rust/src/librustc/metadata/encoder.rs
Niko Matsakis 9f492fefef Switch to using predicates to drive checking. Correct various tests --
in most cases, just the error message changed, but in some cases we
are reporting new errors that OUGHT to have been reported before but
we're overlooked (mostly involving the `'static` bound on `Send`).
2014-12-12 20:25:21 -05:00

2183 lines
77 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Metadata encoding
#![allow(unused_must_use)] // everything is just a MemWriter, can't fail
#![allow(non_camel_case_types)]
pub use self::InlinedItemRef::*;
use back::svh::Svh;
use session::config;
use metadata::common::*;
use metadata::cstore;
use metadata::decoder;
use metadata::tyencode;
use middle::ty::{lookup_item_type};
use middle::ty::{mod, Ty};
use middle::stability;
use middle;
use util::nodemap::{FnvHashMap, NodeMap, NodeSet};
use serialize::Encodable;
use std::cell::RefCell;
use std::hash::Hash;
use std::hash;
use syntax::abi;
use syntax::ast::{mod, DefId, NodeId};
use syntax::ast_map::{PathElem, PathElems};
use syntax::ast_map;
use syntax::ast_util::*;
use syntax::ast_util;
use syntax::attr;
use syntax::attr::AttrMetaMethods;
use syntax::diagnostic::SpanHandler;
use syntax::parse::token::special_idents;
use syntax::parse::token;
use syntax::ptr::P;
use syntax::visit::Visitor;
use syntax::visit;
use syntax;
use rbml::writer;
use rbml::io::SeekableMemWriter;
/// A borrowed version of `ast::InlinedItem`.
pub enum InlinedItemRef<'a> {
IIItemRef(&'a ast::Item),
IITraitItemRef(DefId, &'a ast::TraitItem),
IIImplItemRef(DefId, &'a ast::ImplItem),
IIForeignRef(&'a ast::ForeignItem)
}
pub type Encoder<'a> = writer::Encoder<'a, SeekableMemWriter>;
pub type EncodeInlinedItem<'a> = |ecx: &EncodeContext,
rbml_w: &mut Encoder,
ii: InlinedItemRef|: 'a;
pub struct EncodeParams<'a, 'tcx: 'a> {
pub diag: &'a SpanHandler,
pub tcx: &'a ty::ctxt<'tcx>,
pub reexports2: &'a middle::resolve::ExportMap2,
pub item_symbols: &'a RefCell<NodeMap<String>>,
pub link_meta: &'a LinkMeta,
pub cstore: &'a cstore::CStore,
pub encode_inlined_item: EncodeInlinedItem<'a>,
pub reachable: &'a NodeSet,
}
pub struct EncodeContext<'a, 'tcx: 'a> {
pub diag: &'a SpanHandler,
pub tcx: &'a ty::ctxt<'tcx>,
pub reexports2: &'a middle::resolve::ExportMap2,
pub item_symbols: &'a RefCell<NodeMap<String>>,
pub link_meta: &'a LinkMeta,
pub cstore: &'a cstore::CStore,
pub encode_inlined_item: RefCell<EncodeInlinedItem<'a>>,
pub type_abbrevs: tyencode::abbrev_map<'tcx>,
pub reachable: &'a NodeSet,
}
fn encode_name(rbml_w: &mut Encoder, name: ast::Name) {
rbml_w.wr_tagged_str(tag_paths_data_name, token::get_name(name).get());
}
fn encode_impl_type_basename(rbml_w: &mut Encoder, name: ast::Ident) {
rbml_w.wr_tagged_str(tag_item_impl_type_basename, token::get_ident(name).get());
}
pub fn encode_def_id(rbml_w: &mut Encoder, id: DefId) {
rbml_w.wr_tagged_str(tag_def_id, def_to_string(id).as_slice());
}
#[deriving(Clone)]
struct entry<T> {
val: T,
pos: u64
}
fn encode_trait_ref<'a, 'tcx>(rbml_w: &mut Encoder,
ecx: &EncodeContext<'a, 'tcx>,
trait_ref: &ty::TraitRef<'tcx>,
tag: uint) {
let ty_str_ctxt = &tyencode::ctxt {
diag: ecx.diag,
ds: def_to_string,
tcx: ecx.tcx,
abbrevs: &ecx.type_abbrevs
};
rbml_w.start_tag(tag);
tyencode::enc_trait_ref(rbml_w.writer, ty_str_ctxt, trait_ref);
rbml_w.end_tag();
}
// Item info table encoding
fn encode_family(rbml_w: &mut Encoder, c: char) {
rbml_w.start_tag(tag_items_data_item_family);
rbml_w.writer.write(&[c as u8]);
rbml_w.end_tag();
}
pub fn def_to_string(did: DefId) -> String {
format!("{}:{}", did.krate, did.node)
}
fn encode_item_variances(rbml_w: &mut Encoder,
ecx: &EncodeContext,
id: NodeId) {
let v = ty::item_variances(ecx.tcx, ast_util::local_def(id));
rbml_w.start_tag(tag_item_variances);
v.encode(rbml_w);
rbml_w.end_tag();
}
fn encode_bounds_and_type<'a, 'tcx>(rbml_w: &mut Encoder,
ecx: &EncodeContext<'a, 'tcx>,
pty: &ty::Polytype<'tcx>) {
encode_generics(rbml_w, ecx, &pty.generics, tag_item_generics);
encode_type(ecx, rbml_w, pty.ty);
}
fn encode_variant_id(rbml_w: &mut Encoder, vid: DefId) {
rbml_w.start_tag(tag_items_data_item_variant);
let s = def_to_string(vid);
rbml_w.writer.write(s.as_bytes());
rbml_w.end_tag();
rbml_w.start_tag(tag_mod_child);
rbml_w.wr_str(s.as_slice());
rbml_w.end_tag();
}
pub fn write_closure_type<'a, 'tcx>(ecx: &EncodeContext<'a, 'tcx>,
rbml_w: &mut Encoder,
closure_type: &ty::ClosureTy<'tcx>) {
let ty_str_ctxt = &tyencode::ctxt {
diag: ecx.diag,
ds: def_to_string,
tcx: ecx.tcx,
abbrevs: &ecx.type_abbrevs
};
tyencode::enc_closure_ty(rbml_w.writer, ty_str_ctxt, closure_type);
}
pub fn write_type<'a, 'tcx>(ecx: &EncodeContext<'a, 'tcx>,
rbml_w: &mut Encoder,
typ: Ty<'tcx>) {
let ty_str_ctxt = &tyencode::ctxt {
diag: ecx.diag,
ds: def_to_string,
tcx: ecx.tcx,
abbrevs: &ecx.type_abbrevs
};
tyencode::enc_ty(rbml_w.writer, ty_str_ctxt, typ);
}
pub fn write_trait_ref<'a, 'tcx>(ecx: &EncodeContext<'a, 'tcx>,
rbml_w: &mut Encoder,
trait_ref: &ty::TraitRef<'tcx>) {
let ty_str_ctxt = &tyencode::ctxt {
diag: ecx.diag,
ds: def_to_string,
tcx: ecx.tcx,
abbrevs: &ecx.type_abbrevs
};
tyencode::enc_trait_ref(rbml_w.writer, ty_str_ctxt, trait_ref);
}
pub fn write_region(ecx: &EncodeContext,
rbml_w: &mut Encoder,
r: ty::Region) {
let ty_str_ctxt = &tyencode::ctxt {
diag: ecx.diag,
ds: def_to_string,
tcx: ecx.tcx,
abbrevs: &ecx.type_abbrevs
};
tyencode::enc_region(rbml_w.writer, ty_str_ctxt, r);
}
fn encode_bounds<'a, 'tcx>(rbml_w: &mut Encoder,
ecx: &EncodeContext<'a, 'tcx>,
bounds: &ty::ParamBounds<'tcx>,
tag: uint) {
rbml_w.start_tag(tag);
let ty_str_ctxt = &tyencode::ctxt { diag: ecx.diag,
ds: def_to_string,
tcx: ecx.tcx,
abbrevs: &ecx.type_abbrevs };
tyencode::enc_bounds(rbml_w.writer, ty_str_ctxt, bounds);
rbml_w.end_tag();
}
fn encode_type<'a, 'tcx>(ecx: &EncodeContext<'a, 'tcx>,
rbml_w: &mut Encoder,
typ: Ty<'tcx>) {
rbml_w.start_tag(tag_items_data_item_type);
write_type(ecx, rbml_w, typ);
rbml_w.end_tag();
}
fn encode_region(ecx: &EncodeContext,
rbml_w: &mut Encoder,
r: ty::Region) {
rbml_w.start_tag(tag_items_data_region);
write_region(ecx, rbml_w, r);
rbml_w.end_tag();
}
fn encode_method_fty<'a, 'tcx>(ecx: &EncodeContext<'a, 'tcx>,
rbml_w: &mut Encoder,
typ: &ty::BareFnTy<'tcx>) {
rbml_w.start_tag(tag_item_method_fty);
let ty_str_ctxt = &tyencode::ctxt {
diag: ecx.diag,
ds: def_to_string,
tcx: ecx.tcx,
abbrevs: &ecx.type_abbrevs
};
tyencode::enc_bare_fn_ty(rbml_w.writer, ty_str_ctxt, typ);
rbml_w.end_tag();
}
fn encode_symbol(ecx: &EncodeContext,
rbml_w: &mut Encoder,
id: NodeId) {
rbml_w.start_tag(tag_items_data_item_symbol);
match ecx.item_symbols.borrow().get(&id) {
Some(x) => {
debug!("encode_symbol(id={}, str={})", id, *x);
rbml_w.writer.write(x.as_bytes());
}
None => {
ecx.diag.handler().bug(
format!("encode_symbol: id not found {}", id).as_slice());
}
}
rbml_w.end_tag();
}
fn encode_disr_val(_: &EncodeContext,
rbml_w: &mut Encoder,
disr_val: ty::Disr) {
rbml_w.start_tag(tag_disr_val);
let s = disr_val.to_string();
rbml_w.writer.write(s.as_bytes());
rbml_w.end_tag();
}
fn encode_parent_item(rbml_w: &mut Encoder, id: DefId) {
rbml_w.start_tag(tag_items_data_parent_item);
let s = def_to_string(id);
rbml_w.writer.write(s.as_bytes());
rbml_w.end_tag();
}
fn encode_struct_fields(rbml_w: &mut Encoder,
