rust/crates/ra_hir_def/src/body/lower.rs
2020-03-14 14:25:51 +08:00

756 lines
33 KiB
Rust

//! Transforms `ast::Expr` into an equivalent `hir_def::expr::Expr`
//! representation.
use either::Either;
use hir_expand::{
name::{name, AsName, Name},
MacroDefId, MacroDefKind,
};
use ra_arena::Arena;
use ra_syntax::{
ast::{
self, ArgListOwner, ArrayExprKind, LiteralKind, LoopBodyOwner, ModuleItemOwner, NameOwner,
SlicePatComponents, TypeAscriptionOwner,
},
AstNode, AstPtr,
};
use test_utils::tested_by;
use super::{ExprSource, PatSource};
use crate::{
adt::StructKind,
body::{Body, BodySourceMap, Expander, PatPtr, SyntheticSyntax},
builtin_type::{BuiltinFloat, BuiltinInt},
db::DefDatabase,
expr::{
ArithOp, Array, BinaryOp, BindingAnnotation, CmpOp, Expr, ExprId, Literal, LogicOp,
MatchArm, Ordering, Pat, PatId, RecordFieldPat, RecordLitField, Statement,
},
item_scope::BuiltinShadowMode,
path::GenericArgs,
path::Path,
type_ref::{Mutability, TypeRef},
AdtId, ConstLoc, ContainerId, DefWithBodyId, EnumLoc, FunctionLoc, Intern, ModuleDefId,
StaticLoc, StructLoc, TraitLoc, TypeAliasLoc, UnionLoc,
};
pub(super) fn lower(
db: &impl DefDatabase,
def: DefWithBodyId,
expander: Expander,
params: Option<ast::ParamList>,
body: Option<ast::Expr>,
) -> (Body, BodySourceMap) {
ExprCollector {
db,
def,
expander,
source_map: BodySourceMap::default(),
body: Body {
exprs: Arena::default(),
pats: Arena::default(),
params: Vec::new(),
body_expr: ExprId::dummy(),
item_scope: Default::default(),
},
}
.collect(params, body)
}
struct ExprCollector<DB> {
db: DB,
def: DefWithBodyId,
expander: Expander,
body: Body,
source_map: BodySourceMap,
}
impl<'a, DB> ExprCollector<&'a DB>
where
DB: DefDatabase,
{
fn collect(
mut self,
param_list: Option<ast::ParamList>,
body: Option<ast::Expr>,
) -> (Body, BodySourceMap) {
if let Some(param_list) = param_list {
if let Some(self_param) = param_list.self_param() {
let ptr = AstPtr::new(&self_param);
let param_pat = self.alloc_pat(
Pat::Bind {
name: name![self],
mode: BindingAnnotation::Unannotated,
subpat: None,
},
Either::Right(ptr),
);
self.body.params.push(param_pat);
}
for param in param_list.params() {
let pat = match param.pat() {
None => continue,
Some(pat) => pat,
};
let param_pat = self.collect_pat(pat);
self.body.params.push(param_pat);
}
};
self.body.body_expr = self.collect_expr_opt(body);
(self.body, self.source_map)
}
fn alloc_expr(&mut self, expr: Expr, ptr: AstPtr<ast::Expr>) -> ExprId {
let ptr = Either::Left(ptr);
let src = self.expander.to_source(ptr);
let id = self.make_expr(expr, Ok(src));
self.source_map.expr_map.insert(src, id);
id
}
// desugared exprs don't have ptr, that's wrong and should be fixed
// somehow.
