024bf2ec72
'Natural' normally means 'positive integer' in mathematics. It is therefore strange to implement it on signed integer types. 'Integer' is probably a better choice.
818 lines
22 KiB
Rust
818 lines
22 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
use T = self::inst::T;
|
|
|
|
use from_str::FromStr;
|
|
use num::{ToStrRadix, FromStrRadix};
|
|
use num::strconv;
|
|
use prelude::*;
|
|
|
|
pub use cmp::{min, max};
|
|
|
|
pub static bits : uint = inst::bits;
|
|
pub static bytes : uint = (inst::bits / 8);
|
|
|
|
pub static min_value: T = (-1 as T) << (bits - 1);
|
|
pub static max_value: T = min_value - 1 as T;
|
|
|
|
#[inline(always)]
|
|
pub fn add(x: T, y: T) -> T { x + y }
|
|
#[inline(always)]
|
|
pub fn sub(x: T, y: T) -> T { x - y }
|
|
#[inline(always)]
|
|
pub fn mul(x: T, y: T) -> T { x * y }
|
|
#[inline(always)]
|
|
pub fn quot(x: T, y: T) -> T { x / y }
|
|
|
|
/**
|
|
* Returns the remainder of y / x.
|
|
*
|
|
* # Examples
|
|
* ~~~
|
|
* assert!(int::rem(5 / 2) == 1);
|
|
* ~~~
|
|
*
|
|
* When faced with negative numbers, the result copies the sign of the
|
|
* dividend.
|
|
*
|
|
* ~~~
|
|
* assert!(int::rem(2 / -3) == 2);
|
|
* ~~~
|
|
*
|
|
* ~~~
|
|
* assert!(int::rem(-2 / 3) == -2);
|
|
* ~~~
|
|
*
|
|
*/
|
|
#[inline(always)]
|
|
pub fn rem(x: T, y: T) -> T { x % y }
|
|
|
|
#[inline(always)]
|
|
pub fn lt(x: T, y: T) -> bool { x < y }
|
|
#[inline(always)]
|
|
pub fn le(x: T, y: T) -> bool { x <= y }
|
|
#[inline(always)]
|
|
pub fn eq(x: T, y: T) -> bool { x == y }
|
|
#[inline(always)]
|
|
pub fn ne(x: T, y: T) -> bool { x != y }
|
|
#[inline(always)]
|
|
pub fn ge(x: T, y: T) -> bool { x >= y }
|
|
#[inline(always)]
|
|
pub fn gt(x: T, y: T) -> bool { x > y }
|
|
|
|
/**
|
|
* Iterate over the range [`lo`..`hi`)
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * `lo` - lower bound, inclusive
|
|
* * `hi` - higher bound, exclusive
|
|
*
|
|
* # Examples
|
|
* ~~~
|
|
* let mut sum = 0;
|
|
* for int::range(1, 5) |i| {
|
|
* sum += i;
|
|
* }
|
|
* assert!(sum == 10);
|
|
* ~~~
|
|
*/
|
|
#[inline(always)]
|
|
/// Iterate over the range [`start`,`start`+`step`..`stop`)
|
|
pub fn range_step(start: T, stop: T, step: T, it: &fn(T) -> bool) {
|
|
let mut i = start;
|
|
if step == 0 {
|
|
fail!(~"range_step called with step == 0");
|
|
} else if step > 0 { // ascending
|
|
while i < stop {
|
|
if !it(i) { break }
|
|
// avoiding overflow. break if i + step > max_value
|
|
if i > max_value - step { break; }
|
|
i += step;
|
|
}
|
|
} else { // descending
|
|
while i > stop {
|
|
if !it(i) { break }
|
|
// avoiding underflow. break if i + step < min_value
|
|
if i < min_value - step { break; }
|
|
i += step;
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
/// Iterate over the range [`lo`..`hi`)
|
|
pub fn range(lo: T, hi: T, it: &fn(T) -> bool) {
|
|
range_step(lo, hi, 1 as T, it);
|
|
}
|
|
|
|
#[inline(always)]
|
|
/// Iterate over the range [`hi`..`lo`)
|
|
pub fn range_rev(hi: T, lo: T, it: &fn(T) -> bool) {
