rust/src/libstd/rt/io/extensions.rs
Daniel Micay 6919cf5fe1 rename std::iterator to std::iter
The trait will keep the `Iterator` naming, but a more concise module
name makes using the free functions less verbose. The module will define
iterables in addition to iterators, as it deals with iteration in
general.
2013-09-09 03:21:46 -04:00

991 lines
26 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Utility mixins that apply to all Readers and Writers
// XXX: Not sure how this should be structured
// XXX: Iteration should probably be considered separately
use uint;
use int;
use iter::Iterator;
use vec;
use rt::io::{Reader, Writer, Decorator};
use rt::io::{read_error, standard_error, EndOfFile, DEFAULT_BUF_SIZE};
use option::{Option, Some, None};
use unstable::finally::Finally;
use util;
use cast;
use io::{u64_to_le_bytes, u64_to_be_bytes};
pub trait ReaderUtil {
/// Reads a single byte. Returns `None` on EOF.
///
/// # Failure
///
/// Raises the same conditions as the `read` method. Returns
/// `None` if the condition is handled.
fn read_byte(&mut self) -> Option<u8>;
/// Reads `len` bytes and appends them to a vector.
///
/// May push fewer than the requested number of bytes on error
/// or EOF. Returns true on success, false on EOF or error.
///
/// # Failure
///
/// Raises the same conditions as `read`. Additionally raises `read_error`
/// on EOF. If `read_error` is handled then `push_bytes` may push less
/// than the requested number of bytes.
fn push_bytes(&mut self, buf: &mut ~[u8], len: uint);
/// Reads `len` bytes and gives you back a new vector of length `len`
///
/// # Failure
///
/// Raises the same conditions as `read`. Additionally raises `read_error`
/// on EOF. If `read_error` is handled then the returned vector may
/// contain less than the requested number of bytes.
fn read_bytes(&mut self, len: uint) -> ~[u8];
/// Reads all remaining bytes from the stream.
///
/// # Failure
///
/// Raises the same conditions as the `read` method.
fn read_to_end(&mut self) -> ~[u8];
/// Create an iterator that reads a single byte on
/// each iteration, until EOF.
///
/// # Failure
///
/// Raises the same conditions as the `read` method, for
/// each call to its `.next()` method.
/// Ends the iteration if the condition is handled.
fn bytes(self) -> ByteIterator<Self>;
}
pub trait ReaderByteConversions {
/// Reads `n` little-endian unsigned integer bytes.
///
/// `n` must be between 1 and 8, inclusive.
fn read_le_uint_n_(&mut self, nbytes: uint) -> u64;
/// Reads `n` little-endian signed integer bytes.
///
/// `n` must be between 1 and 8, inclusive.
fn read_le_int_n_(&mut self, nbytes: uint) -> i64;
/// Reads `n` big-endian unsigned integer bytes.
///
/// `n` must be between 1 and 8, inclusive.
fn read_be_uint_n_(&mut self, nbytes: uint) -> u64;
/// Reads `n` big-endian signed integer bytes.
///
/// `n` must be between 1 and 8, inclusive.
fn read_be_int_n_(&mut self, nbytes: uint) -> i64;
/// Reads a little-endian unsigned integer.
///
/// The number of bytes returned is system-dependant.
fn read_le_uint_(&mut self) -> uint;
/// Reads a little-endian integer.
///
/// The number of bytes returned is system-dependant.
fn read_le_int_(&mut self) -> int;
/// Reads a big-endian unsigned integer.
///
/// The number of bytes returned is system-dependant.
fn read_be_uint_(&mut self) -> uint;
/// Reads a big-endian integer.
///
/// The number of bytes returned is system-dependant.
fn read_be_int_(&mut self) -> int;
/// Reads a big-endian `u64`.
///
/// `u64`s are 8 bytes long.
fn read_be_u64_(&mut self) -> u64;
/// Reads a big-endian `u32`.
///
/// `u32`s are 4 bytes long.
fn read_be_u32_(&mut self) -> u32;
/// Reads a big-endian `u16`.
///
/// `u16`s are 2 bytes long.
fn read_be_u16_(&mut self) -> u16;
/// Reads a big-endian `i64`.
///
/// `i64`s are 8 bytes long.
fn read_be_i64_(&mut self) -> i64;
/// Reads a big-endian `i32`.
///
/// `i32`s are 4 bytes long.
fn read_be_i32_(&mut self) -> i32;
/// Reads a big-endian `i16`.