fn alloc_expr_desugared(&mut self, expr: Expr) -> ExprId {
self.make_expr(expr, Err(SyntheticSyntax))
}
fn alloc_expr_field_shorthand(&mut self, expr: Expr, ptr: AstPtr<ast::RecordField>) -> ExprId {
let ptr = Either::Right(ptr);
let src = self.expander.to_source(ptr);
let id = self.make_expr(expr, Ok(src));
self.source_map.expr_map.insert(src, id);
id
}
fn empty_block(&mut self) -> ExprId {
self.alloc_expr_desugared(Expr::Block { statements: Vec::new(), tail: None })
}
fn missing_expr(&mut self) -> ExprId {
self.alloc_expr_desugared(Expr::Missing)
}
fn make_expr(&mut self, expr: Expr, src: Result<ExprSource, SyntheticSyntax>) -> ExprId {
let id = self.body.exprs.alloc(expr);
self.source_map.expr_map_back.insert(id, src);
id
}
fn alloc_pat(&mut self, pat: Pat, ptr: PatPtr) -> PatId {
let src = self.expander.to_source(ptr);
let id = self.make_pat(pat, Ok(src));
self.source_map.pat_map.insert(src, id);
id
}
fn missing_pat(&mut self) -> PatId {
self.make_pat(Pat::Missing, Err(SyntheticSyntax))
}
fn make_pat(&mut self, pat: Pat, src: Result<PatSource, SyntheticSyntax>) -> PatId {
let id = self.body.pats.alloc(pat);
self.source_map.pat_map_back.insert(id, src);
id
}
fn collect_expr(&mut self, expr: ast::Expr) -> ExprId {
let syntax_ptr = AstPtr::new(&expr);
match expr {
ast::Expr::IfExpr(e) => {
let then_branch = self.collect_block_opt(e.then_branch());
let else_branch = e.else_branch().map(|b| match b {
ast::ElseBranch::Block(it) => self.collect_block(it),
ast::ElseBranch::IfExpr(elif) => {
let expr: ast::Expr = ast::Expr::cast(elif.syntax().clone()).unwrap();
self.collect_expr(expr)
}
});
let condition = match e.condition() {
None => self.missing_expr(),
Some(condition) => match condition.pat() {
None => self.collect_expr_opt(condition.expr()),
// if let -- desugar to match
Some(pat) => {
let pat = self.collect_pat(pat);
let match_expr = self.collect_expr_opt(condition.expr());
let placeholder_pat = self.missing_pat();
let arms = vec![
MatchArm { pat, expr: then_branch, guard: None },
MatchArm {
pat: placeholder_pat,
expr: else_branch.unwrap_or_else(|| self.empty_block()),
guard: None,
},
];
return self
.alloc_expr(Expr::Match { expr: match_expr, arms }, syntax_ptr);
}
},
};
self.alloc_expr(Expr::If { condition, then_branch, else_branch }, syntax_ptr)
}
ast::Expr::TryBlockExpr(e) => {
let body = self.collect_block_opt(e.body());
self.alloc_expr(Expr::TryBlock { body }, syntax_ptr)
}
ast::Expr::BlockExpr(e) => self.collect_block(e),
ast::Expr::LoopExpr(e) => {
let body = self.collect_block_opt(e.loop_body());
self.alloc_expr(Expr::Loop { body }, syntax_ptr)
}
ast::Expr::WhileExpr(e) => {
let body = self.collect_block_opt(e.loop_body());
let condition = match e.condition() {
None => self.missing_expr(),
Some(condition) => match condition.pat() {
None => self.collect_expr_opt(condition.expr()),
// if let -- desugar to match
Some(pat) => {
tested_by!(infer_resolve_while_let);
let pat = self.collect_pat(pat);
let match_expr = self.collect_expr_opt(condition.expr());
let placeholder_pat = self.missing_pat();
let break_ = self.alloc_expr_desugared(Expr::Break { expr: None });
let arms = vec![
MatchArm { pat, expr: body, guard: None },
MatchArm { pat: placeholder_pat, expr: break_, guard: None },
];
let match_expr =
self.alloc_expr_desugared(Expr::Match { expr: match_expr, arms });
return self.alloc_expr(Expr::Loop { body: match_expr }, syntax_ptr);
}
},
};
self.alloc_expr(Expr::While { condition, body }, syntax_ptr)
}
ast::Expr::ForExpr(e) => {
