2021-12-15 17:32:14 +11:00

908 lines
37 KiB
Rust

use crate::attributes;
use crate::back::write::to_llvm_code_model;
use crate::callee::get_fn;
use crate::coverageinfo;
use crate::debuginfo;
use crate::llvm;
use crate::llvm_util;
use crate::type_::Type;
use crate::value::Value;
use cstr::cstr;
use rustc_codegen_ssa::base::wants_msvc_seh;
use rustc_codegen_ssa::traits::*;
use rustc_data_structures::base_n;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::small_c_str::SmallCStr;
use rustc_middle::mir::mono::CodegenUnit;
use rustc_middle::ty::layout::{
FnAbiError, FnAbiOfHelpers, FnAbiRequest, HasParamEnv, LayoutError, LayoutOfHelpers,
TyAndLayout,
};
use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
use rustc_middle::{bug, span_bug};
use rustc_session::config::{CFGuard, CrateType, DebugInfo};
use rustc_session::Session;
use rustc_span::source_map::Span;
use rustc_span::symbol::Symbol;
use rustc_target::abi::{
call::FnAbi, HasDataLayout, PointeeInfo, Size, TargetDataLayout, VariantIdx,
};
use rustc_target::spec::{HasTargetSpec, RelocModel, Target, TlsModel};
use smallvec::SmallVec;
use std::cell::{Cell, RefCell};
use std::ffi::CStr;
use std::str;
/// There is one `CodegenCx` per compilation unit. Each one has its own LLVM
/// `llvm::Context` so that several compilation units may be optimized in parallel.
/// All other LLVM data structures in the `CodegenCx` are tied to that `llvm::Context`.
pub struct CodegenCx<'ll, 'tcx> {
pub tcx: TyCtxt<'tcx>,
pub check_overflow: bool,
pub use_dll_storage_attrs: bool,
pub tls_model: llvm::ThreadLocalMode,
pub llmod: &'ll llvm::Module,
pub llcx: &'ll llvm::Context,
pub codegen_unit: &'tcx CodegenUnit<'tcx>,
/// Cache instances of monomorphic and polymorphic items
pub instances: RefCell<FxHashMap<Instance<'tcx>, &'ll Value>>,
/// Cache generated vtables
pub vtables:
RefCell<FxHashMap<(Ty<'tcx>, Option<ty::PolyExistentialTraitRef<'tcx>>), &'ll Value>>,
/// Cache of constant strings,
pub const_cstr_cache: RefCell<FxHashMap<Symbol, &'ll Value>>,
/// Reverse-direction for const ptrs cast from globals.
///
/// Key is a Value holding a `*T`,
/// Val is a Value holding a `*[T]`.
///
/// Needed because LLVM loses pointer->pointee association
/// when we ptrcast, and we have to ptrcast during codegen
/// of a `[T]` const because we form a slice, a `(*T,usize)` pair, not
/// a pointer to an LLVM array type. Similar for trait objects.
pub const_unsized: RefCell<FxHashMap<&'ll Value, &'ll Value>>,
/// Cache of emitted const globals (value -> global)
pub const_globals: RefCell<FxHashMap<&'ll Value, &'ll Value>>,
/// List of globals for static variables which need to be passed to the
/// LLVM function ReplaceAllUsesWith (RAUW) when codegen is complete.
/// (We have to make sure we don't invalidate any Values referring
/// to constants.)
pub statics_to_rauw: RefCell<Vec<(&'ll Value, &'ll Value)>>,
/// Statics that will be placed in the llvm.used variable
/// See <https://llvm.org/docs/LangRef.html#the-llvm-used-global-variable> for details
pub used_statics: RefCell<Vec<&'ll Value>>,
/// Statics that will be placed in the llvm.compiler.used variable
/// See <https://llvm.org/docs/LangRef.html#the-llvm-compiler-used-global-variable> for details
pub compiler_used_statics: RefCell<Vec<&'ll Value>>,
/// Mapping of non-scalar types to llvm types and field remapping if needed.
pub type_lowering: RefCell<FxHashMap<(Ty<'tcx>, Option<VariantIdx>), TypeLowering<'ll>>>,
/// Mapping of scalar types to llvm types.
pub scalar_lltypes: RefCell<FxHashMap<Ty<'tcx>, &'ll Type>>,
pub pointee_infos: RefCell<FxHashMap<(Ty<'tcx>, Size), Option<PointeeInfo>>>,
pub isize_ty: &'ll Type,
pub coverage_cx: Option<coverageinfo::CrateCoverageContext<'ll, 'tcx>>,
pub dbg_cx: Option<debuginfo::CrateDebugContext<'ll, 'tcx>>,
eh_personality: Cell<Option<&'ll Value>>,
eh_catch_typeinfo: Cell<Option<&'ll Value>>,
pub rust_try_fn: Cell<Option<(&'ll Type, &'ll Value)>>,
intrinsics: RefCell<FxHashMap<&'static str, (&'ll Type, &'ll Value)>>,
/// A counter that is used for generating local symbol names
local_gen_sym_counter: Cell<usize>,
}
pub struct TypeLowering<'ll> {
/// Associated LLVM type
pub lltype: &'ll Type,
/// If padding is used the slice maps fields from source order
/// to llvm order.