///
/// `i16`s are 2 bytes long.
fn read_be_i16_(&mut self) -> i16;
/// Reads a big-endian `f64`.
///
/// `f64`s are 8 byte, IEEE754 double-precision floating point numbers.
fn read_be_f64_(&mut self) -> f64;
/// Reads a big-endian `f32`.
///
/// `f32`s are 4 byte, IEEE754 single-precision floating point numbers.
fn read_be_f32_(&mut self) -> f32;
/// Reads a little-endian `u64`.
///
/// `u64`s are 8 bytes long.
fn read_le_u64_(&mut self) -> u64;
/// Reads a little-endian `u32`.
///
/// `u32`s are 4 bytes long.
fn read_le_u32_(&mut self) -> u32;
/// Reads a little-endian `u16`.
///
/// `u16`s are 2 bytes long.
fn read_le_u16_(&mut self) -> u16;
/// Reads a little-endian `i64`.
///
/// `i64`s are 8 bytes long.
fn read_le_i64_(&mut self) -> i64;
/// Reads a little-endian `i32`.
///
/// `i32`s are 4 bytes long.
fn read_le_i32_(&mut self) -> i32;
/// Reads a little-endian `i16`.
///
/// `i16`s are 2 bytes long.
fn read_le_i16_(&mut self) -> i16;
/// Reads a little-endian `f64`.
///
/// `f64`s are 8 byte, IEEE754 double-precision floating point numbers.
fn read_le_f64_(&mut self) -> f64;
/// Reads a little-endian `f32`.
///
/// `f32`s are 4 byte, IEEE754 single-precision floating point numbers.
fn read_le_f32_(&mut self) -> f32;
/// Read a u8.
///
/// `u8`s are 1 byte.
fn read_u8_(&mut self) -> u8;
/// Read an i8.
///
/// `i8`s are 1 byte.
fn read_i8_(&mut self) -> i8;
}
pub trait WriterByteConversions {
/// Write the result of passing n through `int::to_str_bytes`.
fn write_int_(&mut self, n: int);
/// Write the result of passing n through `uint::to_str_bytes`.
fn write_uint_(&mut self, n: uint);
/// Write a little-endian uint (number of bytes depends on system).
fn write_le_uint_(&mut self, n: uint);
/// Write a little-endian int (number of bytes depends on system).
fn write_le_int_(&mut self, n: int);
/// Write a big-endian uint (number of bytes depends on system).
fn write_be_uint_(&mut self, n: uint);
/// Write a big-endian int (number of bytes depends on system).
fn write_be_int_(&mut self, n: int);
/// Write a big-endian u64 (8 bytes).
fn write_be_u64_(&mut self, n: u64);
/// Write a big-endian u32 (4 bytes).
fn write_be_u32_(&mut self, n: u32);
/// Write a big-endian u16 (2 bytes).
fn write_be_u16_(&mut self, n: u16);
/// Write a big-endian i64 (8 bytes).
fn write_be_i64_(&mut self, n: i64);
/// Write a big-endian i32 (4 bytes).
fn write_be_i32_(&mut self, n: i32);
/// Write a big-endian i16 (2 bytes).
fn write_be_i16_(&mut self, n: i16);
/// Write a big-endian IEEE754 double-precision floating-point (8 bytes).
fn write_be_f64_(&mut self, f: f64);
/// Write a big-endian IEEE754 single-precision floating-point (4 bytes).
fn write_be_f32_(&mut self, f: f32);
/// Write a little-endian u64 (8 bytes).
fn write_le_u64_(&mut self, n: u64);
/// Write a little-endian u32 (4 bytes).
fn write_le_u32_(&mut self, n: u32);
/// Write a little-endian u16 (2 bytes).
fn write_le_u16_(&mut self, n: u16);
/// Write a little-endian i64 (8 bytes).
fn write_le_i64_(&mut self, n: i64);
/// Write a little-endian i32 (4 bytes).
fn write_le_i32_(&mut self, n: i32);
/// Write a little-endian i16 (2 bytes).
fn write_le_i16_(&mut self, n: i16);
/// Write a little-endian IEEE754 double-precision floating-point
/// (8 bytes).
fn write_le_f64_(&mut self, f: f64);
/// Write a little-endian IEEE754 single-precision floating-point
/// (4 bytes).
fn write_le_f32_(&mut self, f: f32);
/// Write a u8 (1 byte).
fn write_u8_(&mut self, n: u8);
/// Write a i8 (1 byte).