|
|
range_step(hi, lo, -1 as T, it);
|
|
}
|
|
|
|
/// Computes the bitwise complement
|
|
#[inline(always)]
|
|
pub fn compl(i: T) -> T {
|
|
-1 as T ^ i
|
|
}
|
|
|
|
/// Computes the absolute value
|
|
#[inline(always)]
|
|
pub fn abs(i: T) -> T { i.abs() }
|
|
|
|
impl Num for T {}
|
|
|
|
#[cfg(notest)]
|
|
impl Ord for T {
|
|
#[inline(always)]
|
|
fn lt(&self, other: &T) -> bool { return (*self) < (*other); }
|
|
#[inline(always)]
|
|
fn le(&self, other: &T) -> bool { return (*self) <= (*other); }
|
|
#[inline(always)]
|
|
fn ge(&self, other: &T) -> bool { return (*self) >= (*other); }
|
|
#[inline(always)]
|
|
fn gt(&self, other: &T) -> bool { return (*self) > (*other); }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl Eq for T {
|
|
#[inline(always)]
|
|
fn eq(&self, other: &T) -> bool { return (*self) == (*other); }
|
|
#[inline(always)]
|
|
fn ne(&self, other: &T) -> bool { return (*self) != (*other); }
|
|
}
|
|
|
|
impl num::Zero for T {
|
|
#[inline(always)]
|
|
fn zero() -> T { 0 }
|
|
}
|
|
|
|
impl num::One for T {
|
|
#[inline(always)]
|
|
fn one() -> T { 1 }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl Add<T,T> for T {
|
|
#[inline(always)]
|
|
fn add(&self, other: &T) -> T { *self + *other }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl Sub<T,T> for T {
|
|
#[inline(always)]
|
|
fn sub(&self, other: &T) -> T { *self - *other }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl Mul<T,T> for T {
|
|
#[inline(always)]
|
|
fn mul(&self, other: &T) -> T { *self * *other }
|
|
}
|
|
|
|
#[cfg(stage0,notest)]
|
|
impl Div<T,T> for T {
|
|
#[inline(always)]
|
|
fn div(&self, other: &T) -> T { *self / *other }
|
|
}
|
|
#[cfg(not(stage0),notest)]
|
|
impl Quot<T,T> for T {
|
|
/**
|
|
* Returns the integer quotient, truncated towards 0. As this behaviour reflects
|
|
* the underlying machine implementation it is more efficient than `Natural::div`.
|
|
*
|
|
* # Examples
|
|
*
|
|
* ~~~
|
|
* assert!( 8 / 3 == 2);
|
|
* assert!( 8 / -3 == -2);
|
|
* assert!(-8 / 3 == -2);
|
|
* assert!(-8 / -3 == 2);
|
|
|
|
* assert!( 1 / 2 == 0);
|
|
* assert!( 1 / -2 == 0);
|
|
* assert!(-1 / 2 == 0);
|
|
* assert!(-1 / -2 == 0);
|
|
* ~~~
|
|
*/
|
|
#[inline(always)]
|
|
fn quot(&self, other: &T) -> T { *self / *other }
|
|
}
|
|
|
|
#[cfg(stage0,notest)]
|
|
impl Modulo<T,T> for T {
|
|
#[inline(always)]
|
|
fn modulo(&self, other: &T) -> T { *self % *other }
|
|
}
|
|
#[cfg(not(stage0),notest)]
|
|
impl Rem<T,T> for T {
|
|
/**
|
|
* Returns the integer remainder after division, satisfying:
|
|
*
|
|
* ~~~
|
|
* assert!((n / d) * d + (n % d) == n)
|
|
* ~~~
|
|
*
|
|
* # Examples
|
|
*
|
|
* ~~~
|
|
* assert!( 8 % 3 == 2);
|
|
* assert!( 8 % -3 == 2);
|
|
* assert!(-8 % 3 == -2);
|
|
* assert!(-8 % -3 == -2);
|
|
|
|
* assert!( 1 % 2 == 1);
|
|
* assert!( 1 % -2 == 1);
|
|
* assert!(-1 % 2 == -1);
|
|
* assert!(-1 % -2 == -1);
|
|
* ~~~
|
|
*/
|
|
#[inline(always)]
|
|