pub field_remapping: Option<SmallVec<[u32; 4]>>,
}
fn to_llvm_tls_model(tls_model: TlsModel) -> llvm::ThreadLocalMode {
match tls_model {
TlsModel::GeneralDynamic => llvm::ThreadLocalMode::GeneralDynamic,
TlsModel::LocalDynamic => llvm::ThreadLocalMode::LocalDynamic,
TlsModel::InitialExec => llvm::ThreadLocalMode::InitialExec,
TlsModel::LocalExec => llvm::ThreadLocalMode::LocalExec,
}
}
pub unsafe fn create_module(
tcx: TyCtxt<'_>,
llcx: &'ll llvm::Context,
mod_name: &str,
) -> &'ll llvm::Module {
let sess = tcx.sess;
let mod_name = SmallCStr::new(mod_name);
let llmod = llvm::LLVMModuleCreateWithNameInContext(mod_name.as_ptr(), llcx);
let mut target_data_layout = sess.target.data_layout.clone();
if llvm_util::get_version() < (13, 0, 0) {
if sess.target.arch == "powerpc64" {
target_data_layout = target_data_layout.replace("-S128", "");
}
if sess.target.arch == "wasm32" {
target_data_layout = "e-m:e-p:32:32-i64:64-n32:64-S128".to_string();
}
if sess.target.arch == "wasm64" {
target_data_layout = "e-m:e-p:64:64-i64:64-n32:64-S128".to_string();
}
}
// Ensure the data-layout values hardcoded remain the defaults.
if sess.target.is_builtin {
let tm = crate::back::write::create_informational_target_machine(tcx.sess);
llvm::LLVMRustSetDataLayoutFromTargetMachine(llmod, tm);
llvm::LLVMRustDisposeTargetMachine(tm);
let llvm_data_layout = llvm::LLVMGetDataLayoutStr(llmod);
let llvm_data_layout = str::from_utf8(CStr::from_ptr(llvm_data_layout).to_bytes())
.expect("got a non-UTF8 data-layout from LLVM");
// Unfortunately LLVM target specs change over time, and right now we
// don't have proper support to work with any more than one
// `data_layout` than the one that is in the rust-lang/rust repo. If
// this compiler is configured against a custom LLVM, we may have a
// differing data layout, even though we should update our own to use
// that one.
//
// As an interim hack, if CFG_LLVM_ROOT is not an empty string then we
// disable this check entirely as we may be configured with something
// that has a different target layout.
//
// Unsure if this will actually cause breakage when rustc is configured
// as such.
//
// FIXME(#34960)
let cfg_llvm_root = option_env!("CFG_LLVM_ROOT").unwrap_or("");
let custom_llvm_used = cfg_llvm_root.trim() != "";
if !custom_llvm_used && target_data_layout != llvm_data_layout {
bug!(
"data-layout for target `{rustc_target}`, `{rustc_layout}`, \
differs from LLVM target's `{llvm_target}` default layout, `{llvm_layout}`",
rustc_target = sess.opts.target_triple,
rustc_layout = target_data_layout,
llvm_target = sess.target.llvm_target,
llvm_layout = llvm_data_layout
);
}
}
let data_layout = SmallCStr::new(&target_data_layout);
llvm::LLVMSetDataLayout(llmod, data_layout.as_ptr());
let llvm_target = SmallCStr::new(&sess.target.llvm_target);
llvm::LLVMRustSetNormalizedTarget(llmod, llvm_target.as_ptr());
let reloc_model = sess.relocation_model();
if matches!(reloc_model, RelocModel::Pic | RelocModel::Pie) {
llvm::LLVMRustSetModulePICLevel(llmod);
// PIE is potentially more effective than PIC, but can only be used in executables.
// If all our outputs are executables, then we can relax PIC to PIE.
if reloc_model == RelocModel::Pie
|| sess.crate_types().iter().all(|ty| *ty == CrateType::Executable)
{
llvm::LLVMRustSetModulePIELevel(llmod);
}
}
// Linking object files with different code models is undefined behavior
// because the compiler would have to generate additional code (to span
// longer jumps) if a larger code model is used with a smaller one.
//
// See https://reviews.llvm.org/D52322 and https://reviews.llvm.org/D52323.
llvm::LLVMRustSetModuleCodeModel(llmod, to_llvm_code_model(sess.code_model()));
// If skipping the PLT is enabled, we need to add some module metadata
// to ensure intrinsic calls don't use it.
if !sess.needs_plt() {
let avoid_plt = "RtLibUseGOT\0".as_ptr().cast();
llvm::LLVMRustAddModuleFlag(llmod, avoid_plt, 1);
}
if sess.is_sanitizer_cfi_enabled() {
// FIXME(rcvalle): Add support for non canonical jump tables.
let canonical_jump_tables = "CFI Canonical Jump Tables\0".as_ptr().cast();
// FIXME(rcvalle): Add it with Override behavior flag--LLVMRustAddModuleFlag adds it with
// Warning behavior flag. Add support for specifying the behavior flag to
// LLVMRustAddModuleFlag.