fn write_i8_(&mut self, n: i8);
}
impl<T: Reader> ReaderUtil for T {
fn read_byte(&mut self) -> Option<u8> {
let mut buf = [0];
match self.read(buf) {
Some(0) => {
debug!("read 0 bytes. trying again");
self.read_byte()
}
Some(1) => Some(buf[0]),
Some(_) => util::unreachable(),
None => None
}
}
fn push_bytes(&mut self, buf: &mut ~[u8], len: uint) {
unsafe {
let start_len = buf.len();
let mut total_read = 0;
buf.reserve_at_least(start_len + len);
vec::raw::set_len(buf, start_len + len);
do (|| {
while total_read < len {
let len = buf.len();
let slice = buf.mut_slice(start_len + total_read, len);
match self.read(slice) {
Some(nread) => {
total_read += nread;
}
None => {
read_error::cond.raise(standard_error(EndOfFile));
break;
}
}
}
}).finally {
vec::raw::set_len(buf, start_len + total_read);
}
}
}
fn read_bytes(&mut self, len: uint) -> ~[u8] {
let mut buf = vec::with_capacity(len);
self.push_bytes(&mut buf, len);
return buf;
}
fn read_to_end(&mut self) -> ~[u8] {
let mut buf = vec::with_capacity(DEFAULT_BUF_SIZE);
let mut keep_reading = true;
do read_error::cond.trap(|e| {
if e.kind == EndOfFile {
keep_reading = false;
} else {
read_error::cond.raise(e)
}
}).inside {
while keep_reading {
self.push_bytes(&mut buf, DEFAULT_BUF_SIZE)
}
}
return buf;
}
fn bytes(self) -> ByteIterator<T> {
ByteIterator{reader: self}
}
}
/// An iterator that reads a single byte on each iteration,
/// until `.read_byte()` returns `None`.
///
/// # Notes about the Iteration Protocol
///
/// The `ByteIterator` may yield `None` and thus terminate
/// an iteration, but continue to yield elements if iteration
/// is attempted again.
///
/// # Failure
///
/// Raises the same conditions as the `read` method, for
/// each call to its `.next()` method.
/// Yields `None` if the condition is handled.
pub struct ByteIterator<T> {
priv reader: T,
}
impl<R> Decorator<R> for ByteIterator<R> {
fn inner(self) -> R { self.reader }
fn inner_ref<'a>(&'a self) -> &'a R { &self.reader }
fn inner_mut_ref<'a>(&'a mut self) -> &'a mut R { &mut self.reader }
}
impl<'self, R: Reader> Iterator<u8> for ByteIterator<R> {
#[inline]
fn next(&mut self) -> Option<u8> {
self.reader.read_byte()
}
}
impl<T: Reader> ReaderByteConversions for T {
fn read_le_uint_n_(&mut self, nbytes: uint) -> u64 {
assert!(nbytes > 0 && nbytes <= 8);
let mut val = 0u64;
let mut pos = 0;
let mut i = nbytes;
while i > 0 {
val += (self.read_u8_() as u64) << pos;
pos += 8;
i -= 1;
}
val
}
fn read_le_int_n_(&mut self, nbytes: uint) -> i64 {
extend_sign(self.read_le_uint_n_(nbytes), nbytes)
}
fn read_be_uint_n_(&mut self, nbytes: uint) -> u64 {
assert!(nbytes > 0 && nbytes <= 8);
let mut val = 0u64;
let mut i = nbytes;
while i > 0 {
i -= 1;
val += (self.read_u8_() as u64) << i * 8;
}
val
}
fn read_be_int_n_(&mut self, nbytes: uint) -> i64 {
extend_sign(self.read_be_uint_n_(nbytes), nbytes)
}
fn read_le_uint_(&mut self) -> uint {
self.read_le_uint_n_(uint::bytes) as uint
}
fn read_le_int_(&mut self) -> int {
self.read_le_int_n_(int::bytes) as int
}
fn read_be_uint_(&mut self) -> uint {
self.read_be_uint_n_(uint::bytes) as uint
}
fn read_be_int_(&mut self) -> int {
self.read_be_int_n_(int::bytes) as int
}
fn read_be_u64_(&mut self) -> u64 {
self.read_be_uint_n_(8) as u64
}
fn read_be_u32_(&mut self) -> u32 {
self.read_be_uint_n_(4) as u32
}
fn read_be_u16_(&mut self) -> u16 {
self.read_be_uint_n_(2) as u16
}
fn read_be_i64_(&mut self) -> i64 {
self.read_be_int_n_(8) as i64
}
fn read_be_i32_(&mut self) -> i32 {