fields: &[ty::field_ty],
origin: DefId) {
for f in fields.iter() {
if f.name == special_idents::unnamed_field.name {
rbml_w.start_tag(tag_item_unnamed_field);
} else {
rbml_w.start_tag(tag_item_field);
encode_name(rbml_w, f.name);
}
encode_struct_field_family(rbml_w, f.vis);
encode_def_id(rbml_w, f.id);
rbml_w.start_tag(tag_item_field_origin);
let s = def_to_string(origin);
rbml_w.writer.write(s.as_bytes());
rbml_w.end_tag();
rbml_w.end_tag();
}
}
fn encode_enum_variant_info(ecx: &EncodeContext,
rbml_w: &mut Encoder,
id: NodeId,
variants: &[P<ast::Variant>],
index: &mut Vec<entry<i64>>) {
debug!("encode_enum_variant_info(id={})", id);
let mut disr_val = 0;
let mut i = 0;
let vi = ty::enum_variants(ecx.tcx,
DefId { krate: ast::LOCAL_CRATE, node: id });
for variant in variants.iter() {
let def_id = local_def(variant.node.id);
index.push(entry {
val: variant.node.id as i64,
pos: rbml_w.writer.tell().unwrap(),
});
rbml_w.start_tag(tag_items_data_item);
encode_def_id(rbml_w, def_id);
match variant.node.kind {
ast::TupleVariantKind(_) => encode_family(rbml_w, 'v'),
ast::StructVariantKind(_) => encode_family(rbml_w, 'V')
}
encode_name(rbml_w, variant.node.name.name);
encode_parent_item(rbml_w, local_def(id));
encode_visibility(rbml_w, variant.node.vis);
encode_attributes(rbml_w, variant.node.attrs.as_slice());
encode_repr_attrs(rbml_w, ecx, variant.node.attrs.as_slice());
let stab = stability::lookup(ecx.tcx, ast_util::local_def(variant.node.id));
encode_stability(rbml_w, stab);
match variant.node.kind {
ast::TupleVariantKind(_) => {},
ast::StructVariantKind(_) => {
let fields = ty::lookup_struct_fields(ecx.tcx, def_id);
let idx = encode_info_for_struct(ecx,
rbml_w,
fields.as_slice(),
index);
encode_struct_fields(rbml_w, fields.as_slice(), def_id);
encode_index(rbml_w, idx, write_i64);
}
}
if (*vi)[i].disr_val != disr_val {
encode_disr_val(ecx, rbml_w, (*vi)[i].disr_val);
disr_val = (*vi)[i].disr_val;
}
encode_bounds_and_type(rbml_w, ecx,
&lookup_item_type(ecx.tcx, def_id));
ecx.tcx.map.with_path(variant.node.id, |path| encode_path(rbml_w, path));
rbml_w.end_tag();
disr_val += 1;
i += 1;
}
}
fn encode_path<PI: Iterator<PathElem> + Clone>(rbml_w: &mut Encoder,
mut path: PI) {
rbml_w.start_tag(tag_path);
rbml_w.wr_tagged_u32(tag_path_len, path.clone().count() as u32);
for pe in path {
let tag = match pe {
ast_map::PathMod(_) => tag_path_elem_mod,
ast_map::PathName(_) => tag_path_elem_name
};
rbml_w.wr_tagged_str(tag, token::get_name(pe.name()).get());
}
rbml_w.end_tag();
}
fn encode_reexported_static_method(rbml_w: &mut Encoder,
exp: &middle::resolve::Export2,
method_def_id: DefId,
method_name: ast::Name) {
debug!("(encode reexported static method) {}::{}",
exp.name, token::get_name(method_name));
rbml_w.start_tag(tag_items_data_item_reexport);
rbml_w.start_tag(tag_items_data_item_reexport_def_id);
rbml_w.wr_str(def_to_string(method_def_id).as_slice());
rbml_w.end_tag();
rbml_w.start_tag(tag_items_data_item_reexport_name);
rbml_w.wr_str(format!("{}::{}",
exp.name,
token::get_name(method_name)).as_slice());
rbml_w.end_tag();
rbml_w.end_tag();
}
fn encode_reexported_static_base_methods(ecx: &EncodeContext,
rbml_w: &mut Encoder,
exp: &middle::resolve::Export2)
-> bool {
let impl_items = ecx.tcx.impl_items.borrow();
match ecx.tcx.inherent_impls.borrow().get(&exp.def_id) {
Some(implementations) => {
for base_impl_did in implementations.iter() {
for &method_did in (*impl_items)[*base_impl_did].iter() {
let impl_item = ty::impl_or_trait_item(
ecx.tcx,
method_did.def_id());
match impl_item {
ty::MethodTraitItem(ref m) => {
encode_reexported_static_method(rbml_w,
exp,
m.def_id,
m.name);
}
ty::TypeTraitItem(_) => {}
}
}
}
true
}
None => { false }
}
}
fn encode_reexported_static_trait_methods(ecx: &EncodeContext,
rbml_w: &mut Encoder,
exp: &middle::resolve::Export2)
-> bool {
match ecx.tcx.trait_items_cache.borrow().get(&exp.def_id) {
Some(trait_items) => {
for trait_item in trait_items.iter() {
if let ty::MethodTraitItem(ref m) = *trait_item {
encode_reexported_static_method(rbml_w,
exp,
m.def_id,
m.name);
}
}
true
}
None => { false }
}
}
fn encode_reexported_static_methods(ecx: &EncodeContext,
rbml_w: &mut Encoder,
mod_path: PathElems,
exp: &middle::resolve::Export2) {
if let Some(ast_map::NodeItem(item)) = ecx.tcx.map.find(exp.def_id.node) {
let original_name = token::get_ident(item.ident);
let path_differs = ecx.tcx.map.with_path(exp.def_id.node, |path| {
let (mut a, mut b) = (path, mod_path.clone());
loop {
match (a.next(), b.next()) {
(None, None) => return true,
(None, _) | (_, None) => return false,
(Some(x), Some(y)) => if x != y { return false },
}
}
});
//
// We don't need to reexport static methods on items
// declared in the same module as our `pub use ...` since
// that's done when we encode the item itself.
//
// The only exception is when the reexport *changes* the
// name e.g. `pub use Foo = self::Bar` -- we have
// encoded metadata for static methods relative to Bar,
// but not yet for Foo.
//
if path_differs || original_name.get() != exp.name {
if !encode_reexported_static_base_methods(ecx, rbml_w, exp) {
if encode_reexported_static_trait_methods(ecx, rbml_w, exp) {
debug!("(encode reexported static methods) {} [trait]",
original_name);
}
}
else {
debug!("(encode reexported static methods) {} [base]",
original_name);
}
}
}
}
/// Iterates through "auxiliary node IDs", which are node IDs that describe
/// top-level items that are sub-items of the given item. Specifically:
///
/// * For newtype structs, iterates through the node ID of the constructor.
fn each_auxiliary_node_id(item: &ast::Item, callback: |NodeId| -> bool) -> bool {
let mut continue_ = true;
match item.node {
ast::ItemStruct(ref struct_def, _) => {
// If this is a newtype struct, return the constructor.
match struct_def.ctor_id {
Some(ctor_id) if struct_def.fields.len() > 0 &&
struct_def.fields[0].node.kind.is_unnamed() => {
continue_ = callback(ctor_id);
}
_ => {}
}
}
_ => {}
}
continue_
}
fn encode_reexports(ecx: &EncodeContext,
rbml_w: &mut Encoder,
id: NodeId,
path: PathElems) {
debug!("(encoding info for module) encoding reexports for {}", id);
match ecx.reexports2.get(&id) {
Some(ref exports) => {
debug!("(encoding info for module) found reexports for {}", id);
for exp in exports.iter() {
debug!("(encoding info for module) reexport '{}' ({}/{}) for \
{}",
exp.name,
exp.def_id.krate,
exp.def_id.node,
id);
rbml_w.start_tag(tag_items_data_item_reexport);
rbml_w.start_tag(tag_items_data_item_reexport_def_id);
rbml_w.wr_str(def_to_string(exp.def_id).as_slice());
rbml_w.end_tag();
rbml_w.start_tag(tag_items_data_item_reexport_name);
rbml_w.wr_str(exp.name.as_slice());
rbml_w.end_tag();
rbml_w.end_tag();
encode_reexported_static_methods(ecx, rbml_w, path.clone(), exp);
}
}
None => {
debug!("(encoding info for module) found no reexports for {}",
id);
}
}
}
fn encode_info_for_mod(ecx: &EncodeContext,
rbml_w: &mut Encoder,
md: &ast::Mod,
attrs: &[ast::Attribute],
id: NodeId,
path: PathElems,
name: ast::Ident,
vis: ast::Visibility) {
rbml_w.start_tag(tag_items_data_item);
encode_def_id(rbml_w, local_def(id));
encode_family(rbml_w, 'm');
encode_name(rbml_w, name.name);
debug!("(encoding info for module) encoding info for module ID {}", id);
// Encode info about all the module children.