fn rem(&self, other: &T) -> T { *self % *other }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl Neg<T> for T {
|
|
#[inline(always)]
|
|
fn neg(&self) -> T { -*self }
|
|
}
|
|
|
|
impl Signed for T {
|
|
/// Computes the absolute value
|
|
#[inline(always)]
|
|
fn abs(&self) -> T {
|
|
if self.is_negative() { -*self } else { *self }
|
|
}
|
|
|
|
/**
|
|
* # Returns
|
|
*
|
|
* - `0` if the number is zero
|
|
* - `1` if the number is positive
|
|
* - `-1` if the number is negative
|
|
*/
|
|
#[inline(always)]
|
|
fn signum(&self) -> T {
|
|
match *self {
|
|
n if n > 0 => 1,
|
|
0 => 0,
|
|
_ => -1,
|
|
}
|
|
}
|
|
|
|
/// Returns true if the number is positive
|
|
#[inline(always)]
|
|
fn is_positive(&self) -> bool { *self > 0 }
|
|
|
|
/// Returns true if the number is negative
|
|
#[inline(always)]
|
|
fn is_negative(&self) -> bool { *self < 0 }
|
|
}
|
|
|
|
impl Integer for T {
|
|
/**
|
|
* Floored integer division
|
|
*
|
|
* # Examples
|
|
*
|
|
* ~~~
|
|
* assert!(( 8).div( 3) == 2);
|
|
* assert!(( 8).div(-3) == -3);
|
|
* assert!((-8).div( 3) == -3);
|
|
* assert!((-8).div(-3) == 2);
|
|
*
|
|
* assert!(( 1).div( 2) == 0);
|
|
* assert!(( 1).div(-2) == -1);
|
|
* assert!((-1).div( 2) == -1);
|
|
* assert!((-1).div(-2) == 0);
|
|
* ~~~
|
|
*/
|
|
#[inline(always)]
|
|
fn div(&self, other: T) -> T {
|
|
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
|
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
|
match self.quot_rem(other) {
|
|
(q, r) if (r > 0 && other < 0)
|
|
|| (r < 0 && other > 0) => q - 1,
|
|
(q, _) => q,
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Integer modulo, satisfying:
|
|
*
|
|
* ~~~
|
|
* assert!(n.div(d) * d + n.modulo(d) == n)
|
|
* ~~~
|
|
*
|
|
* # Examples
|
|
*
|
|
* ~~~
|
|
* assert!(( 8).modulo( 3) == 2);
|
|
* assert!(( 8).modulo(-3) == -1);
|
|
* assert!((-8).modulo( 3) == 1);
|
|
* assert!((-8).modulo(-3) == -2);
|
|
*
|
|
* assert!(( 1).modulo( 2) == 1);
|
|
* assert!(( 1).modulo(-2) == -1);
|
|
* assert!((-1).modulo( 2) == 1);
|
|
* assert!((-1).modulo(-2) == -1);
|
|
* ~~~
|
|
*/
|
|
#[inline(always)]
|
|
fn modulo(&self, other: T) -> T {
|
|
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
|
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
|
match *self % other {
|
|
r if (r > 0 && other < 0)
|
|
|| (r < 0 && other > 0) => r + other,
|
|
r => r,
|
|
}
|
|
}
|
|
|
|
/// Calculates `div` and `modulo` simultaneously
|
|
#[inline(always)]
|
|
fn div_mod(&self, other: T) -> (T,T) {
|
|
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
|
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
|
match self.quot_rem(other) {
|
|
(q, r) if (r > 0 && other < 0)
|
|
|| (r < 0 && other > 0) => (q - 1, r + other),
|
|
(q, r) => (q, r),
|
|
}
|
|
}
|
|
|
|
/// Calculates `quot` (`\`) and `rem` (`%`) simultaneously
|
|
#[inline(always)]
|
|
fn quot_rem(&self, other: T) -> (T,T) {
|
|
(*self / other, *self % other)
|
|
}
|
|
|
|
/**
|
|
* Calculates the Greatest Common Divisor (GCD) of the number and `other`
|
|
*
|
|
