
|
|
assert_eq!(i8::MAX.to_i8(), Some(i8::MAX as i8));
|
|
assert_eq!(i8::MAX.to_i16(), Some(i8::MAX as i16));
|
|
assert_eq!(i8::MAX.to_i32(), Some(i8::MAX as i32));
|
|
assert_eq!(i8::MAX.to_i64(), Some(i8::MAX as i64));
|
|
assert_eq!(i8::MAX.to_uint(), Some(i8::MAX as usize));
|
|
assert_eq!(i8::MAX.to_u8(), Some(i8::MAX as u8));
|
|
assert_eq!(i8::MAX.to_u16(), Some(i8::MAX as u16));
|
|
assert_eq!(i8::MAX.to_u32(), Some(i8::MAX as u32));
|
|
assert_eq!(i8::MAX.to_u64(), Some(i8::MAX as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i16_max() {
|
|
assert_eq!(i16::MAX.to_int(), Some(i16::MAX as isize));
|
|
assert_eq!(i16::MAX.to_i8(), None);
|
|
assert_eq!(i16::MAX.to_i16(), Some(i16::MAX as i16));
|
|
assert_eq!(i16::MAX.to_i32(), Some(i16::MAX as i32));
|
|
assert_eq!(i16::MAX.to_i64(), Some(i16::MAX as i64));
|
|
assert_eq!(i16::MAX.to_uint(), Some(i16::MAX as usize));
|
|
assert_eq!(i16::MAX.to_u8(), None);
|
|
assert_eq!(i16::MAX.to_u16(), Some(i16::MAX as u16));
|
|
assert_eq!(i16::MAX.to_u32(), Some(i16::MAX as u32));
|
|
assert_eq!(i16::MAX.to_u64(), Some(i16::MAX as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i32_max() {
|
|
assert_eq!(i32::MAX.to_int(), Some(i32::MAX as isize));
|
|
assert_eq!(i32::MAX.to_i8(), None);
|
|
assert_eq!(i32::MAX.to_i16(), None);
|
|
assert_eq!(i32::MAX.to_i32(), Some(i32::MAX as i32));
|
|
assert_eq!(i32::MAX.to_i64(), Some(i32::MAX as i64));
|
|
assert_eq!(i32::MAX.to_uint(), Some(i32::MAX as usize));
|
|
assert_eq!(i32::MAX.to_u8(), None);
|
|
assert_eq!(i32::MAX.to_u16(), None);
|
|
assert_eq!(i32::MAX.to_u32(), Some(i32::MAX as u32));
|
|
assert_eq!(i32::MAX.to_u64(), Some(i32::MAX as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_i64_max() {
|
|
// i64::MAX.to_int() is word-size specific
|
|
assert_eq!(i64::MAX.to_i8(), None);
|
|
assert_eq!(i64::MAX.to_i16(), None);
|
|
assert_eq!(i64::MAX.to_i32(), None);
|
|
assert_eq!(i64::MAX.to_i64(), Some(i64::MAX as i64));
|
|
// i64::MAX.to_uint() is word-size specific
|
|
assert_eq!(i64::MAX.to_u8(), None);
|
|
assert_eq!(i64::MAX.to_u16(), None);
|
|
assert_eq!(i64::MAX.to_u32(), None);
|
|
assert_eq!(i64::MAX.to_u64(), Some(i64::MAX as u64));
|
|
|
|
#[cfg(target_pointer_width = "32")]
|
|
fn check_word_size() {
|
|
assert_eq!(i64::MAX.to_int(), None);
|
|
assert_eq!(i64::MAX.to_uint(), None);
|
|
}
|
|
|
|
#[cfg(target_pointer_width = "64")]
|
|
fn check_word_size() {
|
|
assert_eq!(i64::MAX.to_int(), Some(i64::MAX as isize));
|
|
assert_eq!(i64::MAX.to_uint(), Some(i64::MAX as usize));
|
|
}
|
|
|
|
check_word_size();
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_uint_min() {
|
|
assert_eq!(usize::MIN.to_int(), Some(usize::MIN as isize));
|
|
assert_eq!(usize::MIN.to_i8(), Some(usize::MIN as i8));
|
|