let iterable = self.collect_expr_opt(e.iterable());
let pat = self.collect_pat_opt(e.pat());
let body = self.collect_block_opt(e.loop_body());
self.alloc_expr(Expr::For { iterable, pat, body }, syntax_ptr)
}
ast::Expr::CallExpr(e) => {
let callee = self.collect_expr_opt(e.expr());
let args = if let Some(arg_list) = e.arg_list() {
arg_list.args().map(|e| self.collect_expr(e)).collect()
} else {
Vec::new()
};
self.alloc_expr(Expr::Call { callee, args }, syntax_ptr)
}
ast::Expr::MethodCallExpr(e) => {
let receiver = self.collect_expr_opt(e.expr());
let args = if let Some(arg_list) = e.arg_list() {
arg_list.args().map(|e| self.collect_expr(e)).collect()
} else {
Vec::new()
};
let method_name = e.name_ref().map(|nr| nr.as_name()).unwrap_or_else(Name::missing);
let generic_args = e.type_arg_list().and_then(GenericArgs::from_ast);
self.alloc_expr(
Expr::MethodCall { receiver, method_name, args, generic_args },
syntax_ptr,
)
}
ast::Expr::MatchExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let arms = if let Some(match_arm_list) = e.match_arm_list() {
match_arm_list
.arms()
.map(|arm| MatchArm {
pat: self.collect_pat_opt(arm.pat()),
expr: self.collect_expr_opt(arm.expr()),
guard: arm
.guard()
.and_then(|guard| guard.expr())
.map(|e| self.collect_expr(e)),
})
.collect()
} else {
Vec::new()
};
self.alloc_expr(Expr::Match { expr, arms }, syntax_ptr)
}
ast::Expr::PathExpr(e) => {
let path = e
.path()
.and_then(|path| self.expander.parse_path(path))
.map(Expr::Path)
.unwrap_or(Expr::Missing);
self.alloc_expr(path, syntax_ptr)
}
ast::Expr::ContinueExpr(_e) => {
// FIXME: labels
self.alloc_expr(Expr::Continue, syntax_ptr)
}
ast::Expr::BreakExpr(e) => {
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Break { expr }, syntax_ptr)
}
ast::Expr::ParenExpr(e) => {
let inner = self.collect_expr_opt(e.expr());
// make the paren expr point to the inner expression as well
let src = self.expander.to_source(Either::Left(syntax_ptr));
self.source_map.expr_map.insert(src, inner);
inner
}
ast::Expr::ReturnExpr(e) => {
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Return { expr }, syntax_ptr)
}
ast::Expr::RecordLit(e) => {
let path = e.path().and_then(|path| self.expander.parse_path(path));
let mut field_ptrs = Vec::new();
let record_lit = if let Some(nfl) = e.record_field_list() {
let fields = nfl
.fields()
.inspect(|field| field_ptrs.push(AstPtr::new(field)))
.map(|field| RecordLitField {
name: field
.name_ref()
.map(|nr| nr.as_name())
.unwrap_or_else(Name::missing),
expr: if let Some(e) = field.expr() {
self.collect_expr(e)
} else if let Some(nr) = field.name_ref() {
// field shorthand
self.alloc_expr_field_shorthand(
Expr::Path(Path::from_name_ref(&nr)),
AstPtr::new(&field),
)
} else {
self.missing_expr()
},
})
.collect();
let spread = nfl.spread().map(|s| self.collect_expr(s));
Expr::RecordLit { path, fields, spread }
} else {
Expr::RecordLit { path, fields: Vec::new(), spread: None }
};
let res = self.alloc_expr(record_lit, syntax_ptr);
for (i, ptr) in field_ptrs.into_iter().enumerate() {
self.source_map.field_map.insert((res, i), ptr);
}
res
}
ast::Expr::FieldExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let name = match e.field_access() {
Some(kind) => kind.as_name(),
_ => Name::missing(),
};
self.alloc_expr(Expr::Field { expr, name }, syntax_ptr)
}
ast::Expr::AwaitExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Await { expr }, syntax_ptr)
}
ast::Expr::TryExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Try { expr }, syntax_ptr)
}