* The result is always positive
|
|
*/
|
|
#[inline(always)]
|
|
fn gcd(&self, other: T) -> T {
|
|
// Use Euclid's algorithm
|
|
let mut m = *self, n = other;
|
|
while m != 0 {
|
|
let temp = m;
|
|
m = n % temp;
|
|
n = temp;
|
|
}
|
|
n.abs()
|
|
}
|
|
|
|
/**
|
|
* Calculates the Lowest Common Multiple (LCM) of the number and `other`
|
|
*/
|
|
#[inline(always)]
|
|
fn lcm(&self, other: T) -> T {
|
|
((*self * other) / self.gcd(other)).abs() // should not have to recaluculate abs
|
|
}
|
|
|
|
/// Returns `true` if the number can be divided by `other` without leaving a remainder
|
|
#[inline(always)]
|
|
fn divisible_by(&self, other: T) -> bool { *self % other == 0 }
|
|
|
|
/// Returns `true` if the number is divisible by `2`
|
|
#[inline(always)]
|
|
fn is_even(&self) -> bool { self.divisible_by(2) }
|
|
|
|
/// Returns `true` if the number is not divisible by `2`
|
|
#[inline(always)]
|
|
fn is_odd(&self) -> bool { !self.is_even() }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl BitOr<T,T> for T {
|
|
#[inline(always)]
|
|
fn bitor(&self, other: &T) -> T { *self | *other }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl BitAnd<T,T> for T {
|
|
#[inline(always)]
|
|
fn bitand(&self, other: &T) -> T { *self & *other }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl BitXor<T,T> for T {
|
|
#[inline(always)]
|
|
fn bitxor(&self, other: &T) -> T { *self ^ *other }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl Shl<T,T> for T {
|
|
#[inline(always)]
|
|
fn shl(&self, other: &T) -> T { *self << *other }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl Shr<T,T> for T {
|
|
#[inline(always)]
|
|
fn shr(&self, other: &T) -> T { *self >> *other }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl Not<T> for T {
|
|
#[inline(always)]
|
|
fn not(&self) -> T { !*self }
|
|
}
|
|
|
|
// String conversion functions and impl str -> num
|
|
|
|
/// Parse a string as a number in base 10.
|
|
#[inline(always)]
|
|
pub fn from_str(s: &str) -> Option<T> {
|
|
strconv::from_str_common(s, 10u, true, false, false,
|
|
strconv::ExpNone, false, false)
|
|
}
|
|
|
|
/// Parse a string as a number in the given base.
|
|
#[inline(always)]
|
|
pub fn from_str_radix(s: &str, radix: uint) -> Option<T> {
|
|
strconv::from_str_common(s, radix, true, false, false,
|
|
strconv::ExpNone, false, false)
|
|
}
|
|
|
|
/// Parse a byte slice as a number in the given base.
|
|
#[inline(always)]
|
|
pub fn parse_bytes(buf: &[u8], radix: uint) -> Option<T> {
|
|
strconv::from_str_bytes_common(buf, radix, true, false, false,
|
|
strconv::ExpNone, false, false)
|
|
}
|
|
|
|
impl FromStr for T {
|
|
#[inline(always)]
|
|
fn from_str(s: &str) -> Option<T> {
|
|
from_str(s)
|
|
}
|
|
}
|
|
|
|
impl FromStrRadix for T {
|
|
#[inline(always)]
|
|
fn from_str_radix(s: &str, radix: uint) -> Option<T> {
|
|
from_str_radix(s, radix)
|
|
}
|
|
}
|
|
|
|
// String conversion functions and impl num -> str
|
|
|
|
/// Convert to a string as a byte slice in a given base.