assert_eq!(usize::MIN.to_i16(), Some(usize::MIN as i16));
|
|
assert_eq!(usize::MIN.to_i32(), Some(usize::MIN as i32));
|
|
assert_eq!(usize::MIN.to_i64(), Some(usize::MIN as i64));
|
|
assert_eq!(usize::MIN.to_uint(), Some(usize::MIN as usize));
|
|
assert_eq!(usize::MIN.to_u8(), Some(usize::MIN as u8));
|
|
assert_eq!(usize::MIN.to_u16(), Some(usize::MIN as u16));
|
|
assert_eq!(usize::MIN.to_u32(), Some(usize::MIN as u32));
|
|
assert_eq!(usize::MIN.to_u64(), Some(usize::MIN as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u8_min() {
|
|
assert_eq!(u8::MIN.to_int(), Some(u8::MIN as isize));
|
|
assert_eq!(u8::MIN.to_i8(), Some(u8::MIN as i8));
|
|
assert_eq!(u8::MIN.to_i16(), Some(u8::MIN as i16));
|
|
assert_eq!(u8::MIN.to_i32(), Some(u8::MIN as i32));
|
|
assert_eq!(u8::MIN.to_i64(), Some(u8::MIN as i64));
|
|
assert_eq!(u8::MIN.to_uint(), Some(u8::MIN as usize));
|
|
assert_eq!(u8::MIN.to_u8(), Some(u8::MIN as u8));
|
|
assert_eq!(u8::MIN.to_u16(), Some(u8::MIN as u16));
|
|
assert_eq!(u8::MIN.to_u32(), Some(u8::MIN as u32));
|
|
assert_eq!(u8::MIN.to_u64(), Some(u8::MIN as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u16_min() {
|
|
assert_eq!(u16::MIN.to_int(), Some(u16::MIN as isize));
|
|
assert_eq!(u16::MIN.to_i8(), Some(u16::MIN as i8));
|
|
assert_eq!(u16::MIN.to_i16(), Some(u16::MIN as i16));
|
|
assert_eq!(u16::MIN.to_i32(), Some(u16::MIN as i32));
|
|
assert_eq!(u16::MIN.to_i64(), Some(u16::MIN as i64));
|
|
assert_eq!(u16::MIN.to_uint(), Some(u16::MIN as usize));
|
|
assert_eq!(u16::MIN.to_u8(), Some(u16::MIN as u8));
|
|
assert_eq!(u16::MIN.to_u16(), Some(u16::MIN as u16));
|
|
assert_eq!(u16::MIN.to_u32(), Some(u16::MIN as u32));
|
|
assert_eq!(u16::MIN.to_u64(), Some(u16::MIN as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u32_min() {
|
|
assert_eq!(u32::MIN.to_int(), Some(u32::MIN as isize));
|
|
assert_eq!(u32::MIN.to_i8(), Some(u32::MIN as i8));
|
|
assert_eq!(u32::MIN.to_i16(), Some(u32::MIN as i16));
|
|
assert_eq!(u32::MIN.to_i32(), Some(u32::MIN as i32));
|
|
assert_eq!(u32::MIN.to_i64(), Some(u32::MIN as i64));
|
|
assert_eq!(u32::MIN.to_uint(), Some(u32::MIN as usize));
|
|
assert_eq!(u32::MIN.to_u8(), Some(u32::MIN as u8));
|
|
assert_eq!(u32::MIN.to_u16(), Some(u32::MIN as u16));
|
|
assert_eq!(u32::MIN.to_u32(), Some(u32::MIN as u32));
|
|
assert_eq!(u32::MIN.to_u64(), Some(u32::MIN as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u64_min() {
|
|
assert_eq!(u64::MIN.to_int(), Some(u64::MIN as isize));
|
|
assert_eq!(u64::MIN.to_i8(), Some(u64::MIN as i8));
|
|
assert_eq!(u64::MIN.to_i16(), Some(u64::MIN as i16));
|
|
assert_eq!(u64::MIN.to_i32(), Some(u64::MIN as i32));
|
|
assert_eq!(u64::MIN.to_i64(), Some(u64::MIN as i64));
|
|
assert_eq!(u64::MIN.to_uint(), Some(u64::MIN as usize));