ast::Expr::CastExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let type_ref = TypeRef::from_ast_opt(e.type_ref());
self.alloc_expr(Expr::Cast { expr, type_ref }, syntax_ptr)
}
ast::Expr::RefExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let mutability = Mutability::from_mutable(e.is_mut());
self.alloc_expr(Expr::Ref { expr, mutability }, syntax_ptr)
}
ast::Expr::PrefixExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
if let Some(op) = e.op_kind() {
self.alloc_expr(Expr::UnaryOp { expr, op }, syntax_ptr)
} else {
self.alloc_expr(Expr::Missing, syntax_ptr)
}
}
ast::Expr::LambdaExpr(e) => {
let mut args = Vec::new();
let mut arg_types = Vec::new();
if let Some(pl) = e.param_list() {
for param in pl.params() {
let pat = self.collect_pat_opt(param.pat());
let type_ref = param.ascribed_type().map(TypeRef::from_ast);
args.push(pat);
arg_types.push(type_ref);
}
}
let ret_type = e.ret_type().and_then(|r| r.type_ref()).map(TypeRef::from_ast);
let body = self.collect_expr_opt(e.body());
self.alloc_expr(Expr::Lambda { args, arg_types, ret_type, body }, syntax_ptr)
}
ast::Expr::BinExpr(e) => {
let lhs = self.collect_expr_opt(e.lhs());
let rhs = self.collect_expr_opt(e.rhs());
let op = e.op_kind().map(BinaryOp::from);
self.alloc_expr(Expr::BinaryOp { lhs, rhs, op }, syntax_ptr)
}
ast::Expr::TupleExpr(e) => {
let exprs = e.exprs().map(|expr| self.collect_expr(expr)).collect();
self.alloc_expr(Expr::Tuple { exprs }, syntax_ptr)
}
ast::Expr::BoxExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Box { expr }, syntax_ptr)
}
ast::Expr::ArrayExpr(e) => {
let kind = e.kind();
match kind {
ArrayExprKind::ElementList(e) => {
let exprs = e.map(|expr| self.collect_expr(expr)).collect();
self.alloc_expr(Expr::Array(Array::ElementList(exprs)), syntax_ptr)
}
ArrayExprKind::Repeat { initializer, repeat } => {
let initializer = self.collect_expr_opt(initializer);
let repeat = self.collect_expr_opt(repeat);
self.alloc_expr(
Expr::Array(Array::Repeat { initializer, repeat }),
syntax_ptr,
)
}
}
}
ast::Expr::Literal(e) => {
let lit = match e.kind() {
LiteralKind::IntNumber { suffix } => {
let known_name = suffix.and_then(|it| BuiltinInt::from_suffix(&it));
Literal::Int(Default::default(), known_name)
}
LiteralKind::FloatNumber { suffix } => {
let known_name = suffix.and_then(|it| BuiltinFloat::from_suffix(&it));
Literal::Float(Default::default(), known_name)
}
LiteralKind::ByteString => Literal::ByteString(Default::default()),
LiteralKind::String => Literal::String(Default::default()),
LiteralKind::Byte => Literal::Int(Default::default(), Some(BuiltinInt::U8)),
LiteralKind::Bool => Literal::Bool(Default::default()),
LiteralKind::Char => Literal::Char(Default::default()),
};
self.alloc_expr(Expr::Literal(lit), syntax_ptr)
}
ast::Expr::IndexExpr(e) => {
let base = self.collect_expr_opt(e.base());
let index = self.collect_expr_opt(e.index());
self.alloc_expr(Expr::Index { base, index }, syntax_ptr)
}
ast::Expr::RangeExpr(e) => {
let lhs = e.start().map(|lhs| self.collect_expr(lhs));
let rhs = e.end().map(|rhs| self.collect_expr(rhs));
match e.op_kind() {
Some(range_type) => {
self.alloc_expr(Expr::Range { lhs, rhs, range_type }, syntax_ptr)
}
None => self.alloc_expr(Expr::Missing, syntax_ptr),
}
}
ast::Expr::MacroCall(e) => {
if let Some(name) = is_macro_rules(&e) {
let mac = MacroDefId {
krate: Some(self.expander.module.krate),
ast_id: Some(self.expander.ast_id(&e)),
kind: MacroDefKind::Declarative,
};
self.body.item_scope.define_legacy_macro(name, mac);
// FIXME: do we still need to allocate this as missing ?