|
|
#[inline(always)]
|
|
pub fn to_str_bytes<U>(n: T, radix: uint, f: &fn(v: &[u8]) -> U) -> U {
|
|
let (buf, _) = strconv::to_str_bytes_common(&n, radix, false,
|
|
strconv::SignNeg, strconv::DigAll);
|
|
f(buf)
|
|
}
|
|
|
|
/// Convert to a string in base 10.
|
|
#[inline(always)]
|
|
pub fn to_str(num: T) -> ~str {
|
|
let (buf, _) = strconv::to_str_common(&num, 10u, false,
|
|
strconv::SignNeg, strconv::DigAll);
|
|
buf
|
|
}
|
|
|
|
/// Convert to a string in a given base.
|
|
#[inline(always)]
|
|
pub fn to_str_radix(num: T, radix: uint) -> ~str {
|
|
let (buf, _) = strconv::to_str_common(&num, radix, false,
|
|
strconv::SignNeg, strconv::DigAll);
|
|
buf
|
|
}
|
|
|
|
impl ToStr for T {
|
|
#[inline(always)]
|
|
fn to_str(&self) -> ~str {
|
|
to_str(*self)
|
|
}
|
|
}
|
|
|
|
impl ToStrRadix for T {
|
|
#[inline(always)]
|
|
fn to_str_radix(&self, radix: uint) -> ~str {
|
|
to_str_radix(*self, radix)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use super::inst::T;
|
|
use prelude::*;
|
|
|
|
#[test]
|
|
fn test_num() {
|
|
num::test_num(10 as T, 2 as T);
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_signed() {
|
|
assert_eq!((1 as T).abs(), 1 as T);
|
|
assert_eq!((0 as T).abs(), 0 as T);
|
|
assert_eq!((-1 as T).abs(), 1 as T);
|
|
|
|
assert_eq!((1 as T).signum(), 1 as T);
|
|
assert_eq!((0 as T).signum(), 0 as T);
|
|
assert_eq!((-0 as T).signum(), 0 as T);
|
|
assert_eq!((-1 as T).signum(), -1 as T);
|
|
|
|
assert!((1 as T).is_positive());
|
|
assert!(!(0 as T).is_positive());
|
|
assert!(!(-0 as T).is_positive());
|
|
assert!(!(-1 as T).is_positive());
|
|
|
|
assert!(!(1 as T).is_negative());
|
|
assert!(!(0 as T).is_negative());
|
|
assert!(!(-0 as T).is_negative());
|
|
assert!((-1 as T).is_negative());
|
|
}
|
|
|
|
/**
|
|
* Checks that the division rule holds for:
|
|
*
|
|
* - `n`: numerator (dividend)
|
|
* - `d`: denominator (divisor)
|
|
* - `qr`: quotient and remainder
|
|
*/
|
|
#[cfg(test)]
|
|
fn test_division_rule(nd: (T,T), qr: (T,T)) {
|
|
let (n,d) = nd,
|
|
(q,r) = qr;
|
|
|
|
assert_eq!(d * q + r, n);
|
|
}
|
|
|
|
#[test]
|
|
fn test_quot_rem() {
|
|
fn test_nd_qr(nd: (T,T), qr: (T,T)) {
|
|
let (n,d) = nd;
|
|
let separate_quot_rem = (n / d, n % d);
|
|
let combined_quot_rem = n.quot_rem(d);
|
|
|
|
assert_eq!(separate_quot_rem, qr);
|
|
assert_eq!(combined_quot_rem, qr);
|
|
|
|
test_division_rule(nd, separate_quot_rem);
|
|
test_division_rule(nd, combined_quot_rem);