for item in md.items.iter() {
rbml_w.start_tag(tag_mod_child);
rbml_w.wr_str(def_to_string(local_def(item.id)).as_slice());
rbml_w.end_tag();
each_auxiliary_node_id(&**item, |auxiliary_node_id| {
rbml_w.start_tag(tag_mod_child);
rbml_w.wr_str(def_to_string(local_def(
auxiliary_node_id)).as_slice());
rbml_w.end_tag();
true
});
if let ast::ItemImpl(..) = item.node {
let (ident, did) = (item.ident, item.id);
debug!("(encoding info for module) ... encoding impl {} ({}/{})",
token::get_ident(ident),
did, ecx.tcx.map.node_to_string(did));
rbml_w.start_tag(tag_mod_impl);
rbml_w.wr_str(def_to_string(local_def(did)).as_slice());
rbml_w.end_tag();
}
}
encode_path(rbml_w, path.clone());
encode_visibility(rbml_w, vis);
let stab = stability::lookup(ecx.tcx, ast_util::local_def(id));
encode_stability(rbml_w, stab);
// Encode the reexports of this module, if this module is public.
if vis == ast::Public {
debug!("(encoding info for module) encoding reexports for {}", id);
encode_reexports(ecx, rbml_w, id, path);
}
encode_attributes(rbml_w, attrs);
rbml_w.end_tag();
}
fn encode_struct_field_family(rbml_w: &mut Encoder,
visibility: ast::Visibility) {
encode_family(rbml_w, match visibility {
ast::Public => 'g',
ast::Inherited => 'N'
});
}
fn encode_visibility(rbml_w: &mut Encoder, visibility: ast::Visibility) {
rbml_w.start_tag(tag_items_data_item_visibility);
let ch = match visibility {
ast::Public => 'y',
ast::Inherited => 'i',
};
rbml_w.wr_str(ch.to_string().as_slice());
rbml_w.end_tag();
}
fn encode_unboxed_closure_kind(rbml_w: &mut Encoder,
kind: ty::UnboxedClosureKind) {
rbml_w.start_tag(tag_unboxed_closure_kind);
let ch = match kind {
ty::FnUnboxedClosureKind => 'f',
ty::FnMutUnboxedClosureKind => 'm',
ty::FnOnceUnboxedClosureKind => 'o',
};
rbml_w.wr_str(ch.to_string().as_slice());
rbml_w.end_tag();
}
fn encode_explicit_self(rbml_w: &mut Encoder,
explicit_self: &ty::ExplicitSelfCategory) {
rbml_w.start_tag(tag_item_trait_method_explicit_self);
// Encode the base self type.
match *explicit_self {
ty::StaticExplicitSelfCategory => {
rbml_w.writer.write(&[ 's' as u8 ]);
}
ty::ByValueExplicitSelfCategory => {
rbml_w.writer.write(&[ 'v' as u8 ]);
}
ty::ByBoxExplicitSelfCategory => {
rbml_w.writer.write(&[ '~' as u8 ]);
}
ty::ByReferenceExplicitSelfCategory(_, m) => {
// FIXME(#4846) encode custom lifetime
rbml_w.writer.write(&['&' as u8]);
encode_mutability(rbml_w, m);
}
}
rbml_w.end_tag();
fn encode_mutability(rbml_w: &mut Encoder,
m: ast::Mutability) {
match m {
ast::MutImmutable => { rbml_w.writer.write(&[ 'i' as u8 ]); }
ast::MutMutable => { rbml_w.writer.write(&[ 'm' as u8 ]); }
}
}
}
fn encode_item_sort(rbml_w: &mut Encoder, sort: char) {
rbml_w.start_tag(tag_item_trait_item_sort);
rbml_w.writer.write(&[ sort as u8 ]);
rbml_w.end_tag();
}
fn encode_parent_sort(rbml_w: &mut Encoder, sort: char) {
rbml_w.start_tag(tag_item_trait_parent_sort);
rbml_w.writer.write(&[ sort as u8 ]);
rbml_w.end_tag();
}
fn encode_provided_source(rbml_w: &mut Encoder,
source_opt: Option<DefId>) {
for source in source_opt.iter() {
rbml_w.start_tag(tag_item_method_provided_source);
let s = def_to_string(*source);
rbml_w.writer.write(s.as_bytes());
rbml_w.end_tag();
}
}
/* Returns an index of items in this class */
fn encode_info_for_struct(ecx: &EncodeContext,
rbml_w: &mut Encoder,
fields: &[ty::field_ty],
global_index: &mut Vec<entry<i64>>)
-> Vec<entry<i64>> {
/* Each class has its own index, since different classes
may have fields with the same name */
let mut index = Vec::new();
/* We encode both private and public fields -- need to include
private fields to get the offsets right */
for field in fields.iter() {
let nm = field.name;
let id = field.id.node;
index.push(entry {val: id as i64, pos: rbml_w.writer.tell().unwrap()});
global_index.push(entry {
val: id as i64,
pos: rbml_w.writer.tell().unwrap(),
});
rbml_w.start_tag(tag_items_data_item);
debug!("encode_info_for_struct: doing {} {}",
token::get_name(nm), id);
encode_struct_field_family(rbml_w, field.vis);
encode_name(rbml_w, nm);
encode_bounds_and_type(rbml_w, ecx,
&lookup_item_type(ecx.tcx, local_def(id)));
encode_def_id(rbml_w, local_def(id));
let stab = stability::lookup(ecx.tcx, field.id);
encode_stability(rbml_w, stab);
rbml_w.end_tag();
}
index
}
fn encode_info_for_struct_ctor(ecx: &EncodeContext,
rbml_w: &mut Encoder,
name: ast::Ident,
ctor_id: NodeId,
index: &mut Vec<entry<i64>>,
struct_id: NodeId) {
index.push(entry {
val: ctor_id as i64,
pos: rbml_w.writer.tell().unwrap(),
});
rbml_w.start_tag(tag_items_data_item);
encode_def_id(rbml_w, local_def(ctor_id));
encode_family(rbml_w, 'o');
encode_bounds_and_type(rbml_w, ecx,
&lookup_item_type(ecx.tcx, local_def(ctor_id)));
encode_name(rbml_w, name.name);
ecx.tcx.map.with_path(ctor_id, |path| encode_path(rbml_w, path));
encode_parent_item(rbml_w, local_def(struct_id));
if ecx.item_symbols.borrow().contains_key(&ctor_id) {
encode_symbol(ecx, rbml_w, ctor_id);
}
let stab = stability::lookup(ecx.tcx, ast_util::local_def(ctor_id));
encode_stability(rbml_w, stab);
// indicate that this is a tuple struct ctor, because downstream users will normally want
// the tuple struct definition, but without this there is no way for them to tell that
// they actually have a ctor rather than a normal function
rbml_w.start_tag(tag_items_data_item_is_tuple_struct_ctor);
rbml_w.end_tag();
rbml_w.end_tag();
}
fn encode_generics<'a, 'tcx>(rbml_w: &mut Encoder,
ecx: &EncodeContext<'a, 'tcx>,
generics: &ty::Generics<'tcx>,
tag: uint)
{
rbml_w.start_tag(tag);
// Type parameters
let ty_str_ctxt = &tyencode::ctxt {
diag: ecx.diag,
ds: def_to_string,
tcx: ecx.tcx,
abbrevs: &ecx.type_abbrevs
};
for param in generics.types.iter() {
rbml_w.start_tag(tag_type_param_def);
tyencode::enc_type_param_def(rbml_w.writer, ty_str_ctxt, param);
rbml_w.end_tag();
}
// Region parameters
for param in generics.regions.iter() {
rbml_w.start_tag(tag_region_param_def);
rbml_w.start_tag(tag_region_param_def_ident);
encode_name(rbml_w, param.name);
rbml_w.end_tag();
rbml_w.wr_tagged_str(tag_region_param_def_def_id,
def_to_string(param.def_id).as_slice());
rbml_w.wr_tagged_u64(tag_region_param_def_space,
param.space.to_uint() as u64);
rbml_w.wr_tagged_u64(tag_region_param_def_index,
param.index as u64);
for &bound_region in param.bounds.iter() {
encode_region(ecx, rbml_w, bound_region);
}
rbml_w.end_tag();
}
for (space, _, predicate) in generics.predicates.iter_enumerated() {
rbml_w.start_tag(tag_predicate);
rbml_w.wr_tagged_u8(tag_predicate_space, space as u8);
rbml_w.start_tag(tag_predicate_data);
tyencode::enc_predicate(rbml_w.writer, ty_str_ctxt, predicate);
rbml_w.end_tag();
rbml_w.end_tag();
}
rbml_w.end_tag();
}
fn encode_method_ty_fields<'a, 'tcx>(ecx: &EncodeContext<'a, 'tcx>,
rbml_w: &mut Encoder,
method_ty: &ty::Method<'tcx>) {
encode_def_id(rbml_w, method_ty.def_id);
encode_name(rbml_w, method_ty.name);
encode_generics(rbml_w, ecx, &method_ty.generics,
tag_method_ty_generics);
encode_method_fty(ecx, rbml_w, &method_ty.fty);
encode_visibility(rbml_w, method_ty.vis);
encode_explicit_self(rbml_w, &method_ty.explicit_self);
match method_ty.explicit_self {
ty::StaticExplicitSelfCategory => {
encode_family(rbml_w, STATIC_METHOD_FAMILY);
}
_ => encode_family(rbml_w, METHOD_FAMILY)
}
encode_provided_source(rbml_w, method_ty.provided_source);
}
fn encode_info_for_method<'a, 'tcx>(ecx: &EncodeContext<'a, 'tcx>,
rbml_w: &mut Encoder,
m: &ty::Method<'tcx>,
impl_path: PathElems,
is_default_impl: bool,
parent_id: NodeId,
ast_item_opt: Option<&ast::ImplItem>) {
debug!("encode_info_for_method: {} {}", m.def_id,
token::get_name(m.name));
rbml_w.start_tag(tag_items_data_item);
encode_method_ty_fields(ecx, rbml_w, m);
encode_parent_item(rbml_w, local_def(parent_id));
encode_item_sort(rbml_w, 'r');
let stab = stability::lookup(ecx.tcx, m.def_id);
encode_stability(rbml_w, stab);
// The type for methods gets encoded twice, which is unfortunate.