llvm::LLVMRustAddModuleFlag(llmod, canonical_jump_tables, 1);
}
// Control Flow Guard is currently only supported by the MSVC linker on Windows.
if sess.target.is_like_msvc {
match sess.opts.cg.control_flow_guard {
CFGuard::Disabled => {}
CFGuard::NoChecks => {
// Set `cfguard=1` module flag to emit metadata only.
llvm::LLVMRustAddModuleFlag(llmod, "cfguard\0".as_ptr() as *const _, 1)
}
CFGuard::Checks => {
// Set `cfguard=2` module flag to emit metadata and checks.
llvm::LLVMRustAddModuleFlag(llmod, "cfguard\0".as_ptr() as *const _, 2)
}
}
}
llmod
}
impl<'ll, 'tcx> CodegenCx<'ll, 'tcx> {
crate fn new(
tcx: TyCtxt<'tcx>,
codegen_unit: &'tcx CodegenUnit<'tcx>,
llvm_module: &'ll crate::ModuleLlvm,
) -> Self {
// An interesting part of Windows which MSVC forces our hand on (and
// apparently MinGW didn't) is the usage of `dllimport` and `dllexport`
// attributes in LLVM IR as well as native dependencies (in C these
// correspond to `__declspec(dllimport)`).
//
// LD (BFD) in MinGW mode can often correctly guess `dllexport` but
// relying on that can result in issues like #50176.
// LLD won't support that and expects symbols with proper attributes.
// Because of that we make MinGW target emit dllexport just like MSVC.
// When it comes to dllimport we use it for constants but for functions
// rely on the linker to do the right thing. Opposed to dllexport this
// task is easy for them (both LD and LLD) and allows us to easily use
// symbols from static libraries in shared libraries.
//
// Whenever a dynamic library is built on Windows it must have its public
// interface specified by functions tagged with `dllexport` or otherwise
// they're not available to be linked against. This poses a few problems
// for the compiler, some of which are somewhat fundamental, but we use
// the `use_dll_storage_attrs` variable below to attach the `dllexport`
// attribute to all LLVM functions that are exported e.g., they're
// already tagged with external linkage). This is suboptimal for a few
// reasons:
//
// * If an object file will never be included in a dynamic library,
// there's no need to attach the dllexport attribute. Most object
// files in Rust are not destined to become part of a dll as binaries
// are statically linked by default.
// * If the compiler is emitting both an rlib and a dylib, the same
// source object file is currently used but with MSVC this may be less
// feasible. The compiler may be able to get around this, but it may
// involve some invasive changes to deal with this.
//
// The flipside of this situation is that whenever you link to a dll and
// you import a function from it, the import should be tagged with
// `dllimport`. At this time, however, the compiler does not emit
// `dllimport` for any declarations other than constants (where it is
// required), which is again suboptimal for even more reasons!
//
// * Calling a function imported from another dll without using
// `dllimport` causes the linker/compiler to have extra overhead (one
// `jmp` instruction on x86) when calling the function.
// * The same object file may be used in different circumstances, so a
// function may be imported from a dll if the object is linked into a
// dll, but it may be just linked against if linked into an rlib.
// * The compiler has no knowledge about whether native functions should
// be tagged dllimport or not.
//
// For now the compiler takes the perf hit (I do not have any numbers to
// this effect) by marking very little as `dllimport` and praying the
// linker will take care of everything. Fixing this problem will likely
// require adding a few attributes to Rust itself (feature gated at the
// start) and then strongly recommending static linkage on Windows!
let use_dll_storage_attrs = tcx.sess.target.is_like_windows;
let check_overflow = tcx.sess.overflow_checks();
let tls_model = to_llvm_tls_model(tcx.sess.tls_model());
let (llcx, llmod) = (&*llvm_module.llcx, llvm_module.llmod());
let coverage_cx = if tcx.sess.instrument_coverage() {
let covctx = coverageinfo::CrateCoverageContext::new();
Some(covctx)
} else {
None
};
let dbg_cx = if tcx.sess.opts.debuginfo != DebugInfo::None {
let dctx = debuginfo::CrateDebugContext::new(llmod);
debuginfo::metadata::compile_unit_metadata(tcx, codegen_unit.name().as_str(), &dctx);
Some(dctx)
} else {
None
};
let isize_ty = Type::ix_llcx(llcx, tcx.data_layout.pointer_size.bits());
CodegenCx {
tcx,
check_overflow,
use_dll_storage_attrs,
tls_model,
llmod,
llcx,
codegen_unit,
instances: Default::default(),
vtables: Default::default(),
const_cstr_cache: Default::default(),
const_unsized: Default::default(),
const_globals: Default::default(),
statics_to_rauw: RefCell::new(Vec::new()),
used_statics: RefCell::new(Vec::new()),
compiler_used_statics: RefCell::new(Vec::new()),
type_lowering: Default::default(),
scalar_lltypes: Default::default(),
pointee_infos: Default::default(),
isize_ty,
coverage_cx,
dbg_cx,
eh_personality: Cell::new(None),
eh_catch_typeinfo: Cell::new(None),
rust_try_fn: Cell::new(None),
intrinsics: Default::default(),
local_gen_sym_counter: Cell::new(0),
}
}
crate fn statics_to_rauw(&self) -> &RefCell<Vec<(&'ll Value, &'ll Value)>> {
&self.statics_to_rauw
}
#[inline]
pub fn coverage_context(&'a self) -> Option<&'a coverageinfo::CrateCoverageContext<'ll, 'tcx>> {
self.coverage_cx.as_ref()
}
fn create_used_variable_impl(&self, name: &'static CStr, values: &[&'ll Value]) {
let section = cstr!("llvm.metadata");
let array = self.const_array(self.type_ptr_to(self.type_i8()), values);
unsafe {
let g = llvm::LLVMAddGlobal(self.llmod, self.val_ty(array), name.as_ptr());
llvm::LLVMSetInitializer(g, array);
llvm::LLVMRustSetLinkage(g, llvm::Linkage::AppendingLinkage);
llvm::LLVMSetSection(g, section.as_ptr());
}
}
}
impl MiscMethods<'tcx> for CodegenCx<'ll, 'tcx> {
fn vtables(
&self,
) -> &RefCell<FxHashMap<(Ty<'tcx>, Option<ty::PolyExistentialTraitRef<'tcx>>), &'ll Value>>
{
&self.vtables
}
fn get_fn(&self, instance: Instance<'tcx>) -> &'ll Value {
get_fn(self, instance)
}
fn get_fn_addr(&self, instance: Instance<'tcx>) -> &'ll Value {
get_fn(self, instance)
}
fn eh_personality(&self) -> &'ll Value {
// The exception handling personality function.