|
|
assert_eq!(u64::MIN.to_u8(), Some(u64::MIN as u8));
|
|
assert_eq!(u64::MIN.to_u16(), Some(u64::MIN as u16));
|
|
assert_eq!(u64::MIN.to_u32(), Some(u64::MIN as u32));
|
|
assert_eq!(u64::MIN.to_u64(), Some(u64::MIN as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_uint_max() {
|
|
assert_eq!(usize::MAX.to_int(), None);
|
|
assert_eq!(usize::MAX.to_i8(), None);
|
|
assert_eq!(usize::MAX.to_i16(), None);
|
|
assert_eq!(usize::MAX.to_i32(), None);
|
|
// usize::MAX.to_i64() is word-size specific
|
|
assert_eq!(usize::MAX.to_u8(), None);
|
|
assert_eq!(usize::MAX.to_u16(), None);
|
|
// usize::MAX.to_u32() is word-size specific
|
|
assert_eq!(usize::MAX.to_u64(), Some(usize::MAX as u64));
|
|
|
|
#[cfg(target_pointer_width = "32")]
|
|
fn check_word_size() {
|
|
assert_eq!(usize::MAX.to_u32(), Some(usize::MAX as u32));
|
|
assert_eq!(usize::MAX.to_i64(), Some(usize::MAX as i64));
|
|
}
|
|
|
|
#[cfg(target_pointer_width = "64")]
|
|
fn check_word_size() {
|
|
assert_eq!(usize::MAX.to_u32(), None);
|
|
assert_eq!(usize::MAX.to_i64(), None);
|
|
}
|
|
|
|
check_word_size();
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u8_max() {
|
|
assert_eq!(u8::MAX.to_int(), Some(u8::MAX as isize));
|
|
assert_eq!(u8::MAX.to_i8(), None);
|
|
assert_eq!(u8::MAX.to_i16(), Some(u8::MAX as i16));
|
|
assert_eq!(u8::MAX.to_i32(), Some(u8::MAX as i32));
|
|
assert_eq!(u8::MAX.to_i64(), Some(u8::MAX as i64));
|
|
assert_eq!(u8::MAX.to_uint(), Some(u8::MAX as usize));
|
|
assert_eq!(u8::MAX.to_u8(), Some(u8::MAX as u8));
|
|
assert_eq!(u8::MAX.to_u16(), Some(u8::MAX as u16));
|
|
assert_eq!(u8::MAX.to_u32(), Some(u8::MAX as u32));
|
|
assert_eq!(u8::MAX.to_u64(), Some(u8::MAX as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u16_max() {
|
|
assert_eq!(u16::MAX.to_int(), Some(u16::MAX as isize));
|
|
assert_eq!(u16::MAX.to_i8(), None);
|
|
assert_eq!(u16::MAX.to_i16(), None);
|
|
assert_eq!(u16::MAX.to_i32(), Some(u16::MAX as i32));
|
|
assert_eq!(u16::MAX.to_i64(), Some(u16::MAX as i64));
|
|
assert_eq!(u16::MAX.to_uint(), Some(u16::MAX as usize));
|
|
assert_eq!(u16::MAX.to_u8(), None);
|
|
assert_eq!(u16::MAX.to_u16(), Some(u16::MAX as u16));
|
|
assert_eq!(u16::MAX.to_u32(), Some(u16::MAX as u32));
|
|
assert_eq!(u16::MAX.to_u64(), Some(u16::MAX as u64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u32_max() {
|
|
// u32::MAX.to_int() is word-size specific
|
|
assert_eq!(u32::MAX.to_i8(), None);
|
|
assert_eq!(u32::MAX.to_i16(), None);
|
|
assert_eq!(u32::MAX.to_i32(), None);
|
|
assert_eq!(u32::MAX.to_i64(), Some(u32::MAX as i64));
|
|
assert_eq!(u32::MAX.to_uint(), Some(u32::MAX as usize));
|
|
assert_eq!(u32::MAX.to_u8(), None);
|
|
assert_eq!(u32::MAX.to_u16(), None);
|
|
assert_eq!(u32::MAX.to_u32(), Some(u32::MAX as u32));