let pty = lookup_item_type(ecx.tcx, m.def_id);
encode_bounds_and_type(rbml_w, ecx, &pty);
let elem = ast_map::PathName(m.name);
encode_path(rbml_w, impl_path.chain(Some(elem).into_iter()));
match ast_item_opt {
Some(&ast::MethodImplItem(ref ast_method)) => {
encode_attributes(rbml_w, ast_method.attrs.as_slice());
let any_types = !pty.generics.types.is_empty();
if any_types || is_default_impl || should_inline(ast_method.attrs.as_slice()) {
encode_inlined_item(ecx, rbml_w, IIImplItemRef(local_def(parent_id),
ast_item_opt.unwrap()));
}
if !any_types {
encode_symbol(ecx, rbml_w, m.def_id.node);
}
encode_method_argument_names(rbml_w, ast_method.pe_fn_decl());
}
Some(_) | None => {}
}
rbml_w.end_tag();
}
fn encode_info_for_associated_type(ecx: &EncodeContext,
rbml_w: &mut Encoder,
associated_type: &ty::AssociatedType,
impl_path: PathElems,
parent_id: NodeId,
typedef_opt: Option<P<ast::Typedef>>) {
debug!("encode_info_for_associated_type({},{})",
associated_type.def_id,
token::get_name(associated_type.name));
rbml_w.start_tag(tag_items_data_item);
encode_def_id(rbml_w, associated_type.def_id);
encode_name(rbml_w, associated_type.name);
encode_visibility(rbml_w, associated_type.vis);
encode_family(rbml_w, 'y');
encode_parent_item(rbml_w, local_def(parent_id));
encode_item_sort(rbml_w, 'r');
let stab = stability::lookup(ecx.tcx, associated_type.def_id);
encode_stability(rbml_w, stab);
let elem = ast_map::PathName(associated_type.name);
encode_path(rbml_w, impl_path.chain(Some(elem).into_iter()));
match typedef_opt {
None => {}
Some(typedef) => {
encode_attributes(rbml_w, typedef.attrs.as_slice());
encode_type(ecx, rbml_w, ty::node_id_to_type(ecx.tcx,
typedef.id));
}
}
rbml_w.end_tag();
}
fn encode_method_argument_names(rbml_w: &mut Encoder,
decl: &ast::FnDecl) {
rbml_w.start_tag(tag_method_argument_names);
for arg in decl.inputs.iter() {
rbml_w.start_tag(tag_method_argument_name);
if let ast::PatIdent(_, ref path1, _) = arg.pat.node {
let name = token::get_ident(path1.node);
rbml_w.writer.write(name.get().as_bytes());
}
rbml_w.end_tag();
}
rbml_w.end_tag();
}
fn encode_repr_attrs(rbml_w: &mut Encoder,
ecx: &EncodeContext,
attrs: &[ast::Attribute]) {
let mut repr_attrs = Vec::new();
for attr in attrs.iter() {
repr_attrs.extend(attr::find_repr_attrs(ecx.tcx.sess.diagnostic(),
attr).into_iter());
}
rbml_w.start_tag(tag_items_data_item_repr);
repr_attrs.encode(rbml_w);
rbml_w.end_tag();
}
fn encode_inlined_item(ecx: &EncodeContext,
rbml_w: &mut Encoder,
ii: InlinedItemRef) {
let mut eii = ecx.encode_inlined_item.borrow_mut();
let eii: &mut EncodeInlinedItem = &mut *eii;
(*eii)(ecx, rbml_w, ii)
}
const FN_FAMILY: char = 'f';
const STATIC_METHOD_FAMILY: char = 'F';
const METHOD_FAMILY: char = 'h';
fn should_inline(attrs: &[ast::Attribute]) -> bool {
use syntax::attr::*;
match find_inline_attr(attrs) {
InlineNone | InlineNever => false,
InlineHint | InlineAlways => true
}
}
// Encodes the inherent implementations of a structure, enumeration, or trait.
fn encode_inherent_implementations(ecx: &EncodeContext,
rbml_w: &mut Encoder,
def_id: DefId) {
match ecx.tcx.inherent_impls.borrow().get(&def_id) {
None => {}
Some(implementations) => {
for &impl_def_id in implementations.iter() {
rbml_w.start_tag(tag_items_data_item_inherent_impl);
encode_def_id(rbml_w, impl_def_id);
rbml_w.end_tag();
}
}
}
}
// Encodes the implementations of a trait defined in this crate.
fn encode_extension_implementations(ecx: &EncodeContext,
rbml_w: &mut Encoder,
trait_def_id: DefId) {
match ecx.tcx.trait_impls.borrow().get(&trait_def_id) {
None => {}
Some(implementations) => {
for &impl_def_id in implementations.borrow().iter() {
rbml_w.start_tag(tag_items_data_item_extension_impl);
encode_def_id(rbml_w, impl_def_id);
rbml_w.end_tag();
}
}
}
}
fn encode_stability(rbml_w: &mut Encoder, stab_opt: Option<attr::Stability>) {
stab_opt.map(|stab| {
rbml_w.start_tag(tag_items_data_item_stability);
stab.encode(rbml_w).unwrap();
rbml_w.end_tag();
});
}
fn encode_info_for_item(ecx: &EncodeContext,
rbml_w: &mut Encoder,
item: &ast::Item,
index: &mut Vec<entry<i64>>,
path: PathElems,
vis: ast::Visibility) {
let tcx = ecx.tcx;
fn add_to_index(item: &ast::Item, rbml_w: &Encoder,
index: &mut Vec<entry<i64>>) {
index.push(entry {
val: item.id as i64,
pos: rbml_w.writer.tell().unwrap(),
});
}
debug!("encoding info for item at {}",
tcx.sess.codemap().span_to_string(item.span));
let def_id = local_def(item.id);
let stab = stability::lookup(tcx, ast_util::local_def(item.id));
match item.node {
ast::ItemStatic(_, m, _) => {
add_to_index(item, rbml_w, index);
rbml_w.start_tag(tag_items_data_item);
encode_def_id(rbml_w, def_id);
if m == ast::MutMutable {
encode_family(rbml_w, 'b');
} else {
encode_family(rbml_w, 'c');
}
encode_bounds_and_type(rbml_w, ecx, &lookup_item_type(tcx, def_id));
encode_symbol(ecx, rbml_w, item.id);
encode_name(rbml_w, item.ident.name);
encode_path(rbml_w, path);
encode_visibility(rbml_w, vis);
encode_stability(rbml_w, stab);
encode_attributes(rbml_w, item.attrs.as_slice());
rbml_w.end_tag();
}
ast::ItemConst(_, _) => {
add_to_index(item, rbml_w, index);
rbml_w.start_tag(tag_items_data_item);
encode_def_id(rbml_w, def_id);
encode_family(rbml_w, 'C');
encode_bounds_and_type(rbml_w, ecx, &lookup_item_type(tcx, def_id));
encode_name(rbml_w, item.ident.name);
encode_path(rbml_w, path);
encode_inlined_item(ecx, rbml_w, IIItemRef(item));
encode_visibility(rbml_w, vis);
encode_stability(rbml_w, stab);
rbml_w.end_tag();
}
ast::ItemFn(ref decl, _, _, ref generics, _) => {
add_to_index(item, rbml_w, index);
rbml_w.start_tag(tag_items_data_item);
encode_def_id(rbml_w, def_id);
encode_family(rbml_w, FN_FAMILY);
let tps_len = generics.ty_params.len();
encode_bounds_and_type(rbml_w, ecx, &lookup_item_type(tcx, def_id));
encode_name(rbml_w, item.ident.name);
encode_path(rbml_w, path);
encode_attributes(rbml_w, item.attrs.as_slice());
if tps_len > 0u || should_inline(item.attrs.as_slice()) {
encode_inlined_item(ecx, rbml_w, IIItemRef(item));
}
if tps_len == 0 {
encode_symbol(ecx, rbml_w, item.id);
}
encode_visibility(rbml_w, vis);
encode_stability(rbml_w, stab);
encode_method_argument_names(rbml_w, &**decl);
rbml_w.end_tag();
}
ast::ItemMod(ref m) => {
add_to_index(item, rbml_w, index);
encode_info_for_mod(ecx,
rbml_w,
m,
item.attrs.as_slice(),
item.id,
path,
item.ident,
item.vis);
}
ast::ItemForeignMod(ref fm) => {
add_to_index(item, rbml_w, index);
rbml_w.start_tag(tag_items_data_item);
encode_def_id(rbml_w, def_id);
encode_family(rbml_w, 'n');
encode_name(rbml_w, item.ident.name);
encode_path(rbml_w, path);
// Encode all the items in this module.