//
// If our compilation unit has the `eh_personality` lang item somewhere
// within it, then we just need to codegen that. Otherwise, we're
// building an rlib which will depend on some upstream implementation of
// this function, so we just codegen a generic reference to it. We don't
// specify any of the types for the function, we just make it a symbol
// that LLVM can later use.
//
// Note that MSVC is a little special here in that we don't use the
// `eh_personality` lang item at all. Currently LLVM has support for
// both Dwarf and SEH unwind mechanisms for MSVC targets and uses the
// *name of the personality function* to decide what kind of unwind side
// tables/landing pads to emit. It looks like Dwarf is used by default,
// injecting a dependency on the `_Unwind_Resume` symbol for resuming
// an "exception", but for MSVC we want to force SEH. This means that we
// can't actually have the personality function be our standard
// `rust_eh_personality` function, but rather we wired it up to the
// CRT's custom personality function, which forces LLVM to consider
// landing pads as "landing pads for SEH".
if let Some(llpersonality) = self.eh_personality.get() {
return llpersonality;
}
let tcx = self.tcx;
let llfn = match tcx.lang_items().eh_personality() {
Some(def_id) if !wants_msvc_seh(self.sess()) => self.get_fn_addr(
ty::Instance::resolve(
tcx,
ty::ParamEnv::reveal_all(),
def_id,
tcx.intern_substs(&[]),
)
.unwrap()
.unwrap(),
),
_ => {
let name = if wants_msvc_seh(self.sess()) {
"__CxxFrameHandler3"
} else {
"rust_eh_personality"
};
if let Some(llfn) = self.get_declared_value(name) {
llfn
} else {
let fty = self.type_variadic_func(&[], self.type_i32());
let llfn = self.declare_cfn(name, llvm::UnnamedAddr::Global, fty);
attributes::apply_target_cpu_attr(self, llfn);
llfn
}
}
};
self.eh_personality.set(Some(llfn));
llfn
}
fn sess(&self) -> &Session {
self.tcx.sess
}
fn check_overflow(&self) -> bool {
self.check_overflow
}
fn codegen_unit(&self) -> &'tcx CodegenUnit<'tcx> {
self.codegen_unit
}
fn used_statics(&self) -> &RefCell<Vec<&'ll Value>> {
&self.used_statics
}
fn compiler_used_statics(&self) -> &RefCell<Vec<&'ll Value>> {
&self.compiler_used_statics
}
fn set_frame_pointer_type(&self, llfn: &'ll Value) {
attributes::set_frame_pointer_type(self, llfn)
}
fn apply_target_cpu_attr(&self, llfn: &'ll Value) {
attributes::apply_target_cpu_attr(self, llfn);
attributes::apply_tune_cpu_attr(self, llfn);
}
fn create_used_variable(&self) {
self.create_used_variable_impl(cstr!("llvm.used"), &*self.used_statics.borrow());
}
fn create_compiler_used_variable(&self) {
self.create_used_variable_impl(
cstr!("llvm.compiler.used"),
&*self.compiler_used_statics.borrow(),
);
}
fn declare_c_main(&self, fn_type: Self::Type) -> Option<Self::Function> {
if self.get_declared_value("main").is_none() {
Some(self.declare_cfn("main", llvm::UnnamedAddr::Global, fn_type))
} else {
// If the symbol already exists, it is an error: for example, the user wrote
// #[no_mangle] extern "C" fn main(..) {..}
// instead of #[start]
None
}
}
}
impl CodegenCx<'b, 'tcx> {
crate fn get_intrinsic(&self, key: &str) -> (&'b Type, &'b Value) {
if let Some(v) = self.intrinsics.borrow().get(key).cloned() {
return v;
}
self.declare_intrinsic(key).unwrap_or_else(|| bug!("unknown intrinsic '{}'", key))
}
fn insert_intrinsic(
&self,
name: &'static str,
args: Option<&[&'b llvm::Type]>,
ret: &'b llvm::Type,
) -> (&'b llvm::Type, &'b llvm::Value) {
let fn_ty = if let Some(args) = args {