|
|
assert_eq!(u32::MAX.to_u64(), Some(u32::MAX as u64));
|
|
|
|
#[cfg(target_pointer_width = "32")]
|
|
fn check_word_size() {
|
|
assert_eq!(u32::MAX.to_int(), None);
|
|
}
|
|
|
|
#[cfg(target_pointer_width = "64")]
|
|
fn check_word_size() {
|
|
assert_eq!(u32::MAX.to_int(), Some(u32::MAX as isize));
|
|
}
|
|
|
|
check_word_size();
|
|
}
|
|
|
|
#[test]
|
|
fn test_cast_range_u64_max() {
|
|
assert_eq!(u64::MAX.to_int(), None);
|
|
assert_eq!(u64::MAX.to_i8(), None);
|
|
assert_eq!(u64::MAX.to_i16(), None);
|
|
assert_eq!(u64::MAX.to_i32(), None);
|
|
assert_eq!(u64::MAX.to_i64(), None);
|
|
// u64::MAX.to_uint() is word-size specific
|
|
assert_eq!(u64::MAX.to_u8(), None);
|
|
assert_eq!(u64::MAX.to_u16(), None);
|
|
assert_eq!(u64::MAX.to_u32(), None);
|
|
assert_eq!(u64::MAX.to_u64(), Some(u64::MAX as u64));
|
|
|
|
#[cfg(target_pointer_width = "32")]
|
|
fn check_word_size() {
|
|
assert_eq!(u64::MAX.to_uint(), None);
|
|
}
|
|
|
|
#[cfg(target_pointer_width = "64")]
|
|
fn check_word_size() {
|
|
assert_eq!(u64::MAX.to_uint(), Some(u64::MAX as usize));
|
|
}
|
|
|
|
check_word_size();
|
|
}
|
|
|
|
#[test]
|
|
fn test_saturating_add_uint() {
|
|
use usize::MAX;
|
|
assert_eq!(3_usize.saturating_add(5_usize), 8_usize);
|
|
assert_eq!(3_usize.saturating_add(MAX-1), MAX);
|
|
assert_eq!(MAX.saturating_add(MAX), MAX);
|
|
assert_eq!((MAX-2).saturating_add(1), MAX-1);
|
|
}
|
|
|
|
#[test]
|
|
fn test_saturating_sub_uint() {
|
|
use usize::MAX;
|
|
assert_eq!(5_usize.saturating_sub(3_usize), 2_usize);
|
|
assert_eq!(3_usize.saturating_sub(5_usize), 0_usize);
|
|
assert_eq!(0_usize.saturating_sub(1_usize), 0_usize);
|
|
assert_eq!((MAX-1).saturating_sub(MAX), 0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_saturating_add_int() {
|
|
use isize::{MIN,MAX};
|
|
assert_eq!(3.saturating_add(5), 8);
|
|
assert_eq!(3.saturating_add(MAX-1), MAX);
|
|
assert_eq!(MAX.saturating_add(MAX), MAX);
|
|
assert_eq!((MAX-2).saturating_add(1), MAX-1);
|
|
assert_eq!(3.saturating_add(-5), -2);
|
|
assert_eq!(MIN.saturating_add(-1), MIN);
|
|
assert_eq!((-2).saturating_add(-MAX), MIN);
|
|
}
|
|
|
|
#[test]
|
|
fn test_saturating_sub_int() {
|
|
use isize::{MIN,MAX};
|
|
assert_eq!(3.saturating_sub(5), -2);
|
|
assert_eq!(MIN.saturating_sub(1), MIN);
|
|
assert_eq!((-2).saturating_sub(MAX), MIN);
|
|
assert_eq!(3.saturating_sub(-5), 8);
|
|
assert_eq!(3.saturating_sub(-(MAX-1)), MAX);
|
|
assert_eq!(MAX.saturating_sub(-MAX), MAX);
|
|
assert_eq!((MAX-2).saturating_sub(-1), MAX-1);
|
|
}
|
|
|
|
#[test]
|
|
fn test_checked_add() {
|
|
let five_less = usize::MAX - 5;
|
|
assert_eq!(five_less.checked_add(0), Some(usize::MAX - 5));
|
|
assert_eq!(five_less.checked_add(1), Some(usize::MAX - 4));
|
|