self.read_be_int_n_(4) as i32
}
fn read_be_i16_(&mut self) -> i16 {
self.read_be_int_n_(2) as i16
}
fn read_be_f64_(&mut self) -> f64 {
unsafe {
cast::transmute::<u64, f64>(self.read_be_u64_())
}
}
fn read_be_f32_(&mut self) -> f32 {
unsafe {
cast::transmute::<u32, f32>(self.read_be_u32_())
}
}
fn read_le_u64_(&mut self) -> u64 {
self.read_le_uint_n_(8) as u64
}
fn read_le_u32_(&mut self) -> u32 {
self.read_le_uint_n_(4) as u32
}
fn read_le_u16_(&mut self) -> u16 {
self.read_le_uint_n_(2) as u16
}
fn read_le_i64_(&mut self) -> i64 {
self.read_le_int_n_(8) as i64
}
fn read_le_i32_(&mut self) -> i32 {
self.read_le_int_n_(4) as i32
}
fn read_le_i16_(&mut self) -> i16 {
self.read_le_int_n_(2) as i16
}
fn read_le_f64_(&mut self) -> f64 {
unsafe {
cast::transmute::<u64, f64>(self.read_le_u64_())
}
}
fn read_le_f32_(&mut self) -> f32 {
unsafe {
cast::transmute::<u32, f32>(self.read_le_u32_())
}
}
fn read_u8_(&mut self) -> u8 {
match self.read_byte() {
Some(b) => b as u8,
None => 0
}
}
fn read_i8_(&mut self) -> i8 {
match self.read_byte() {
Some(b) => b as i8,
None => 0
}
}
}
impl<T: Writer> WriterByteConversions for T {
fn write_int_(&mut self, n: int) {
int::to_str_bytes(n, 10u, |bytes| self.write(bytes))
}
fn write_uint_(&mut self, n: uint) {
uint::to_str_bytes(n, 10u, |bytes| self.write(bytes))
}
fn write_le_uint_(&mut self, n: uint) {
u64_to_le_bytes(n as u64, uint::bytes, |v| self.write(v))
}
fn write_le_int_(&mut self, n: int) {
u64_to_le_bytes(n as u64, int::bytes, |v| self.write(v))
}
fn write_be_uint_(&mut self, n: uint) {
u64_to_be_bytes(n as u64, uint::bytes, |v| self.write(v))
}
fn write_be_int_(&mut self, n: int) {
u64_to_be_bytes(n as u64, int::bytes, |v| self.write(v))
}
fn write_be_u64_(&mut self, n: u64) {
u64_to_be_bytes(n, 8u, |v| self.write(v))
}
fn write_be_u32_(&mut self, n: u32) {
u64_to_be_bytes(n as u64, 4u, |v| self.write(v))
}
fn write_be_u16_(&mut self, n: u16) {
u64_to_be_bytes(n as u64, 2u, |v| self.write(v))
}
fn write_be_i64_(&mut self, n: i64) {
u64_to_be_bytes(n as u64, 8u, |v| self.write(v))
}
fn write_be_i32_(&mut self, n: i32) {
u64_to_be_bytes(n as u64, 4u, |v| self.write(v))
}
fn write_be_i16_(&mut self, n: i16) {
u64_to_be_bytes(n as u64, 2u, |v| self.write(v))
}
fn write_be_f64_(&mut self, f: f64) {
unsafe {
self.write_be_u64_(cast::transmute(f))
}
}
fn write_be_f32_(&mut self, f: f32) {
unsafe {
self.write_be_u32_(cast::transmute(f))
}
}
fn write_le_u64_(&mut self, n: u64) {
u64_to_le_bytes(n, 8u, |v| self.write(v))
}
fn write_le_u32_(&mut self, n: u32) {
u64_to_le_bytes(n as u64, 4u, |v| self.write(v))
}
fn write_le_u16_(&mut self, n: u16) {
u64_to_le_bytes(n as u64, 2u, |v| self.write(v))
}
fn write_le_i64_(&mut self, n: i64) {
u64_to_le_bytes(n as u64, 8u, |v| self.write(v))
}
fn write_le_i32_(&mut self, n: i32) {
u64_to_le_bytes(n as u64, 4u, |v| self.write(v))
}
fn write_le_i16_(&mut self, n: i16) {
u64_to_le_bytes(n as u64, 2u, |v| self.write(v))
}
fn write_le_f64_(&mut self, f: f64) {
unsafe {
self.write_le_u64_(cast::transmute(f))
}
}
fn write_le_f32_(&mut self, f: f32) {
unsafe {
self.write_le_u32_(cast::transmute(f))
}
}
fn write_u8_(&mut self, n: u8) {
self.write([n])
}
fn write_i8_(&mut self, n: i8) {
self.write([n as u8])
}
}
fn extend_sign(val: u64, nbytes: uint) -> i64 {
let shift = (8 - nbytes) * 8;
(val << shift) as i64 >> shift
}
#[cfg(test)]
mod test {
use super::ReaderUtil;
use option::{Some, None};
use cell::Cell;
use rt::io::mem::{MemReader, MemWriter};
use rt::io::mock::MockReader;
