rust/src/librustc_mir/dataflow/at_location.rs
2019-02-10 23:42:32 +00:00

244 lines
8.1 KiB
Rust

//! A nice wrapper to consume dataflow results at several CFG
//! locations.
use rustc::mir::{BasicBlock, Location};
use rustc_data_structures::bit_set::{BitIter, BitSet, HybridBitSet};
use crate::dataflow::{BitDenotation, BlockSets, DataflowResults};
use crate::dataflow::move_paths::{HasMoveData, MovePathIndex};
use std::iter;
/// A trait for "cartesian products" of multiple FlowAtLocation.
///
/// There's probably a way to auto-impl this, but I think
/// it is cleaner to have manual visitor impls.
pub trait FlowsAtLocation {
/// Reset the state bitvector to represent the entry to block `bb`.
fn reset_to_entry_of(&mut self, bb: BasicBlock);
/// Reset the state bitvector to represent the exit of the
/// terminator of block `bb`.
///
/// **Important:** In the case of a `Call` terminator, these
/// effects do *not* include the result of storing the destination
/// of the call, since that is edge-dependent (in other words, the
/// effects don't apply to the unwind edge).
fn reset_to_exit_of(&mut self, bb: BasicBlock);
/// Builds gen and kill sets for statement at `loc`.
///
/// Note that invoking this method alone does not change the
/// `curr_state` -- you must invoke `apply_local_effect`
/// afterwards.
fn reconstruct_statement_effect(&mut self, loc: Location);
/// Builds gen and kill sets for terminator for `loc`.
///
/// Note that invoking this method alone does not change the
/// `curr_state` -- you must invoke `apply_local_effect`
/// afterwards.
fn reconstruct_terminator_effect(&mut self, loc: Location);
/// Apply current gen + kill sets to `flow_state`.
///
/// (`loc` parameters can be ignored if desired by
/// client. For the terminator, the `stmt_idx` will be the number
/// of statements in the block.)
fn apply_local_effect(&mut self, loc: Location);
}
/// Represents the state of dataflow at a particular
/// CFG location, both before and after it is
/// executed.
///
/// Data flow results are typically computed only as basic block
/// boundaries. A `FlowInProgress` allows you to reconstruct the
/// effects at any point in the control-flow graph by starting with
/// the state at the start of the basic block (`reset_to_entry_of`)
/// and then replaying the effects of statements and terminators
/// (e.g., via `reconstruct_statement_effect` and
/// `reconstruct_terminator_effect`; don't forget to call
/// `apply_local_effect`).
pub struct FlowAtLocation<'tcx, BD>
where
BD: BitDenotation<'tcx>,
{
base_results: DataflowResults<'tcx, BD>,
curr_state: BitSet<BD::Idx>,
stmt_gen: HybridBitSet<BD::Idx>,
stmt_kill: HybridBitSet<BD::Idx>,
}
impl<'tcx, BD> FlowAtLocation<'tcx, BD>
where
BD: BitDenotation<'tcx>,
{
/// Iterate over each bit set in the current state.
pub fn each_state_bit<F>(&self, f: F)
where
F: FnMut(BD::Idx),
{
self.curr_state.iter().for_each(f)
}
/// Iterate over each `gen` bit in the current effect (invoke
/// `reconstruct_statement_effect` or
/// `reconstruct_terminator_effect` first).
pub fn each_gen_bit<F>(&self, f: F)
where
F: FnMut(BD::Idx),
{
self.stmt_gen.iter().for_each(f)
}
pub fn new(results: DataflowResults<'tcx, BD>) -> Self {
let bits_per_block = results.sets().bits_per_block();
let curr_state = BitSet::new_empty(bits_per_block);
let stmt_gen = HybridBitSet::new_empty(bits_per_block);
let stmt_kill = HybridBitSet::new_empty(bits_per_block);
FlowAtLocation {
base_results: results,
curr_state: curr_state,
stmt_gen: stmt_gen,
stmt_kill: stmt_kill,
}
}
/// Access the underlying operator.
pub fn operator(&self) -> &BD {
self.base_results.operator()
}
pub fn contains(&self, x: BD::Idx) -> bool {
self.curr_state.contains(x)
}
/// Returns an iterator over the elements present in the current state.
pub fn iter_incoming(&self) -> iter::Peekable<BitIter<'_, BD::Idx>> {
self.curr_state.iter().peekable()
}
/// Creates a clone of the current state and applies the local
/// effects to the clone (leaving the state of self intact).