for foreign_item in fm.items.iter() {
rbml_w.start_tag(tag_mod_child);
rbml_w.wr_str(def_to_string(local_def(foreign_item.id)).as_slice());
rbml_w.end_tag();
}
encode_visibility(rbml_w, vis);
encode_stability(rbml_w, stab);
rbml_w.end_tag();
}
ast::ItemTy(..) => {
add_to_index(item, rbml_w, index);
rbml_w.start_tag(tag_items_data_item);
encode_def_id(rbml_w, def_id);
encode_family(rbml_w, 'y');
encode_bounds_and_type(rbml_w, ecx, &lookup_item_type(tcx, def_id));
encode_name(rbml_w, item.ident.name);
encode_path(rbml_w, path);
encode_visibility(rbml_w, vis);
encode_stability(rbml_w, stab);
rbml_w.end_tag();
}
ast::ItemEnum(ref enum_definition, _) => {
add_to_index(item, rbml_w, index);
rbml_w.start_tag(tag_items_data_item);
encode_def_id(rbml_w, def_id);
encode_family(rbml_w, 't');
encode_item_variances(rbml_w, ecx, item.id);
encode_bounds_and_type(rbml_w, ecx, &lookup_item_type(tcx, def_id));
encode_name(rbml_w, item.ident.name);
encode_attributes(rbml_w, item.attrs.as_slice());
encode_repr_attrs(rbml_w, ecx, item.attrs.as_slice());
for v in (*enum_definition).variants.iter() {
encode_variant_id(rbml_w, local_def(v.node.id));
}
encode_inlined_item(ecx, rbml_w, IIItemRef(item));
encode_path(rbml_w, path);
// Encode inherent implementations for this enumeration.
encode_inherent_implementations(ecx, rbml_w, def_id);
encode_visibility(rbml_w, vis);
encode_stability(rbml_w, stab);
rbml_w.end_tag();
encode_enum_variant_info(ecx,
rbml_w,
item.id,
(*enum_definition).variants.as_slice(),
index);
}
ast::ItemStruct(ref struct_def, _) => {
let fields = ty::lookup_struct_fields(tcx, def_id);
/* First, encode the fields
These come first because we need to write them to make
the index, and the index needs to be in the item for the
class itself */
let idx = encode_info_for_struct(ecx,
rbml_w,
fields.as_slice(),
index);
/* Index the class*/
add_to_index(item, rbml_w, index);
/* Now, make an item for the class itself */
rbml_w.start_tag(tag_items_data_item);
encode_def_id(rbml_w, def_id);
encode_family(rbml_w, 'S');
encode_bounds_and_type(rbml_w, ecx, &lookup_item_type(tcx, def_id));
encode_item_variances(rbml_w, ecx, item.id);
encode_name(rbml_w, item.ident.name);
encode_attributes(rbml_w, item.attrs.as_slice());
encode_path(rbml_w, path.clone());
encode_stability(rbml_w, stab);
encode_visibility(rbml_w, vis);
encode_repr_attrs(rbml_w, ecx, item.attrs.as_slice());
/* Encode def_ids for each field and method
for methods, write all the stuff get_trait_method
needs to know*/
encode_struct_fields(rbml_w, fields.as_slice(), def_id);
encode_inlined_item(ecx, rbml_w, IIItemRef(item));
// Encode inherent implementations for this structure.
encode_inherent_implementations(ecx, rbml_w, def_id);
/* Each class has its own index -- encode it */
encode_index(rbml_w, idx, write_i64);
rbml_w.end_tag();
// If this is a tuple-like struct, encode the type of the constructor.
match struct_def.ctor_id {
Some(ctor_id) => {
encode_info_for_struct_ctor(ecx, rbml_w, item.ident,
ctor_id, index, def_id.node);
}
None => {}
}
}
ast::ItemImpl(_, ref opt_trait, ref ty, ref ast_items) => {
// We need to encode information about the default methods we
// have inherited, so we drive this based on the impl structure.
let impl_items = tcx.impl_items.borrow();
let items = &(*impl_items)[def_id];
add_to_index(item, rbml_w, index);
rbml_w.start_tag(tag_items_data_item);
encode_def_id(rbml_w, def_id);
encode_family(rbml_w, 'i');
encode_bounds_and_type(rbml_w, ecx, &lookup_item_type(tcx, def_id));
encode_name(rbml_w, item.ident.name);
encode_attributes(rbml_w, item.attrs.as_slice());
match ty.node {
ast::TyPath(ref path, _) if path.segments
.len() == 1 => {
let ident = path.segments.last().unwrap().identifier;
encode_impl_type_basename(rbml_w, ident);
}
_ => {}
}
for &item_def_id in items.iter() {
rbml_w.start_tag(tag_item_impl_item);
match item_def_id {
ty::MethodTraitItemId(item_def_id) => {
encode_def_id(rbml_w, item_def_id);
encode_item_sort(rbml_w, 'r');
}
ty::TypeTraitItemId(item_def_id) => {
encode_def_id(rbml_w, item_def_id);
encode_item_sort(rbml_w, 't');
}
}
rbml_w.end_tag();
}
for ast_trait_ref in opt_trait.iter() {
let trait_ref = ty::node_id_to_trait_ref(
tcx, ast_trait_ref.ref_id);
encode_trait_ref(rbml_w, ecx, &*trait_ref, tag_item_trait_ref);
}
encode_path(rbml_w, path.clone());
encode_stability(rbml_w, stab);
rbml_w.end_tag();
// Iterate down the trait items, emitting them. We rely on the
// assumption that all of the actually implemented trait items
// appear first in the impl structure, in the same order they do
// in the ast. This is a little sketchy.
let num_implemented_methods = ast_items.len();
for (i, &trait_item_def_id) in items.iter().enumerate() {
let ast_item = if i < num_implemented_methods {
Some(&ast_items[i])
} else {
None
};
index.push(entry {
val: trait_item_def_id.def_id().node as i64,
pos: rbml_w.writer.tell().unwrap(),
});
let trait_item_type =
ty::impl_or_trait_item(tcx, trait_item_def_id.def_id());
match (trait_item_type, ast_item) {
(ty::MethodTraitItem(ref method_type),
Some(&ast::MethodImplItem(_))) => {
encode_info_for_method(ecx,
rbml_w,
&**method_type,
path.clone(),
false,
item.id,
ast_item)
}
(ty::MethodTraitItem(ref method_type), _) => {
encode_info_for_method(ecx,
rbml_w,
&**method_type,
path.clone(),
false,
item.id,
None)
}
(ty::TypeTraitItem(ref associated_type),
Some(&ast::TypeImplItem(ref typedef))) => {
encode_info_for_associated_type(ecx,
rbml_w,
&**associated_type,
path.clone(),
item.id,
Some((*typedef).clone()))
}
(ty::TypeTraitItem(ref associated_type), _) => {
encode_info_for_associated_type(ecx,
rbml_w,
&**associated_type,
path.clone(),
item.id,
None)
}
}
}
}
ast::ItemTrait(_, _, _, ref ms) => {
add_to_index(item, rbml_w, index);
rbml_w.start_tag(tag_items_data_item);
encode_def_id(rbml_w, def_id);
encode_family(rbml_w, 'I');
encode_item_variances(rbml_w, ecx, item.id);
let trait_def = ty::lookup_trait_def(tcx, def_id);
encode_generics(rbml_w, ecx, &trait_def.generics, tag_item_generics);
encode_trait_ref(rbml_w, ecx, &*trait_def.trait_ref, tag_item_trait_ref);
encode_name(rbml_w, item.ident.name);
encode_attributes(rbml_w, item.attrs.as_slice());
encode_visibility(rbml_w, vis);
encode_stability(rbml_w, stab);
for &method_def_id in ty::trait_item_def_ids(tcx, def_id).iter() {
rbml_w.start_tag(tag_item_trait_item);
match method_def_id {
ty::MethodTraitItemId(method_def_id) => {
encode_def_id(rbml_w, method_def_id);
encode_item_sort(rbml_w, 'r');
}
ty::TypeTraitItemId(type_def_id) => {
encode_def_id(rbml_w, type_def_id);
encode_item_sort(rbml_w, 't');
}
}
rbml_w.end_tag();
rbml_w.start_tag(tag_mod_child);
rbml_w.wr_str(def_to_string(method_def_id.def_id()).as_slice());
rbml_w.end_tag();
}
encode_path(rbml_w, path.clone());
encode_bounds(rbml_w, ecx, &trait_def.bounds, tag_trait_def_bounds);
// Encode the implementations of this trait.
encode_extension_implementations(ecx, rbml_w, def_id);
rbml_w.end_tag();
// Now output the trait item info for each trait item.