assert_eq!(five_less.checked_add(2), Some(usize::MAX - 3));
|
|
assert_eq!(five_less.checked_add(3), Some(usize::MAX - 2));
|
|
assert_eq!(five_less.checked_add(4), Some(usize::MAX - 1));
|
|
assert_eq!(five_less.checked_add(5), Some(usize::MAX));
|
|
assert_eq!(five_less.checked_add(6), None);
|
|
assert_eq!(five_less.checked_add(7), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_checked_sub() {
|
|
assert_eq!(5_usize.checked_sub(0), Some(5));
|
|
assert_eq!(5_usize.checked_sub(1), Some(4));
|
|
assert_eq!(5_usize.checked_sub(2), Some(3));
|
|
assert_eq!(5_usize.checked_sub(3), Some(2));
|
|
assert_eq!(5_usize.checked_sub(4), Some(1));
|
|
assert_eq!(5_usize.checked_sub(5), Some(0));
|
|
assert_eq!(5_usize.checked_sub(6), None);
|
|
assert_eq!(5_usize.checked_sub(7), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_checked_mul() {
|
|
let third = usize::MAX / 3;
|
|
assert_eq!(third.checked_mul(0), Some(0));
|
|
assert_eq!(third.checked_mul(1), Some(third));
|
|
assert_eq!(third.checked_mul(2), Some(third * 2));
|
|
assert_eq!(third.checked_mul(3), Some(third * 3));
|
|
assert_eq!(third.checked_mul(4), None);
|
|
}
|
|
|
|
macro_rules! test_is_power_of_two {
|
|
($test_name:ident, $T:ident) => (
|
|
fn $test_name() {
|
|
#![test]
|
|
assert_eq!((0 as $T).is_power_of_two(), false);
|
|
assert_eq!((1 as $T).is_power_of_two(), true);
|
|
assert_eq!((2 as $T).is_power_of_two(), true);
|
|
assert_eq!((3 as $T).is_power_of_two(), false);
|
|
assert_eq!((4 as $T).is_power_of_two(), true);
|
|
assert_eq!((5 as $T).is_power_of_two(), false);
|
|
assert_eq!(($T::MAX / 2 + 1).is_power_of_two(), true);
|
|
}
|
|
)
|
|
}
|
|
|
|
test_is_power_of_two!{ test_is_power_of_two_u8, u8 }
|
|
test_is_power_of_two!{ test_is_power_of_two_u16, u16 }
|
|
test_is_power_of_two!{ test_is_power_of_two_u32, u32 }
|
|
test_is_power_of_two!{ test_is_power_of_two_u64, u64 }
|
|
test_is_power_of_two!{ test_is_power_of_two_uint, usize }
|
|
|
|
macro_rules! test_next_power_of_two {
|
|
($test_name:ident, $T:ident) => (
|
|
fn $test_name() {
|
|
#![test]
|
|
assert_eq!((0 as $T).next_power_of_two(), 1);
|
|
let mut next_power = 1;
|
|
for i in 1 as $T..40 {
|
|
assert_eq!(i.next_power_of_two(), next_power);
|
|
if i == next_power { next_power *= 2 }
|
|
}
|
|
}
|
|
)
|
|
}
|
|
|
|
test_next_power_of_two! { test_next_power_of_two_u8, u8 }
|
|
test_next_power_of_two! { test_next_power_of_two_u16, u16 }
|
|
test_next_power_of_two! { test_next_power_of_two_u32, u32 }
|
|
test_next_power_of_two! { test_next_power_of_two_u64, u64 }
|
|
test_next_power_of_two! { test_next_power_of_two_uint, usize }
|
|
|
|
macro_rules! test_checked_next_power_of_two {
|
|
($test_name:ident, $T:ident) => (
|
|
fn $test_name() {
|
|
#![test]
|
|
assert_eq!((0 as $T).checked_next_power_of_two(), Some(1));