self.alloc_expr(Expr::Missing, syntax_ptr)
} else {
let macro_call = self.expander.to_source(AstPtr::new(&e));
match self.expander.enter_expand(self.db, Some(&self.body.item_scope), e) {
Some((mark, expansion)) => {
self.source_map
.expansions
.insert(macro_call, self.expander.current_file_id);
let id = self.collect_expr(expansion);
self.expander.exit(self.db, mark);
id
}
None => self.alloc_expr(Expr::Missing, syntax_ptr),
}
}
}
// FIXME implement HIR for these:
ast::Expr::Label(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
}
}
fn collect_expr_opt(&mut self, expr: Option<ast::Expr>) -> ExprId {
if let Some(expr) = expr {
self.collect_expr(expr)
} else {
self.missing_expr()
}
}
fn collect_block(&mut self, expr: ast::BlockExpr) -> ExprId {
let syntax_node_ptr = AstPtr::new(&expr.clone().into());
let block = match expr.block() {
Some(block) => block,
None => return self.alloc_expr(Expr::Missing, syntax_node_ptr),
};
self.collect_block_items(&block);
let statements = block
.statements()
.map(|s| match s {
ast::Stmt::LetStmt(stmt) => {
let pat = self.collect_pat_opt(stmt.pat());
let type_ref = stmt.ascribed_type().map(TypeRef::from_ast);
let initializer = stmt.initializer().map(|e| self.collect_expr(e));
Statement::Let { pat, type_ref, initializer }
}
ast::Stmt::ExprStmt(stmt) => Statement::Expr(self.collect_expr_opt(stmt.expr())),
})
.collect();
let tail = block.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Block { statements, tail }, syntax_node_ptr)
}
fn collect_block_items(&mut self, block: &ast::Block) {
let container = ContainerId::DefWithBodyId(self.def);
for item in block.items() {
let (def, name): (ModuleDefId, Option<ast::Name>) = match item {
ast::ModuleItem::FnDef(def) => {
let ast_id = self.expander.ast_id(&def);
(
FunctionLoc { container: container.into(), ast_id }.intern(self.db).into(),
def.name(),
)
}
ast::ModuleItem::TypeAliasDef(def) => {
let ast_id = self.expander.ast_id(&def);
(
TypeAliasLoc { container: container.into(), ast_id }.intern(self.db).into(),
def.name(),
)
}
ast::ModuleItem::ConstDef(def) => {
let ast_id = self.expander.ast_id(&def);
(
ConstLoc { container: container.into(), ast_id }.intern(self.db).into(),
def.name(),
)
}
ast::ModuleItem::StaticDef(def) => {
let ast_id = self.expander.ast_id(&def);
(StaticLoc { container, ast_id }.intern(self.db).into(), def.name())
}
ast::ModuleItem::StructDef(def) => {
let ast_id = self.expander.ast_id(&def);
(StructLoc { container, ast_id }.intern(self.db).into(), def.name())
}
ast::ModuleItem::EnumDef(def) => {
let ast_id = self.expander.ast_id(&def);
(EnumLoc { container, ast_id }.intern(self.db).into(), def.name())
}
ast::ModuleItem::UnionDef(def) => {
let ast_id = self.expander.ast_id(&def);
(UnionLoc { container, ast_id }.intern(self.db).into(), def.name())
}
ast::ModuleItem::TraitDef(def) => {
let ast_id = self.expander.ast_id(&def);
(TraitLoc { container, ast_id }.intern(self.db).into(), def.name())
}
ast::ModuleItem::ImplDef(_)
| ast::ModuleItem::UseItem(_)
| ast::ModuleItem::ExternCrateItem(_)
| ast::ModuleItem::Module(_) => continue,
};
self.body.item_scope.define_def(def);
if let Some(name) = name {
let vis = crate::visibility::Visibility::Public; // FIXME determine correctly
self.body
.item_scope
.push_res(name.as_name(), crate::per_ns::PerNs::from_def(def, vis));
}
}
}
fn collect_block_opt(&mut self, expr: Option<ast::BlockExpr>) -> ExprId {
if let Some(block) = expr {
self.collect_block(block)
} else {
self.missing_expr()
}
}
fn collect_pat(&mut self, pat: ast::Pat) -> PatId {
let pattern = match &pat {
ast::Pat::BindPat(bp) => {
let name = bp.name().map(|nr| nr.as_name()).unwrap_or_else(Name::missing);
let annotation = BindingAnnotation::new(bp.is_mutable(), bp.is_ref());
let subpat = bp.pat().map(|subpat| self.collect_pat(subpat));
if annotation == BindingAnnotation::Unannotated && subpat.is_none() {
// This could also be a single-segment path pattern. To
// decide that, we need to try resolving the name.