self.type_func(args, ret)
} else {
self.type_variadic_func(&[], ret)
};
let f = self.declare_cfn(name, llvm::UnnamedAddr::No, fn_ty);
self.intrinsics.borrow_mut().insert(name, (fn_ty, f));
(fn_ty, f)
}
fn declare_intrinsic(&self, key: &str) -> Option<(&'b Type, &'b Value)> {
macro_rules! ifn {
($name:expr, fn() -> $ret:expr) => (
if key == $name {
return Some(self.insert_intrinsic($name, Some(&[]), $ret));
}
);
($name:expr, fn(...) -> $ret:expr) => (
if key == $name {
return Some(self.insert_intrinsic($name, None, $ret));
}
);
($name:expr, fn($($arg:expr),*) -> $ret:expr) => (
if key == $name {
return Some(self.insert_intrinsic($name, Some(&[$($arg),*]), $ret));
}
);
}
macro_rules! mk_struct {
($($field_ty:expr),*) => (self.type_struct( &[$($field_ty),*], false))
}
let i8p = self.type_i8p();
let void = self.type_void();
let i1 = self.type_i1();
let t_i8 = self.type_i8();
let t_i16 = self.type_i16();
let t_i32 = self.type_i32();
let t_i64 = self.type_i64();
let t_i128 = self.type_i128();
let t_isize = self.type_isize();
let t_f32 = self.type_f32();
let t_f64 = self.type_f64();
ifn!("llvm.wasm.trunc.unsigned.i32.f32", fn(t_f32) -> t_i32);
ifn!("llvm.wasm.trunc.unsigned.i32.f64", fn(t_f64) -> t_i32);
ifn!("llvm.wasm.trunc.unsigned.i64.f32", fn(t_f32) -> t_i64);
ifn!("llvm.wasm.trunc.unsigned.i64.f64", fn(t_f64) -> t_i64);
ifn!("llvm.wasm.trunc.signed.i32.f32", fn(t_f32) -> t_i32);
ifn!("llvm.wasm.trunc.signed.i32.f64", fn(t_f64) -> t_i32);
ifn!("llvm.wasm.trunc.signed.i64.f32", fn(t_f32) -> t_i64);
ifn!("llvm.wasm.trunc.signed.i64.f64", fn(t_f64) -> t_i64);
ifn!("llvm.fptosi.sat.i8.f32", fn(t_f32) -> t_i8);
ifn!("llvm.fptosi.sat.i16.f32", fn(t_f32) -> t_i16);
ifn!("llvm.fptosi.sat.i32.f32", fn(t_f32) -> t_i32);
ifn!("llvm.fptosi.sat.i64.f32", fn(t_f32) -> t_i64);
ifn!("llvm.fptosi.sat.i128.f32", fn(t_f32) -> t_i128);
ifn!("llvm.fptosi.sat.i8.f64", fn(t_f64) -> t_i8);
ifn!("llvm.fptosi.sat.i16.f64", fn(t_f64) -> t_i16);
ifn!("llvm.fptosi.sat.i32.f64", fn(t_f64) -> t_i32);
ifn!("llvm.fptosi.sat.i64.f64", fn(t_f64) -> t_i64);
ifn!("llvm.fptosi.sat.i128.f64", fn(t_f64) -> t_i128);
ifn!("llvm.fptoui.sat.i8.f32", fn(t_f32) -> t_i8);
ifn!("llvm.fptoui.sat.i16.f32", fn(t_f32) -> t_i16);
ifn!("llvm.fptoui.sat.i32.f32", fn(t_f32) -> t_i32);
ifn!("llvm.fptoui.sat.i64.f32", fn(t_f32) -> t_i64);
ifn!("llvm.fptoui.sat.i128.f32", fn(t_f32) -> t_i128);
ifn!("llvm.fptoui.sat.i8.f64", fn(t_f64) -> t_i8);
ifn!("llvm.fptoui.sat.i16.f64", fn(t_f64) -> t_i16);
ifn!("llvm.fptoui.sat.i32.f64", fn(t_f64) -> t_i32);
ifn!("llvm.fptoui.sat.i64.f64", fn(t_f64) -> t_i64);
ifn!("llvm.fptoui.sat.i128.f64", fn(t_f64) -> t_i128);
ifn!("llvm.trap", fn() -> void);
ifn!("llvm.debugtrap", fn() -> void);
ifn!("llvm.frameaddress", fn(t_i32) -> i8p);
ifn!("llvm.powi.f32", fn(t_f32, t_i32) -> t_f32);
ifn!("llvm.powi.f64", fn(t_f64, t_i32) -> t_f64);
ifn!("llvm.pow.f32", fn(t_f32, t_f32) -> t_f32);
ifn!("llvm.pow.f64", fn(t_f64, t_f64) -> t_f64);
ifn!("llvm.sqrt.f32", fn(t_f32) -> t_f32);
ifn!("llvm.sqrt.f64", fn(t_f64) -> t_f64);
ifn!("llvm.sin.f32", fn(t_f32) -> t_f32);
ifn!("llvm.sin.f64", fn(t_f64) -> t_f64);
ifn!("llvm.cos.f32", fn(t_f32) -> t_f32);
ifn!("llvm.cos.f64", fn(t_f64) -> t_f64);
ifn!("llvm.exp.f32", fn(t_f32) -> t_f32);
ifn!("llvm.exp.f64", fn(t_f64) -> t_f64);
ifn!("llvm.exp2.f32", fn(t_f32) -> t_f32);
ifn!("llvm.exp2.f64", fn(t_f64) -> t_f64);
ifn!("llvm.log.f32", fn(t_f32) -> t_f32);
ifn!("llvm.log.f64", fn(t_f64) -> t_f64);