|
|
assert!(($T::MAX / 2).checked_next_power_of_two().is_some());
|
|
assert_eq!(($T::MAX - 1).checked_next_power_of_two(), None);
|
|
assert_eq!($T::MAX.checked_next_power_of_two(), None);
|
|
let mut next_power = 1;
|
|
for i in 1 as $T..40 {
|
|
assert_eq!(i.checked_next_power_of_two(), Some(next_power));
|
|
if i == next_power { next_power *= 2 }
|
|
}
|
|
}
|
|
)
|
|
}
|
|
|
|
test_checked_next_power_of_two! { test_checked_next_power_of_two_u8, u8 }
|
|
test_checked_next_power_of_two! { test_checked_next_power_of_two_u16, u16 }
|
|
test_checked_next_power_of_two! { test_checked_next_power_of_two_u32, u32 }
|
|
test_checked_next_power_of_two! { test_checked_next_power_of_two_u64, u64 }
|
|
test_checked_next_power_of_two! { test_checked_next_power_of_two_uint, usize }
|
|
|
|
#[derive(PartialEq, Debug)]
|
|
struct Value { x: isize }
|
|
|
|
impl ToPrimitive for Value {
|
|
fn to_i64(&self) -> Option<i64> { self.x.to_i64() }
|
|
fn to_u64(&self) -> Option<u64> { self.x.to_u64() }
|
|
}
|
|
|
|
impl FromPrimitive for Value {
|
|
fn from_i64(n: i64) -> Option<Value> { Some(Value { x: n as isize }) }
|
|
fn from_u64(n: u64) -> Option<Value> { Some(Value { x: n as isize }) }
|
|
}
|
|
|
|
#[test]
|
|
fn test_to_primitive() {
|
|
let value = Value { x: 5 };
|
|
assert_eq!(value.to_int(), Some(5));
|
|
assert_eq!(value.to_i8(), Some(5));
|
|
assert_eq!(value.to_i16(), Some(5));
|
|
assert_eq!(value.to_i32(), Some(5));
|
|
assert_eq!(value.to_i64(), Some(5));
|
|
assert_eq!(value.to_uint(), Some(5));
|
|
assert_eq!(value.to_u8(), Some(5));
|
|
assert_eq!(value.to_u16(), Some(5));
|
|
assert_eq!(value.to_u32(), Some(5));
|
|
assert_eq!(value.to_u64(), Some(5));
|
|
assert_eq!(value.to_f32(), Some(5f32));
|
|
assert_eq!(value.to_f64(), Some(5f64));
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_primitive() {
|
|
assert_eq!(from_int(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_i8(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_i16(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_i32(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_i64(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_uint(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_u8(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_u16(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_u32(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_u64(5), Some(Value { x: 5 }));
|
|
assert_eq!(from_f32(5f32), Some(Value { x: 5 }));
|
|
assert_eq!(from_f64(5f64), Some(Value { x: 5 }));
|
|
}
|
|
|
|
#[test]
|
|
fn test_pow() {
|
|
fn naive_pow<T: Int>(base: T, exp: usize) -> T {
|
|
let one: T = Int::one();
|
|
(0..exp).fold(one, |acc, _| acc * base)
|
|
}
|
|
macro_rules! assert_pow {
|
|
(($num:expr, $exp:expr) => $expected:expr) => {{