let (resolved, _) = self.expander.crate_def_map.resolve_path(
self.db,
self.expander.module.local_id,
&name.clone().into(),
BuiltinShadowMode::Other,
);
match resolved.take_values() {
Some(ModuleDefId::ConstId(_)) => Pat::Path(name.into()),
Some(ModuleDefId::EnumVariantId(_)) => {
// this is only really valid for unit variants, but
// shadowing other enum variants with a pattern is
// an error anyway
Pat::Path(name.into())
}
Some(ModuleDefId::AdtId(AdtId::StructId(s)))
if self.db.struct_data(s).variant_data.kind() != StructKind::Record =>
{
// Funnily enough, record structs *can* be shadowed
// by pattern bindings (but unit or tuple structs
// can't).
Pat::Path(name.into())
}
// shadowing statics is an error as well, so we just ignore that case here
_ => Pat::Bind { name, mode: annotation, subpat },
}
} else {
Pat::Bind { name, mode: annotation, subpat }
}
}
ast::Pat::TupleStructPat(p) => {
let path = p.path().and_then(|path| self.expander.parse_path(path));
let args = p.args().map(|p| self.collect_pat(p)).collect();
Pat::TupleStruct { path, args }
}
ast::Pat::RefPat(p) => {
let pat = self.collect_pat_opt(p.pat());
let mutability = Mutability::from_mutable(p.is_mut());
Pat::Ref { pat, mutability }
}
ast::Pat::PathPat(p) => {
let path = p.path().and_then(|path| self.expander.parse_path(path));
path.map(Pat::Path).unwrap_or(Pat::Missing)
}
ast::Pat::OrPat(p) => {
let pats = p.pats().map(|p| self.collect_pat(p)).collect();
Pat::Or(pats)
}
ast::Pat::ParenPat(p) => return self.collect_pat_opt(p.pat()),
ast::Pat::TuplePat(p) => {
let args = p.args().map(|p| self.collect_pat(p)).collect();
Pat::Tuple(args)
}
ast::Pat::PlaceholderPat(_) | ast::Pat::DotDotPat(_) => Pat::Wild,
ast::Pat::RecordPat(p) => {
let path = p.path().and_then(|path| self.expander.parse_path(path));
let record_field_pat_list =
p.record_field_pat_list().expect("every struct should have a field list");
let mut fields: Vec<_> = record_field_pat_list
.bind_pats()
.filter_map(|bind_pat| {
let ast_pat =
ast::Pat::cast(bind_pat.syntax().clone()).expect("bind pat is a pat");
let pat = self.collect_pat(ast_pat);
let name = bind_pat.name()?.as_name();
Some(RecordFieldPat { name, pat })
})
.collect();
let iter = record_field_pat_list.record_field_pats().filter_map(|f| {
let ast_pat = f.pat()?;
let pat = self.collect_pat(ast_pat);
let name = f.name()?.as_name();
Some(RecordFieldPat { name, pat })
});
fields.extend(iter);
Pat::Record { path, args: fields }
}
ast::Pat::SlicePat(p) => {
let SlicePatComponents { prefix, slice, suffix } = p.components();
Pat::Slice {
prefix: prefix.into_iter().map(|p| self.collect_pat(p)).collect(),
slice: slice.map(|p| self.collect_pat(p)),
suffix: suffix.into_iter().map(|p| self.collect_pat(p)).collect(),
}
}
// FIXME: implement