ifn!("llvm.log10.f32", fn(t_f32) -> t_f32);
ifn!("llvm.log10.f64", fn(t_f64) -> t_f64);
ifn!("llvm.log2.f32", fn(t_f32) -> t_f32);
ifn!("llvm.log2.f64", fn(t_f64) -> t_f64);
ifn!("llvm.fma.f32", fn(t_f32, t_f32, t_f32) -> t_f32);
ifn!("llvm.fma.f64", fn(t_f64, t_f64, t_f64) -> t_f64);
ifn!("llvm.fabs.f32", fn(t_f32) -> t_f32);
ifn!("llvm.fabs.f64", fn(t_f64) -> t_f64);
ifn!("llvm.minnum.f32", fn(t_f32, t_f32) -> t_f32);
ifn!("llvm.minnum.f64", fn(t_f64, t_f64) -> t_f64);
ifn!("llvm.maxnum.f32", fn(t_f32, t_f32) -> t_f32);
ifn!("llvm.maxnum.f64", fn(t_f64, t_f64) -> t_f64);
ifn!("llvm.floor.f32", fn(t_f32) -> t_f32);
ifn!("llvm.floor.f64", fn(t_f64) -> t_f64);
ifn!("llvm.ceil.f32", fn(t_f32) -> t_f32);
ifn!("llvm.ceil.f64", fn(t_f64) -> t_f64);
ifn!("llvm.trunc.f32", fn(t_f32) -> t_f32);
ifn!("llvm.trunc.f64", fn(t_f64) -> t_f64);
ifn!("llvm.copysign.f32", fn(t_f32, t_f32) -> t_f32);
ifn!("llvm.copysign.f64", fn(t_f64, t_f64) -> t_f64);
ifn!("llvm.round.f32", fn(t_f32) -> t_f32);
ifn!("llvm.round.f64", fn(t_f64) -> t_f64);
ifn!("llvm.rint.f32", fn(t_f32) -> t_f32);
ifn!("llvm.rint.f64", fn(t_f64) -> t_f64);
ifn!("llvm.nearbyint.f32", fn(t_f32) -> t_f32);
ifn!("llvm.nearbyint.f64", fn(t_f64) -> t_f64);
ifn!("llvm.ctpop.i8", fn(t_i8) -> t_i8);
ifn!("llvm.ctpop.i16", fn(t_i16) -> t_i16);
ifn!("llvm.ctpop.i32", fn(t_i32) -> t_i32);
ifn!("llvm.ctpop.i64", fn(t_i64) -> t_i64);
ifn!("llvm.ctpop.i128", fn(t_i128) -> t_i128);
ifn!("llvm.ctlz.i8", fn(t_i8, i1) -> t_i8);
ifn!("llvm.ctlz.i16", fn(t_i16, i1) -> t_i16);
ifn!("llvm.ctlz.i32", fn(t_i32, i1) -> t_i32);
ifn!("llvm.ctlz.i64", fn(t_i64, i1) -> t_i64);
ifn!("llvm.ctlz.i128", fn(t_i128, i1) -> t_i128);
ifn!("llvm.cttz.i8", fn(t_i8, i1) -> t_i8);
ifn!("llvm.cttz.i16", fn(t_i16, i1) -> t_i16);
ifn!("llvm.cttz.i32", fn(t_i32, i1) -> t_i32);
ifn!("llvm.cttz.i64", fn(t_i64, i1) -> t_i64);
ifn!("llvm.cttz.i128", fn(t_i128, i1) -> t_i128);
ifn!("llvm.bswap.i16", fn(t_i16) -> t_i16);
ifn!("llvm.bswap.i32", fn(t_i32) -> t_i32);
ifn!("llvm.bswap.i64", fn(t_i64) -> t_i64);
ifn!("llvm.bswap.i128", fn(t_i128) -> t_i128);
ifn!("llvm.bitreverse.i8", fn(t_i8) -> t_i8);
ifn!("llvm.bitreverse.i16", fn(t_i16) -> t_i16);
ifn!("llvm.bitreverse.i32", fn(t_i32) -> t_i32);
ifn!("llvm.bitreverse.i64", fn(t_i64) -> t_i64);
ifn!("llvm.bitreverse.i128", fn(t_i128) -> t_i128);
ifn!("llvm.fshl.i8", fn(t_i8, t_i8, t_i8) -> t_i8);
ifn!("llvm.fshl.i16", fn(t_i16, t_i16, t_i16) -> t_i16);
ifn!("llvm.fshl.i32", fn(t_i32, t_i32, t_i32) -> t_i32);
ifn!("llvm.fshl.i64", fn(t_i64, t_i64, t_i64) -> t_i64);
ifn!("llvm.fshl.i128", fn(t_i128, t_i128, t_i128) -> t_i128);
ifn!("llvm.fshr.i8", fn(t_i8, t_i8, t_i8) -> t_i8);
ifn!("llvm.fshr.i16", fn(t_i16, t_i16, t_i16) -> t_i16);
ifn!("llvm.fshr.i32", fn(t_i32, t_i32, t_i32) -> t_i32);
ifn!("llvm.fshr.i64", fn(t_i64, t_i64, t_i64) -> t_i64);
ifn!("llvm.fshr.i128", fn(t_i128, t_i128, t_i128) -> t_i128);
ifn!("llvm.sadd.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct! {t_i8, i1});
ifn!("llvm.sadd.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct! {t_i16, i1});
ifn!("llvm.sadd.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct! {t_i32, i1});
ifn!("llvm.sadd.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct! {t_i64, i1});
ifn!("llvm.sadd.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct! {t_i128, i1});
ifn!("llvm.uadd.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct! {t_i8, i1});
ifn!("llvm.uadd.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct! {t_i16, i1});