|
|
let result = $num.pow($exp);
|
|
assert_eq!(result, $expected);
|
|
assert_eq!(result, naive_pow($num, $exp));
|
|
}}
|
|
}
|
|
assert_pow!((3, 0 ) => 1);
|
|
assert_pow!((5, 1 ) => 5);
|
|
assert_pow!((-4, 2 ) => 16);
|
|
assert_pow!((8, 3 ) => 512);
|
|
assert_pow!((2u64, 50) => 1125899906842624);
|
|
}
|
|
|
|
#[test]
|
|
fn test_uint_to_str_overflow() {
|
|
let mut u8_val: u8 = 255;
|
|
assert_eq!(u8_val.to_string(), "255");
|
|
|
|
u8_val = u8_val.wrapping_add(1);
|
|
assert_eq!(u8_val.to_string(), "0");
|
|
|
|
let mut u16_val: u16 = 65_535;
|
|
assert_eq!(u16_val.to_string(), "65535");
|
|
|
|
u16_val = u16_val.wrapping_add(1);
|
|
assert_eq!(u16_val.to_string(), "0");
|
|
|
|
let mut u32_val: u32 = 4_294_967_295;
|
|
assert_eq!(u32_val.to_string(), "4294967295");
|
|
|
|
u32_val = u32_val.wrapping_add(1);
|
|
assert_eq!(u32_val.to_string(), "0");
|
|
|
|
let mut u64_val: u64 = 18_446_744_073_709_551_615;
|
|
assert_eq!(u64_val.to_string(), "18446744073709551615");
|
|
|
|
u64_val = u64_val.wrapping_add(1);
|
|
assert_eq!(u64_val.to_string(), "0");
|
|
}
|
|
|
|
fn from_str<T: ::str::FromStr>(t: &str) -> Option<T> {
|
|
::str::FromStr::from_str(t).ok()
|
|
}
|
|
|
|
#[test]
|
|
fn test_uint_from_str_overflow() {
|
|
let mut u8_val: u8 = 255;
|
|
assert_eq!(from_str::<u8>("255"), Some(u8_val));
|
|
assert_eq!(from_str::<u8>("256"), None);
|
|
|
|
u8_val = u8_val.wrapping_add(1);
|
|
assert_eq!(from_str::<u8>("0"), Some(u8_val));
|
|
assert_eq!(from_str::<u8>("-1"), None);
|
|
|
|
let mut u16_val: u16 = 65_535;
|
|
assert_eq!(from_str::<u16>("65535"), Some(u16_val));
|
|
assert_eq!(from_str::<u16>("65536"), None);
|
|
|
|
u16_val = u16_val.wrapping_add(1);
|
|
assert_eq!(from_str::<u16>("0"), Some(u16_val));
|
|
assert_eq!(from_str::<u16>("-1"), None);
|
|
|
|
let mut u32_val: u32 = 4_294_967_295;
|
|
assert_eq!(from_str::<u32>("4294967295"), Some(u32_val));
|
|
assert_eq!(from_str::<u32>("4294967296"), None);
|
|
|
|
u32_val = u32_val.wrapping_add(1);
|
|
assert_eq!(from_str::<u32>("0"), Some(u32_val));
|
|
assert_eq!(from_str::<u32>("-1"), None);
|
|
|
|
let mut u64_val: u64 = 18_446_744_073_709_551_615;
|
|
assert_eq!(from_str::<u64>("18446744073709551615"), Some(u64_val));
|
|
assert_eq!(from_str::<u64>("18446744073709551616"), None);
|
|
|
|
u64_val = u64_val.wrapping_add(1);
|
|
assert_eq!(from_str::<u64>("0"), Some(u64_val));
|
|
assert_eq!(from_str::<u64>("-1"), None);
|
|
}
|
|
}
|
|
|
|
|
|
#[cfg(test)]
|
|
mod bench {
|
|
extern crate test;
|
|
use self::test::Bencher;
|
|
use num::Int;
|
|
use prelude::v1::*;
|
|
|
|
#[bench]
|
|
fn bench_pow_function(b: &mut Bencher) {
|
|
let v = (0..1024).collect::<Vec<_>>();
|
|
b.iter(|| {v.iter().fold(0, |old, new| old.pow(*new as u32));});
|
|
}
|
|
}
|