use rt::io::{read_error, placeholder_error};
#[test]
fn read_byte() {
let mut reader = MemReader::new(~[10]);
let byte = reader.read_byte();
assert!(byte == Some(10));
}
#[test]
fn read_byte_0_bytes() {
let mut reader = MockReader::new();
let count = Cell::new(0);
reader.read = |buf| {
do count.with_mut_ref |count| {
if *count == 0 {
*count = 1;
Some(0)
} else {
buf[0] = 10;
Some(1)
}
}
};
let byte = reader.read_byte();
assert!(byte == Some(10));
}
#[test]
fn read_byte_eof() {
let mut reader = MockReader::new();
reader.read = |_| None;
let byte = reader.read_byte();
assert!(byte == None);
}
#[test]
fn read_byte_error() {
let mut reader = MockReader::new();
reader.read = |_| {
read_error::cond.raise(placeholder_error());
None
};
do read_error::cond.trap(|_| {
}).inside {
let byte = reader.read_byte();
assert!(byte == None);
}
}
#[test]
fn bytes_0_bytes() {
let mut reader = MockReader::new();
let count = Cell::new(0);
reader.read = |buf| {
do count.with_mut_ref |count| {
if *count == 0 {
*count = 1;
Some(0)
} else {
buf[0] = 10;
Some(1)
}
}
};
let byte = reader.bytes().next();
assert!(byte == Some(10));
}
#[test]
fn bytes_eof() {
let mut reader = MockReader::new();
reader.read = |_| None;
let byte = reader.bytes().next();
assert!(byte == None);
}
#[test]
fn bytes_error() {
let mut reader = MockReader::new();
reader.read = |_| {
read_error::cond.raise(placeholder_error());
None
};
let mut it = reader.bytes();
do read_error::cond.trap(|_| ()).inside {
let byte = it.next();
assert!(byte == None);
}
}
#[test]
fn read_bytes() {
let mut reader = MemReader::new(~[10, 11, 12, 13]);
let bytes = reader.read_bytes(4);
assert!(bytes == ~[10, 11, 12, 13]);
}
#[test]
fn read_bytes_partial() {
let mut reader = MockReader::new();
let count = Cell::new(0);
reader.read = |buf| {
do count.with_mut_ref |count| {
if *count == 0 {
*count = 1;
buf[0] = 10;
buf[1] = 11;
Some(2)
} else {
buf[0] = 12;
buf[1] = 13;
Some(2)
}
}
};
let bytes = reader.read_bytes(4);
assert!(bytes == ~[10, 11, 12, 13]);
}
#[test]
fn read_bytes_eof() {
let mut reader = MemReader::new(~[10, 11]);
do read_error::cond.trap(|_| {
}).inside {
assert!(reader.read_bytes(4) == ~[10, 11]);
}
}
#[test]
fn push_bytes() {
let mut reader = MemReader::new(~[10, 11, 12, 13]);
let mut buf = ~[8, 9];
reader.push_bytes(&mut buf, 4);
assert!(buf == ~[8, 9, 10, 11, 12, 13]);
}
#[test]
fn push_bytes_partial() {
let mut reader = MockReader::new();
let count = Cell::new(0);
reader.read = |buf| {
do count.with_mut_ref |count| {
if *count == 0 {
*count = 1;
buf[0] = 10;
buf[1] = 11;
Some(2)
} else {
buf[0] = 12;
buf[1] = 13;
Some(2)
}
}
};
let mut buf = ~[8, 9];
reader.push_bytes(&mut buf, 4);
assert!(buf == ~[8, 9, 10, 11, 12, 13]);
}
#[test]
fn push_bytes_eof() {
let mut reader = MemReader::new(~[10, 11]);
let mut buf = ~[8, 9];
do read_error::cond.trap(|_| {
}).inside {
reader.push_bytes(&mut buf, 4);
assert!(buf == ~[8, 9, 10, 11]);
}
}
#[test]
fn push_bytes_error() {
let mut reader = MockReader::new();
let count = Cell::new(0);
reader.read = |buf| {
do count.with_mut_ref |count| {
if *count == 0 {
*count = 1;
buf[0] = 10;
Some(1)
} else {
read_error::cond.raise(placeholder_error());
None
}
}
};
let mut buf = ~[8, 9];
do read_error::cond.trap(|_| { } ).inside {
reader.push_bytes(&mut buf, 4);
}
assert!(buf == ~[8, 9, 10]);
}
#[test]
#[should_fail]
fn push_bytes_fail_reset_len() {
// push_bytes unsafely sets the vector length. This is testing that
// upon failure the length is reset correctly.