ifn!("llvm.uadd.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct! {t_i32, i1});
ifn!("llvm.uadd.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct! {t_i64, i1});
ifn!("llvm.uadd.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct! {t_i128, i1});
ifn!("llvm.ssub.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct! {t_i8, i1});
ifn!("llvm.ssub.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct! {t_i16, i1});
ifn!("llvm.ssub.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct! {t_i32, i1});
ifn!("llvm.ssub.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct! {t_i64, i1});
ifn!("llvm.ssub.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct! {t_i128, i1});
ifn!("llvm.usub.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct! {t_i8, i1});
ifn!("llvm.usub.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct! {t_i16, i1});
ifn!("llvm.usub.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct! {t_i32, i1});
ifn!("llvm.usub.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct! {t_i64, i1});
ifn!("llvm.usub.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct! {t_i128, i1});
ifn!("llvm.smul.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct! {t_i8, i1});
ifn!("llvm.smul.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct! {t_i16, i1});
ifn!("llvm.smul.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct! {t_i32, i1});
ifn!("llvm.smul.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct! {t_i64, i1});
ifn!("llvm.smul.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct! {t_i128, i1});
ifn!("llvm.umul.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct! {t_i8, i1});
ifn!("llvm.umul.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct! {t_i16, i1});
ifn!("llvm.umul.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct! {t_i32, i1});
ifn!("llvm.umul.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct! {t_i64, i1});
ifn!("llvm.umul.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct! {t_i128, i1});
ifn!("llvm.sadd.sat.i8", fn(t_i8, t_i8) -> t_i8);
ifn!("llvm.sadd.sat.i16", fn(t_i16, t_i16) -> t_i16);
ifn!("llvm.sadd.sat.i32", fn(t_i32, t_i32) -> t_i32);
ifn!("llvm.sadd.sat.i64", fn(t_i64, t_i64) -> t_i64);
ifn!("llvm.sadd.sat.i128", fn(t_i128, t_i128) -> t_i128);
ifn!("llvm.uadd.sat.i8", fn(t_i8, t_i8) -> t_i8);
ifn!("llvm.uadd.sat.i16", fn(t_i16, t_i16) -> t_i16);
ifn!("llvm.uadd.sat.i32", fn(t_i32, t_i32) -> t_i32);
ifn!("llvm.uadd.sat.i64", fn(t_i64, t_i64) -> t_i64);
ifn!("llvm.uadd.sat.i128", fn(t_i128, t_i128) -> t_i128);
ifn!("llvm.ssub.sat.i8", fn(t_i8, t_i8) -> t_i8);
ifn!("llvm.ssub.sat.i16", fn(t_i16, t_i16) -> t_i16);
ifn!("llvm.ssub.sat.i32", fn(t_i32, t_i32) -> t_i32);
ifn!("llvm.ssub.sat.i64", fn(t_i64, t_i64) -> t_i64);
ifn!("llvm.ssub.sat.i128", fn(t_i128, t_i128) -> t_i128);
ifn!("llvm.usub.sat.i8", fn(t_i8, t_i8) -> t_i8);
ifn!("llvm.usub.sat.i16", fn(t_i16, t_i16) -> t_i16);
ifn!("llvm.usub.sat.i32", fn(t_i32, t_i32) -> t_i32);
ifn!("llvm.usub.sat.i64", fn(t_i64, t_i64) -> t_i64);
ifn!("llvm.usub.sat.i128", fn(t_i128, t_i128) -> t_i128);
ifn!("llvm.lifetime.start.p0i8", fn(t_i64, i8p) -> void);
ifn!("llvm.lifetime.end.p0i8", fn(t_i64, i8p) -> void);
ifn!("llvm.expect.i1", fn(i1, i1) -> i1);
ifn!("llvm.eh.typeid.for", fn(i8p) -> t_i32);
ifn!("llvm.localescape", fn(...) -> void);
ifn!("llvm.localrecover", fn(i8p, i8p, t_i32) -> i8p);
ifn!("llvm.x86.seh.recoverfp", fn(i8p, i8p) -> i8p);
ifn!("llvm.assume", fn(i1) -> void);