/// Invokes `f` with an iterator over the resulting state.
pub fn with_iter_outgoing<F>(&self, f: F)
where
F: FnOnce(BitIter<'_, BD::Idx>),
{
let mut curr_state = self.curr_state.clone();
curr_state.union(&self.stmt_gen);
curr_state.subtract(&self.stmt_kill);
f(curr_state.iter());
}
}
impl<'tcx, BD> FlowsAtLocation for FlowAtLocation<'tcx, BD>
where BD: BitDenotation<'tcx>
{
fn reset_to_entry_of(&mut self, bb: BasicBlock) {
self.curr_state.overwrite(self.base_results.sets().on_entry_set_for(bb.index()));
}
fn reset_to_exit_of(&mut self, bb: BasicBlock) {
self.reset_to_entry_of(bb);
self.curr_state.union(self.base_results.sets().gen_set_for(bb.index()));
self.curr_state.subtract(self.base_results.sets().kill_set_for(bb.index()));
}
fn reconstruct_statement_effect(&mut self, loc: Location) {
self.stmt_gen.clear();
self.stmt_kill.clear();
{
let mut sets = BlockSets {
on_entry: &mut self.curr_state,
gen_set: &mut self.stmt_gen,
kill_set: &mut self.stmt_kill,
};
self.base_results
.operator()
.before_statement_effect(&mut sets, loc);
}
self.apply_local_effect(loc);
let mut sets = BlockSets {
on_entry: &mut self.curr_state,
gen_set: &mut self.stmt_gen,
kill_set: &mut self.stmt_kill,
};
self.base_results
.operator()
.statement_effect(&mut sets, loc);
}
fn reconstruct_terminator_effect(&mut self, loc: Location) {
self.stmt_gen.clear();
self.stmt_kill.clear();
{
let mut sets = BlockSets {
on_entry: &mut self.curr_state,
gen_set: &mut self.stmt_gen,
kill_set: &mut self.stmt_kill,
};
self.base_results
.operator()
.before_terminator_effect(&mut sets, loc);
}
self.apply_local_effect(loc);
let mut sets = BlockSets {
on_entry: &mut self.curr_state,
gen_set: &mut self.stmt_gen,
kill_set: &mut self.stmt_kill,
};
self.base_results
.operator()
.terminator_effect(&mut sets, loc);
}
fn apply_local_effect(&mut self, _loc: Location) {
self.curr_state.union(&self.stmt_gen);
self.curr_state.subtract(&self.stmt_kill);
}
}
impl<'tcx, T> FlowAtLocation<'tcx, T>
where
T: HasMoveData<'tcx> + BitDenotation<'tcx, Idx = MovePathIndex>,
{
pub fn has_any_child_of(&self, mpi: T::Idx) -> Option<T::Idx> {
// We process `mpi` before the loop below, for two reasons:
// - it's a little different from the loop case (we don't traverse its
// siblings);
// - ~99% of the time the loop isn't reached, and this code is hot, so
// we don't want to allocate `todo` unnecessarily.
if self.contains(mpi) {
return Some(mpi);
}
let move_data = self.operator().move_data();
let move_path = &move_data.move_paths[mpi];
let mut todo = if let Some(child) = move_path.first_child {
vec![child]
} else {
return None;
};
while let Some(mpi) = todo.pop() {
if self.contains(mpi) {
return Some(mpi);
}
let move_path = &move_data.move_paths[mpi];
if let Some(child) = move_path.first_child {
todo.push(child);
}
// After we've processed the original `mpi`, we should always
// traverse the siblings of any of its children.
if let Some(sibling) = move_path.next_sibling {
todo.push(sibling);
}
}
return None;
}
}