ast::Pat::BoxPat(_) => Pat::Missing,
ast::Pat::LiteralPat(_) => Pat::Missing,
ast::Pat::RangePat(_) => Pat::Missing,
};
let ptr = AstPtr::new(&pat);
self.alloc_pat(pattern, Either::Left(ptr))
}
fn collect_pat_opt(&mut self, pat: Option<ast::Pat>) -> PatId {
if let Some(pat) = pat {
self.collect_pat(pat)
} else {
self.missing_pat()
}
}
}
fn is_macro_rules(m: &ast::MacroCall) -> Option<Name> {
let name = m.path()?.segment()?.name_ref()?.as_name();
if name == name![macro_rules] {
Some(m.name()?.as_name())
} else {
None
}
}
impl From<ast::BinOp> for BinaryOp {
fn from(ast_op: ast::BinOp) -> Self {
match ast_op {
ast::BinOp::BooleanOr => BinaryOp::LogicOp(LogicOp::Or),
ast::BinOp::BooleanAnd => BinaryOp::LogicOp(LogicOp::And),
ast::BinOp::EqualityTest => BinaryOp::CmpOp(CmpOp::Eq { negated: false }),
ast::BinOp::NegatedEqualityTest => BinaryOp::CmpOp(CmpOp::Eq { negated: true }),
ast::BinOp::LesserEqualTest => {
BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Less, strict: false })
}
ast::BinOp::GreaterEqualTest => {
BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Greater, strict: false })
}
ast::BinOp::LesserTest => {
BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Less, strict: true })
}
ast::BinOp::GreaterTest => {
BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Greater, strict: true })
}
ast::BinOp::Addition => BinaryOp::ArithOp(ArithOp::Add),
ast::BinOp::Multiplication => BinaryOp::ArithOp(ArithOp::Mul),
ast::BinOp::Subtraction => BinaryOp::ArithOp(ArithOp::Sub),
ast::BinOp::Division => BinaryOp::ArithOp(ArithOp::Div),
ast::BinOp::Remainder => BinaryOp::ArithOp(ArithOp::Rem),
ast::BinOp::LeftShift => BinaryOp::ArithOp(ArithOp::Shl),
ast::BinOp::RightShift => BinaryOp::ArithOp(ArithOp::Shr),
ast::BinOp::BitwiseXor => BinaryOp::ArithOp(ArithOp::BitXor),
ast::BinOp::BitwiseOr => BinaryOp::ArithOp(ArithOp::BitOr),
ast::BinOp::BitwiseAnd => BinaryOp::ArithOp(ArithOp::BitAnd),
ast::BinOp::Assignment => BinaryOp::Assignment { op: None },
ast::BinOp::AddAssign => BinaryOp::Assignment { op: Some(ArithOp::Add) },
ast::BinOp::DivAssign => BinaryOp::Assignment { op: Some(ArithOp::Div) },
ast::BinOp::MulAssign => BinaryOp::Assignment { op: Some(ArithOp::Mul) },
ast::BinOp::RemAssign => BinaryOp::Assignment { op: Some(ArithOp::Rem) },
ast::BinOp::ShlAssign => BinaryOp::Assignment { op: Some(ArithOp::Shl) },
ast::BinOp::ShrAssign => BinaryOp::Assignment { op: Some(ArithOp::Shr) },
ast::BinOp::SubAssign => BinaryOp::Assignment { op: Some(ArithOp::Sub) },
ast::BinOp::BitOrAssign => BinaryOp::Assignment { op: Some(ArithOp::BitOr) },
ast::BinOp::BitAndAssign => BinaryOp::Assignment { op: Some(ArithOp::BitAnd) },
ast::BinOp::BitXorAssign => BinaryOp::Assignment { op: Some(ArithOp::BitXor) },
}
}
}