let r = ty::trait_item_def_ids(tcx, def_id);
for (i, &item_def_id) in r.iter().enumerate() {
assert_eq!(item_def_id.def_id().krate, ast::LOCAL_CRATE);
index.push(entry {
val: item_def_id.def_id().node as i64,
pos: rbml_w.writer.tell().unwrap(),
});
rbml_w.start_tag(tag_items_data_item);
encode_parent_item(rbml_w, def_id);
let stab = stability::lookup(tcx, item_def_id.def_id());
encode_stability(rbml_w, stab);
let trait_item_type =
ty::impl_or_trait_item(tcx, item_def_id.def_id());
let is_nonstatic_method;
match trait_item_type {
ty::MethodTraitItem(method_ty) => {
let method_def_id = item_def_id.def_id();
encode_method_ty_fields(ecx, rbml_w, &*method_ty);
let elem = ast_map::PathName(method_ty.name);
encode_path(rbml_w,
path.clone().chain(Some(elem).into_iter()));
match method_ty.explicit_self {
ty::StaticExplicitSelfCategory => {
encode_family(rbml_w,
STATIC_METHOD_FAMILY);
}
_ => {
encode_family(rbml_w,
METHOD_FAMILY);
}
}
let pty = ty::lookup_item_type(tcx,
method_def_id);
encode_bounds_and_type(rbml_w, ecx, &pty);
is_nonstatic_method = method_ty.explicit_self !=
ty::StaticExplicitSelfCategory;
}
ty::TypeTraitItem(associated_type) => {
let elem = ast_map::PathName(associated_type.name);
encode_path(rbml_w,
path.clone().chain(Some(elem).into_iter()));
encode_family(rbml_w, 'y');
is_nonstatic_method = false;
}
}
encode_parent_sort(rbml_w, 't');
let trait_item = &ms[i];
let encode_trait_item = |rbml_w: &mut Encoder| {
// If this is a static method, we've already
// encoded this.
if is_nonstatic_method {
// FIXME: I feel like there is something funny
// going on.
let pty = ty::lookup_item_type(tcx, item_def_id.def_id());
encode_bounds_and_type(rbml_w, ecx, &pty);
}
};
match trait_item {
&ast::RequiredMethod(ref m) => {
encode_attributes(rbml_w, m.attrs.as_slice());
encode_trait_item(rbml_w);
encode_item_sort(rbml_w, 'r');
encode_method_argument_names(rbml_w, &*m.decl);
}
&ast::ProvidedMethod(ref m) => {
encode_attributes(rbml_w, m.attrs.as_slice());
encode_trait_item(rbml_w);
encode_item_sort(rbml_w, 'p');
encode_inlined_item(ecx, rbml_w, IITraitItemRef(def_id, trait_item));
encode_method_argument_names(rbml_w, &*m.pe_fn_decl());
}
&ast::TypeTraitItem(ref associated_type) => {
encode_attributes(rbml_w,
associated_type.attrs.as_slice());
encode_item_sort(rbml_w, 't');
}
}
rbml_w.end_tag();
}
// Encode inherent implementations for this trait.
encode_inherent_implementations(ecx, rbml_w, def_id);
}
ast::ItemMac(..) => {
// macros are encoded separately
}
}
}
fn encode_info_for_foreign_item(ecx: &EncodeContext,
rbml_w: &mut Encoder,
nitem: &ast::ForeignItem,
index: &mut Vec<entry<i64>>,
path: PathElems,
abi: abi::Abi) {
index.push(entry {
val: nitem.id as i64,
pos: rbml_w.writer.tell().unwrap(),
});
rbml_w.start_tag(tag_items_data_item);
encode_def_id(rbml_w, local_def(nitem.id));
encode_visibility(rbml_w, nitem.vis);
match nitem.node {
ast::ForeignItemFn(..) => {
encode_family(rbml_w, FN_FAMILY);
encode_bounds_and_type(rbml_w, ecx,
&lookup_item_type(ecx.tcx,local_def(nitem.id)));
encode_name(rbml_w, nitem.ident.name);
if abi == abi::RustIntrinsic {
encode_inlined_item(ecx, rbml_w, IIForeignRef(nitem));
}
encode_symbol(ecx, rbml_w, nitem.id);
}
ast::ForeignItemStatic(_, mutbl) => {
if mutbl {
encode_family(rbml_w, 'b');
} else {
encode_family(rbml_w, 'c');
}
encode_bounds_and_type(rbml_w, ecx,
&lookup_item_type(ecx.tcx,local_def(nitem.id)));
encode_symbol(ecx, rbml_w, nitem.id);
encode_name(rbml_w, nitem.ident.name);
}
}
encode_path(rbml_w, path);
rbml_w.end_tag();
}
fn my_visit_expr(_e: &ast::Expr) { }
fn my_visit_item(i: &ast::Item,
rbml_w: &mut Encoder,
ecx: &EncodeContext,
index: &mut Vec<entry<i64>>) {
ecx.tcx.map.with_path(i.id, |path| {
encode_info_for_item(ecx, rbml_w, i, index, path, i.vis);
});
}
fn my_visit_foreign_item(ni: &ast::ForeignItem,
rbml_w: &mut Encoder,
ecx: &EncodeContext,
index: &mut Vec<entry<i64>>) {
debug!("writing foreign item {}::{}",
ecx.tcx.map.path_to_string(ni.id),
token::get_ident(ni.ident));
let abi = ecx.tcx.map.get_foreign_abi(ni.id);
ecx.tcx.map.with_path(ni.id, |path| {
encode_info_for_foreign_item(ecx, rbml_w,
ni, index,
path, abi);
});
}
struct EncodeVisitor<'a, 'b:'a, 'c:'a, 'tcx:'c> {
rbml_w_for_visit_item: &'a mut Encoder<'b>,
ecx: &'a EncodeContext<'c,'tcx>,
index: &'a mut Vec<entry<i64>>,
}
impl<'a, 'b, 'c, 'tcx, 'v> Visitor<'v> for EncodeVisitor<'a, 'b, 'c, 'tcx> {
fn visit_expr(&mut self, ex: &ast::Expr) {
visit::walk_expr(self, ex);
my_visit_expr(ex);
}
fn visit_item(&mut self, i: &ast::Item) {
visit::walk_item(self, i);
my_visit_item(i,
self.rbml_w_for_visit_item,
self.ecx,
self.index);
}
fn visit_foreign_item(&mut self, ni: &ast::ForeignItem) {
visit::walk_foreign_item(self, ni);
my_visit_foreign_item(ni,
self.rbml_w_for_visit_item,
self.ecx,
self.index);
}
}
fn encode_info_for_items(ecx: &EncodeContext,
rbml_w: &mut Encoder,
krate: &ast::Crate)
-> Vec<entry<i64>> {
let mut index = Vec::new();
rbml_w.start_tag(tag_items_data);
index.push(entry {
val: ast::CRATE_NODE_ID as i64,
pos: rbml_w.writer.tell().unwrap(),
});
encode_info_for_mod(ecx,
rbml_w,
&krate.module,
&[],
ast::CRATE_NODE_ID,
ast_map::Values([].iter()).chain(None),
syntax::parse::token::special_idents::invalid,
ast::Public);
visit::walk_crate(&mut EncodeVisitor {
index: &mut index,
ecx: ecx,
rbml_w_for_visit_item: &mut *rbml_w,
}, krate);
rbml_w.end_tag();
index
}
// Path and definition ID indexing
fn encode_index<T: Hash>(rbml_w: &mut Encoder, index: Vec<entry<T>>,
write_fn: |&mut SeekableMemWriter, &T|) {
let mut buckets: Vec<Vec<entry<T>>> = Vec::from_fn(256, |_| Vec::new());
for elt in index.into_iter() {
let h = hash::hash(&elt.val) as uint;
buckets[h % 256].push(elt);
}
rbml_w.start_tag(tag_index);
let mut bucket_locs = Vec::new();
rbml_w.start_tag(tag_index_buckets);
for bucket in buckets.iter() {
bucket_locs.push(rbml_w.writer.tell().unwrap());
rbml_w.start_tag(tag_index_buckets_bucket);
for elt in bucket.iter() {
rbml_w.start_tag(tag_index_buckets_bucket_elt);
assert!(elt.pos < 0xffff_ffff);
{
let wr: &mut SeekableMemWriter = rbml_w.writer;
wr.write_be_u32(elt.pos as u32);
}
write_fn(rbml_w.writer, &elt.val);
rbml_w.end_tag();
}
rbml_w.end_tag();
}
rbml_w.end_tag();
rbml_w.start_tag(tag_index_table);
for pos in bucket_locs.iter() {
assert!(*pos < 0xffff_ffff);
let wr: &mut SeekableMemWriter = rbml_w.writer;
wr.write_be_u32(*pos as u32);
}
rbml_w.end_tag();
rbml_w.end_tag();
}
fn write_i64(writer: &mut SeekableMemWriter, &n: &i64) {
let wr: &mut SeekableMemWriter = writer;
assert!(n < 0x7fff_ffff);
wr.write_be_u32(n as u32);
}
fn encode_meta_item(rbml_w: &mut Encoder, mi: &ast::MetaItem) {
match mi.node {
ast::MetaWord(ref name) => {
rbml_w.start_tag(tag_meta_item_word);
rbml_w.start_tag(tag_meta_item_name);
rbml_w.writer.write(name.get().as_bytes());
rbml_w.end_tag();
rbml_w.end_tag();
}
ast::MetaNameValue(ref name, ref value) => {
match value.node {
ast::LitStr(ref value, _) => {
rbml_w.start_tag(tag_meta_item_name_value);
rbml_w.start_tag(tag_meta_item_name);
rbml_w.writer.write(name.get().as_bytes());
rbml_w.end_tag();
rbml_w.start_tag(tag_meta_item_value);
rbml_w.writer.write(value.get().as_bytes());
rbml_w.end_tag();
rbml_w.end_tag();
}
_ => {/* FIXME (#623): encode other variants */ }
}
}
ast::MetaList(ref name, ref items) => {
rbml_w.start_tag(tag_meta_item_list);
rbml_w.start_tag(tag_meta_item_name);
rbml_w.writer.write(name.get().as_bytes());
rbml_w.end_tag();
for inner_item in items.iter() {
encode_meta_item(rbml_w, &**inner_item);
}
rbml_w.end_tag();
}
}
}
fn encode_attributes(rbml_w: &mut Encoder, attrs: &[ast::Attribute]) {
rbml_w.start_tag(tag_attributes);
for attr in attrs.iter() {
rbml_w.start_tag(tag_attribute);
rbml_w.wr_tagged_u8(tag_attribute_is_sugared_doc, attr.node.is_sugared_doc as u8);
encode_meta_item(rbml_w, &*attr.node.value);
rbml_w.end_tag();
}
rbml_w.end_tag();
}
fn encode_crate_deps(rbml_w: &mut Encoder, cstore: &cstore::CStore) {
fn get_ordered_deps(cstore: &cstore::CStore) -> Vec<decoder::CrateDep> {
// Pull the cnums and name,vers,hash out of cstore
let mut deps = Vec::new();
cstore.iter_crate_data(|key, val| {
let dep = decoder::CrateDep {
cnum: key,
name: decoder::get_crate_name(val.data()),
hash: decoder::get_crate_hash(val.data()),
};
deps.push(dep);
});
// Sort by cnum
deps.sort_by(|kv1, kv2| kv1.cnum.cmp(&kv2.cnum));
// Sanity-check the crate numbers
let mut expected_cnum = 1;
for n in deps.iter() {
assert_eq!(n.cnum, expected_cnum);
expected_cnum += 1;
}
deps
}
// We're just going to write a list of crate 'name-hash-version's, with
// the assumption that they are numbered 1 to n.