ifn!("llvm.prefetch", fn(i8p, t_i32, t_i32, t_i32) -> void);
// This isn't an "LLVM intrinsic", but LLVM's optimization passes
// recognize it like one and we assume it exists in `core::slice::cmp`
ifn!("memcmp", fn(i8p, i8p, t_isize) -> t_i32);
// variadic intrinsics
ifn!("llvm.va_start", fn(i8p) -> void);
ifn!("llvm.va_end", fn(i8p) -> void);
ifn!("llvm.va_copy", fn(i8p, i8p) -> void);
if self.sess().instrument_coverage() {
ifn!("llvm.instrprof.increment", fn(i8p, t_i64, t_i32, t_i32) -> void);
}
ifn!("llvm.type.test", fn(i8p, self.type_metadata()) -> i1);
if self.sess().opts.debuginfo != DebugInfo::None {
ifn!("llvm.dbg.declare", fn(self.type_metadata(), self.type_metadata()) -> void);
ifn!("llvm.dbg.value", fn(self.type_metadata(), t_i64, self.type_metadata()) -> void);
}
None
}
crate fn eh_catch_typeinfo(&self) -> &'b Value {
if let Some(eh_catch_typeinfo) = self.eh_catch_typeinfo.get() {
return eh_catch_typeinfo;
}
let tcx = self.tcx;
assert!(self.sess().target.is_like_emscripten);
let eh_catch_typeinfo = match tcx.lang_items().eh_catch_typeinfo() {
Some(def_id) => self.get_static(def_id),
_ => {
let ty = self
.type_struct(&[self.type_ptr_to(self.type_isize()), self.type_i8p()], false);
self.declare_global("rust_eh_catch_typeinfo", ty)
}
};
let eh_catch_typeinfo = self.const_bitcast(eh_catch_typeinfo, self.type_i8p());
self.eh_catch_typeinfo.set(Some(eh_catch_typeinfo));
eh_catch_typeinfo
}
}
impl<'b, 'tcx> CodegenCx<'b, 'tcx> {
/// Generates a new symbol name with the given prefix. This symbol name must
/// only be used for definitions with `internal` or `private` linkage.
pub fn generate_local_symbol_name(&self, prefix: &str) -> String {
let idx = self.local_gen_sym_counter.get();
self.local_gen_sym_counter.set(idx + 1);
// Include a '.' character, so there can be no accidental conflicts with
// user defined names
let mut name = String::with_capacity(prefix.len() + 6);
name.push_str(prefix);
name.push('.');
base_n::push_str(idx as u128, base_n::ALPHANUMERIC_ONLY, &mut name);
name
}
}
impl HasDataLayout for CodegenCx<'ll, 'tcx> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}
impl HasTargetSpec for CodegenCx<'ll, 'tcx> {
#[inline]
fn target_spec(&self) -> &Target {
&self.tcx.sess.target
}
}
impl ty::layout::HasTyCtxt<'tcx> for CodegenCx<'ll, 'tcx> {
#[inline]
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
}
impl<'tcx, 'll> HasParamEnv<'tcx> for CodegenCx<'ll, 'tcx> {
fn param_env(&self) -> ty::ParamEnv<'tcx> {
ty::ParamEnv::reveal_all()
}
}
impl LayoutOfHelpers<'tcx> for CodegenCx<'ll, 'tcx> {
type LayoutOfResult = TyAndLayout<'tcx>;
#[inline]
fn handle_layout_err(&self, err: LayoutError<'tcx>, span: Span, ty: Ty<'tcx>) -> ! {
if let LayoutError::SizeOverflow(_) = err {
self.sess().span_fatal(span, &err.to_string())
} else {
span_bug!(span, "failed to get layout for `{}`: {}", ty, err)
}
}
}
impl FnAbiOfHelpers<'tcx> for CodegenCx<'ll, 'tcx> {
type FnAbiOfResult = &'tcx FnAbi<'tcx, Ty<'tcx>>;
#[inline]
fn handle_fn_abi_err(
&self,
err: FnAbiError<'tcx>,
span: Span,
fn_abi_request: FnAbiRequest<'tcx>,
) -> ! {
if let FnAbiError::Layout(LayoutError::SizeOverflow(_)) = err {
self.sess().span_fatal(span, &err.to_string())
} else {
match fn_abi_request {
FnAbiRequest::OfFnPtr { sig, extra_args } => {
span_bug!(
span,
"`fn_abi_of_fn_ptr({}, {:?})` failed: {}",
sig,
extra_args,
err
);
}
FnAbiRequest::OfInstance { instance, extra_args } => {
span_bug!(
span,
"`fn_abi_of_instance({}, {:?})` failed: {}",
instance,
extra_args,
err
);
}
}
}
}
}