let mut reader = MockReader::new();
let count = Cell::new(0);
reader.read = |buf| {
do count.with_mut_ref |count| {
if *count == 0 {
*count = 1;
buf[0] = 10;
Some(1)
} else {
read_error::cond.raise(placeholder_error());
None
}
}
};
let buf = @mut ~[8, 9];
do (|| {
reader.push_bytes(&mut *buf, 4);
}).finally {
// NB: Using rtassert here to trigger abort on failure since this is a should_fail test
// FIXME: #7049 This fails because buf is still borrowed
//rtassert!(*buf == ~[8, 9, 10]);
}
}
#[test]
fn read_to_end() {
let mut reader = MockReader::new();
let count = Cell::new(0);
reader.read = |buf| {
do count.with_mut_ref |count| {
if *count == 0 {
*count = 1;
buf[0] = 10;
buf[1] = 11;
Some(2)
} else if *count == 1 {
*count = 2;
buf[0] = 12;
buf[1] = 13;
Some(2)
} else {
None
}
}
};
let buf = reader.read_to_end();
assert!(buf == ~[10, 11, 12, 13]);
}
#[test]
#[should_fail]
fn read_to_end_error() {
let mut reader = MockReader::new();
let count = Cell::new(0);
reader.read = |buf| {
do count.with_mut_ref |count| {
if *count == 0 {
*count = 1;
buf[0] = 10;
buf[1] = 11;
Some(2)
} else {
read_error::cond.raise(placeholder_error());
None
}
}
};
let buf = reader.read_to_end();
assert!(buf == ~[10, 11]);
}
#[test]
fn test_read_write_le_mem() {
let uints = [0, 1, 2, 42, 10_123, 100_123_456, ::u64::max_value];
let mut writer = MemWriter::new();
for i in uints.iter() {
writer.write_le_u64_(*i);
}
let mut reader = MemReader::new(writer.inner());
for i in uints.iter() {
assert!(reader.read_le_u64_() == *i);
}
}
#[test]
fn test_read_write_be() {
let uints = [0, 1, 2, 42, 10_123, 100_123_456, ::u64::max_value];
let mut writer = MemWriter::new();
for i in uints.iter() {
writer.write_be_u64_(*i);
}
let mut reader = MemReader::new(writer.inner());
for i in uints.iter() {
assert!(reader.read_be_u64_() == *i);
}
}
#[test]
fn test_read_be_int_n() {
let ints = [::i32::min_value, -123456, -42, -5, 0, 1, ::i32::max_value];
let mut writer = MemWriter::new();
for i in ints.iter() {
writer.write_be_i32_(*i);
}
let mut reader = MemReader::new(writer.inner());
for i in ints.iter() {
// this tests that the sign extension is working
// (comparing the values as i32 would not test this)
assert!(reader.read_be_int_n_(4) == *i as i64);
}
}
#[test]
fn test_read_f32() {
//big-endian floating-point 8.1250
let buf = ~[0x41, 0x02, 0x00, 0x00];
let mut writer = MemWriter::new();
writer.write(buf);
let mut reader = MemReader::new(writer.inner());
let f = reader.read_be_f32_();
assert!(f == 8.1250);
}
#[test]
fn test_read_write_f32() {
let f:f32 = 8.1250;
let mut writer = MemWriter::new();
writer.write_be_f32_(f);
writer.write_le_f32_(f);
let mut reader = MemReader::new(writer.inner());
assert!(reader.read_be_f32_() == 8.1250);
assert!(reader.read_le_f32_() == 8.1250);
}
}