// FIXME (#2166): This is not nearly enough to support correct versioning
// but is enough to get transitive crate dependencies working.
rbml_w.start_tag(tag_crate_deps);
let r = get_ordered_deps(cstore);
for dep in r.iter() {
encode_crate_dep(rbml_w, (*dep).clone());
}
rbml_w.end_tag();
}
fn encode_lang_items(ecx: &EncodeContext, rbml_w: &mut Encoder) {
rbml_w.start_tag(tag_lang_items);
for (i, def_id) in ecx.tcx.lang_items.items() {
for id in def_id.iter() {
if id.krate == ast::LOCAL_CRATE {
rbml_w.start_tag(tag_lang_items_item);
rbml_w.start_tag(tag_lang_items_item_id);
{
let wr: &mut SeekableMemWriter = rbml_w.writer;
wr.write_be_u32(i as u32);
}
rbml_w.end_tag(); // tag_lang_items_item_id
rbml_w.start_tag(tag_lang_items_item_node_id);
{
let wr: &mut SeekableMemWriter = rbml_w.writer;
wr.write_be_u32(id.node as u32);
}
rbml_w.end_tag(); // tag_lang_items_item_node_id
rbml_w.end_tag(); // tag_lang_items_item
}
}
}
for i in ecx.tcx.lang_items.missing.iter() {
rbml_w.wr_tagged_u32(tag_lang_items_missing, *i as u32);
}
rbml_w.end_tag(); // tag_lang_items
}
fn encode_native_libraries(ecx: &EncodeContext, rbml_w: &mut Encoder) {
rbml_w.start_tag(tag_native_libraries);
for &(ref lib, kind) in ecx.tcx.sess.cstore.get_used_libraries()
.borrow().iter() {
match kind {
cstore::NativeStatic => {} // these libraries are not propagated
cstore::NativeFramework | cstore::NativeUnknown => {
rbml_w.start_tag(tag_native_libraries_lib);
rbml_w.start_tag(tag_native_libraries_kind);
rbml_w.writer.write_be_u32(kind as u32);
rbml_w.end_tag();
rbml_w.start_tag(tag_native_libraries_name);
rbml_w.writer.write(lib.as_bytes());
rbml_w.end_tag();
rbml_w.end_tag();
}
}
}
rbml_w.end_tag();
}
fn encode_plugin_registrar_fn(ecx: &EncodeContext, rbml_w: &mut Encoder) {
match ecx.tcx.sess.plugin_registrar_fn.get() {
Some(id) => { rbml_w.wr_tagged_u32(tag_plugin_registrar_fn, id); }
None => {}
}
}
/// Given a span, write the text of that span into the output stream
/// as an exported macro
fn encode_macro_def(ecx: &EncodeContext,
rbml_w: &mut Encoder,
span: &syntax::codemap::Span) {
let def = ecx.tcx.sess.codemap().span_to_snippet(*span)
.expect("Unable to find source for macro");
rbml_w.start_tag(tag_macro_def);
rbml_w.wr_str(def.as_slice());
rbml_w.end_tag();
}
/// Serialize the text of the exported macros
fn encode_macro_defs(ecx: &EncodeContext,
krate: &ast::Crate,
rbml_w: &mut Encoder) {
rbml_w.start_tag(tag_exported_macros);
for item in krate.exported_macros.iter() {
encode_macro_def(ecx, rbml_w, &item.span);
}
rbml_w.end_tag();
}
fn encode_unboxed_closures<'a>(
ecx: &'a EncodeContext,
rbml_w: &'a mut Encoder) {
rbml_w.start_tag(tag_unboxed_closures);
for (unboxed_closure_id, unboxed_closure) in ecx.tcx
.unboxed_closures
.borrow()
.iter() {
if unboxed_closure_id.krate != ast::LOCAL_CRATE {
continue
}
rbml_w.start_tag(tag_unboxed_closure);
encode_def_id(rbml_w, *unboxed_closure_id);
rbml_w.start_tag(tag_unboxed_closure_type);
write_closure_type(ecx, rbml_w, &unboxed_closure.closure_type);
rbml_w.end_tag();
encode_unboxed_closure_kind(rbml_w, unboxed_closure.kind);
rbml_w.end_tag();
}
rbml_w.end_tag();
}
fn encode_struct_field_attrs(rbml_w: &mut Encoder, krate: &ast::Crate) {
struct StructFieldVisitor<'a, 'b:'a> {
rbml_w: &'a mut Encoder<'b>,
}
impl<'a, 'b, 'v> Visitor<'v> for StructFieldVisitor<'a, 'b> {
fn visit_struct_field(&mut self, field: &ast::StructField) {
self.rbml_w.start_tag(tag_struct_field);
self.rbml_w.wr_tagged_u32(tag_struct_field_id, field.node.id);
encode_attributes(self.rbml_w, field.node.attrs.as_slice());
self.rbml_w.end_tag();
}
}
rbml_w.start_tag(tag_struct_fields);
visit::walk_crate(&mut StructFieldVisitor {
rbml_w: rbml_w
}, krate);
rbml_w.end_tag();
}
struct ImplVisitor<'a, 'b:'a, 'c:'a, 'tcx:'b> {
ecx: &'a EncodeContext<'b, 'tcx>,
rbml_w: &'a mut Encoder<'c>,
}
impl<'a, 'b, 'c, 'tcx, 'v> Visitor<'v> for ImplVisitor<'a, 'b, 'c, 'tcx> {
fn visit_item(&mut self, item: &ast::Item) {
if let ast::ItemImpl(_, Some(ref trait_ref), _, _) = item.node {
let def_map = &self.ecx.tcx.def_map;
let trait_def = def_map.borrow()[trait_ref.ref_id].clone();
let def_id = trait_def.def_id();
// Load eagerly if this is an implementation of the Drop trait
// or if the trait is not defined in this crate.
if Some(def_id) == self.ecx.tcx.lang_items.drop_trait() ||
def_id.krate != ast::LOCAL_CRATE {
self.rbml_w.start_tag(tag_impls_impl);
encode_def_id(self.rbml_w, local_def(item.id));
self.rbml_w.end_tag();
}
}
visit::walk_item(self, item);
}
}
/// Encodes implementations that are eagerly loaded.
///
/// None of this is necessary in theory; we can load all implementations
/// lazily. However, in two cases the optimizations to lazily load
/// implementations are not yet implemented. These two cases, which require us
/// to load implementations eagerly, are:
///
/// * Destructors (implementations of the Drop trait).
///
/// * Implementations of traits not defined in this crate.
fn encode_impls<'a>(ecx: &'a EncodeContext,
krate: &ast::Crate,
rbml_w: &'a mut Encoder) {
rbml_w.start_tag(tag_impls);
{
let mut visitor = ImplVisitor {
ecx: ecx,
rbml_w: rbml_w,
};
visit::walk_crate(&mut visitor, krate);
}
rbml_w.end_tag();
}
fn encode_misc_info(ecx: &EncodeContext,
krate: &ast::Crate,
rbml_w: &mut Encoder) {
rbml_w.start_tag(tag_misc_info);
rbml_w.start_tag(tag_misc_info_crate_items);
for item in krate.module.items.iter() {
rbml_w.start_tag(tag_mod_child);
rbml_w.wr_str(def_to_string(local_def(item.id)).as_slice());
rbml_w.end_tag();
each_auxiliary_node_id(&**item, |auxiliary_node_id| {
rbml_w.start_tag(tag_mod_child);
rbml_w.wr_str(def_to_string(local_def(
auxiliary_node_id)).as_slice());
rbml_w.end_tag();
true
});
}
// Encode reexports for the root module.
encode_reexports(ecx, rbml_w, 0, ast_map::Values([].iter()).chain(None));
rbml_w.end_tag();
rbml_w.end_tag();
}
fn encode_reachable_extern_fns(ecx: &EncodeContext, rbml_w: &mut Encoder) {
rbml_w.start_tag(tag_reachable_extern_fns);
for id in ecx.reachable.iter() {
if let Some(ast_map::NodeItem(i)) = ecx.tcx.map.find(*id) {
if let ast::ItemFn(_, _, abi, ref generics, _) = i.node {
if abi != abi::Rust && !generics.is_type_parameterized() {
rbml_w.wr_tagged_u32(tag_reachable_extern_fn_id, *id);
}
}
}
}
rbml_w.end_tag();
}
fn encode_crate_dep(rbml_w: &mut Encoder,
dep: decoder::CrateDep) {
rbml_w.start_tag(tag_crate_dep);
rbml_w.start_tag(tag_crate_dep_crate_name);
rbml_w.writer.write(dep.name.as_bytes());
rbml_w.end_tag();
rbml_w.start_tag(tag_crate_dep_hash);
rbml_w.writer.write(dep.hash.as_str().as_bytes());
rbml_w.end_tag();
rbml_w.end_tag();
}
fn encode_hash(rbml_w: &mut Encoder, hash: &Svh) {
rbml_w.start_tag(tag_crate_hash);
rbml_w.writer.write(hash.as_str().as_bytes());
rbml_w.end_tag();
}
fn encode_crate_name(rbml_w: &mut Encoder, crate_name: &str) {
rbml_w.start_tag(tag_crate_crate_name);
rbml_w.writer.write(crate_name.as_bytes());
rbml_w.end_tag();
}
fn encode_crate_triple(rbml_w: &mut Encoder, triple: &str) {
rbml_w.start_tag(tag_crate_triple);
rbml_w.writer.write(triple.as_bytes());
rbml_w.end_tag();
}
fn encode_dylib_dependency_formats(rbml_w: &mut Encoder, ecx: &EncodeContext) {
rbml_w.start_tag(tag_dylib_dependency_formats);
match ecx.tcx.dependency_formats.borrow().get(&config::CrateTypeDylib) {
Some(arr) => {
let s = arr.iter().enumerate().filter_map(|(i, slot)| {
slot.map(|kind| (format!("{}:{}", i + 1, match kind {
cstore::RequireDynamic => "d",
cstore::RequireStatic => "s",
})).to_string())
}).collect::<Vec<String>>();
rbml_w.writer.write(s.connect(",").as_bytes());
}
None => {}
}
rbml_w.end_tag();
}
// NB: Increment this as you change the metadata encoding version.
#[allow(non_upper_case_globals)]
pub const metadata_encoding_version : &'static [u8] = &[b'r', b'u', b's', b't', 0, 0, 0, 1 ];
pub fn encode_metadata(parms: EncodeParams, krate: &ast::Crate) -> Vec<u8> {
let mut wr = SeekableMemWriter::new();
encode_metadata_inner(&mut wr, parms, krate);
let mut v = wr.unwrap();
// And here we run into yet another obscure archive bug: in which metadata
// loaded from archives may have trailing garbage bytes. Awhile back one of
// our tests was failing sporadially on the OSX 64-bit builders (both nopt
// and opt) by having rbml generate an out-of-bounds panic when looking at
// metadata.
//
// Upon investigation it turned out that the metadata file inside of an rlib
// (and ar archive) was being corrupted. Some compilations would generate a
// metadata file which would end in a few extra bytes, while other
// compilations would not have these extra bytes appended to the end. These
// extra bytes were interpreted by rbml as an extra tag, so they ended up
// being interpreted causing the out-of-bounds.
//
// The root cause of why these extra bytes were appearing was never
// discovered, and in the meantime the solution we're employing is to insert
// the length of the metadata to the start of the metadata. Later on this
// will allow us to slice the metadata to the precise length that we just
// generated regardless of trailing bytes that end up in it.
let len = v.len() as u32;
v.insert(0, (len >> 0) as u8);
v.insert(0, (len >> 8) as u8);
v.insert(0, (len >> 16) as u8);
v.insert(0, (len >> 24) as u8);
return v;
}
fn encode_metadata_inner(wr: &mut SeekableMemWriter,
parms: EncodeParams,
krate: &ast::Crate) {
struct Stats {
attr_bytes: u64,
dep_bytes: u64,
lang_item_bytes: u64,
native_lib_bytes: u64,
plugin_registrar_fn_bytes: u64,
macro_defs_bytes: u64,
unboxed_closure_bytes: u64,
impl_bytes: u64,
misc_bytes: u64,
item_bytes: u64,
index_bytes: u64,
zero_bytes: u64,
total_bytes: u64,
}
let mut stats = Stats {
attr_bytes: 0,
dep_bytes: 0,
lang_item_bytes: 0,
native_lib_bytes: 0,
plugin_registrar_fn_bytes: 0,
macro_defs_bytes: 0,
unboxed_closure_bytes: 0,
impl_bytes: 0,
misc_bytes: 0,
item_bytes: 0,
index_bytes: 0,
zero_bytes: 0,
total_bytes: 0,
};
let EncodeParams {
item_symbols,
diag,
tcx,
reexports2,
cstore,
encode_inlined_item,
link_meta,
reachable,
..
} = parms;
let ecx = EncodeContext {
diag: diag,
tcx: tcx,
reexports2: reexports2,
item_symbols: item_symbols,
link_meta: link_meta,
cstore: cstore,
encode_inlined_item: RefCell::new(encode_inlined_item),
type_abbrevs: RefCell::new(FnvHashMap::new()),
reachable: reachable,
};
let mut rbml_w = writer::Encoder::new(wr);
encode_crate_name(&mut rbml_w, ecx.link_meta.crate_name.as_slice());
encode_crate_triple(&mut rbml_w,
tcx.sess
.opts
.target_triple
.as_slice());
encode_hash(&mut rbml_w, &ecx.link_meta.crate_hash);
encode_dylib_dependency_formats(&mut rbml_w, &ecx);
let mut i = rbml_w.writer.tell().unwrap();
encode_attributes(&mut rbml_w, krate.attrs.as_slice());
stats.attr_bytes = rbml_w.writer.tell().unwrap() - i;
i = rbml_w.writer.tell().unwrap();
encode_crate_deps(&mut rbml_w, ecx.cstore);
stats.dep_bytes = rbml_w.writer.tell().unwrap() - i;
// Encode the language items.
i = rbml_w.writer.tell().unwrap();
encode_lang_items(&ecx, &mut rbml_w);
stats.lang_item_bytes = rbml_w.writer.tell().unwrap() - i;
// Encode the native libraries used
i = rbml_w.writer.tell().unwrap();
encode_native_libraries(&ecx, &mut rbml_w);
stats.native_lib_bytes = rbml_w.writer.tell().unwrap() - i;
// Encode the plugin registrar function
i = rbml_w.writer.tell().unwrap();
encode_plugin_registrar_fn(&ecx, &mut rbml_w);
stats.plugin_registrar_fn_bytes = rbml_w.writer.tell().unwrap() - i;
// Encode macro definitions
i = rbml_w.writer.tell().unwrap();
encode_macro_defs(&ecx, krate, &mut rbml_w);
stats.macro_defs_bytes = rbml_w.writer.tell().unwrap() - i;
// Encode the types of all unboxed closures in this crate.
i = rbml_w.writer.tell().unwrap();
encode_unboxed_closures(&ecx, &mut rbml_w);
stats.unboxed_closure_bytes = rbml_w.writer.tell().unwrap() - i;
// Encode the def IDs of impls, for coherence checking.
i = rbml_w.writer.tell().unwrap();
encode_impls(&ecx, krate, &mut rbml_w);
stats.impl_bytes = rbml_w.writer.tell().unwrap() - i;
// Encode miscellaneous info.
i = rbml_w.writer.tell().unwrap();
encode_misc_info(&ecx, krate, &mut rbml_w);
encode_reachable_extern_fns(&ecx, &mut rbml_w);
stats.misc_bytes = rbml_w.writer.tell().unwrap() - i;
// Encode and index the items.
rbml_w.start_tag(tag_items);
i = rbml_w.writer.tell().unwrap();
let items_index = encode_info_for_items(&ecx, &mut rbml_w, krate);
stats.item_bytes = rbml_w.writer.tell().unwrap() - i;
i = rbml_w.writer.tell().unwrap();
encode_index(&mut rbml_w, items_index, write_i64);
stats.index_bytes = rbml_w.writer.tell().unwrap() - i;
rbml_w.end_tag();
encode_struct_field_attrs(&mut rbml_w, krate);
stats.total_bytes = rbml_w.writer.tell().unwrap();
if tcx.sess.meta_stats() {
for e in rbml_w.writer.get_ref().iter() {
if *e == 0 {
stats.zero_bytes += 1;
}
}
println!("metadata stats:");
println!(" attribute bytes: {}", stats.attr_bytes);
println!(" dep bytes: {}", stats.dep_bytes);
println!(" lang item bytes: {}", stats.lang_item_bytes);
println!(" native bytes: {}", stats.native_lib_bytes);
println!("plugin registrar bytes: {}", stats.plugin_registrar_fn_bytes);
println!(" macro def bytes: {}", stats.macro_defs_bytes);
println!(" unboxed closure bytes: {}", stats.unboxed_closure_bytes);
println!(" impl bytes: {}", stats.impl_bytes);
println!(" misc bytes: {}", stats.misc_bytes);
println!(" item bytes: {}", stats.item_bytes);
println!(" index bytes: {}", stats.index_bytes);
println!(" zero bytes: {}", stats.zero_bytes);
println!(" total bytes: {}", stats.total_bytes);
}
}
// Get the encoded string for a type
pub fn encoded_ty<'tcx>(tcx: &ty::ctxt<'tcx>, t: Ty<'tcx>) -> String {
let mut wr = SeekableMemWriter::new();
tyencode::enc_ty(&mut wr, &tyencode::ctxt {
diag: tcx.sess.diagnostic(),
ds: def_to_string,
tcx: tcx,
abbrevs: &RefCell::new(FnvHashMap::new())
}, t);
String::from_utf8(wr.unwrap()).unwrap()
}