|
|
}
|
|
|
|
test_nd_qr(( 8, 3), ( 2, 2));
|
|
test_nd_qr(( 8, -3), (-2, 2));
|
|
test_nd_qr((-8, 3), (-2, -2));
|
|
test_nd_qr((-8, -3), ( 2, -2));
|
|
|
|
test_nd_qr(( 1, 2), ( 0, 1));
|
|
test_nd_qr(( 1, -2), ( 0, 1));
|
|
test_nd_qr((-1, 2), ( 0, -1));
|
|
test_nd_qr((-1, -2), ( 0, -1));
|
|
}
|
|
|
|
#[test]
|
|
fn test_div_mod() {
|
|
fn test_nd_dm(nd: (T,T), dm: (T,T)) {
|
|
let (n,d) = nd;
|
|
let separate_div_mod = (n.div(d), n.modulo(d));
|
|
let combined_div_mod = n.div_mod(d);
|
|
|
|
assert_eq!(separate_div_mod, dm);
|
|
assert_eq!(combined_div_mod, dm);
|
|
|
|
test_division_rule(nd, separate_div_mod);
|
|
test_division_rule(nd, combined_div_mod);
|
|
}
|
|
|
|
test_nd_dm(( 8, 3), ( 2, 2));
|
|
test_nd_dm(( 8, -3), (-3, -1));
|
|
test_nd_dm((-8, 3), (-3, 1));
|
|
test_nd_dm((-8, -3), ( 2, -2));
|
|
|
|
test_nd_dm(( 1, 2), ( 0, 1));
|
|
test_nd_dm(( 1, -2), (-1, -1));
|
|
test_nd_dm((-1, 2), (-1, 1));
|
|
test_nd_dm((-1, -2), ( 0, -1));
|
|
}
|
|
|
|
#[test]
|
|
fn test_gcd() {
|
|
assert_eq!((10 as T).gcd(2), 2 as T);
|
|
assert_eq!((10 as T).gcd(3), 1 as T);
|
|
assert_eq!((0 as T).gcd(3), 3 as T);
|
|
assert_eq!((3 as T).gcd(3), 3 as T);
|
|
assert_eq!((56 as T).gcd(42), 14 as T);
|
|
assert_eq!((3 as T).gcd(-3), 3 as T);
|
|
assert_eq!((-6 as T).gcd(3), 3 as T);
|
|
assert_eq!((-4 as T).gcd(-2), 2 as T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_lcm() {
|
|
assert_eq!((1 as T).lcm(0), 0 as T);
|
|
assert_eq!((0 as T).lcm(1), 0 as T);
|
|
assert_eq!((1 as T).lcm(1), 1 as T);
|
|
assert_eq!((-1 as T).lcm(1), 1 as T);
|
|
assert_eq!((1 as T).lcm(-1), 1 as T);
|
|
assert_eq!((-1 as T).lcm(-1), 1 as T);
|
|
assert_eq!((8 as T).lcm(9), 72 as T);
|
|
assert_eq!((11 as T).lcm(5), 55 as T);
|
|
}
|
|
|
|
#[test]
|
|
fn test_bitwise_ops() {
|
|
assert_eq!(0b1110 as T, (0b1100 as T).bitor(&(0b1010 as T)));
|
|
assert_eq!(0b1000 as T, (0b1100 as T).bitand(&(0b1010 as T)));
|
|
assert_eq!(0b0110 as T, (0b1100 as T).bitxor(&(0b1010 as T)));
|
|
assert_eq!(0b1110 as T, (0b0111 as T).shl(&(1 as T)));
|
|
assert_eq!(0b0111 as T, (0b1110 as T).shr(&(1 as T)));
|
|
assert_eq!(-(0b11 as T) - (1 as T), (0b11 as T).not());
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_str() {
|
|
assert_eq!(from_str(~"0"), Some(0 as T));
|
|
assert_eq!(from_str(~"3"), Some(3 as T));
|
|
assert_eq!(from_str(~"10"), Some(10 as T));
|
|
assert_eq!(i32::from_str(~"123456789"), Some(123456789 as i32));
|
|
assert_eq!(from_str(~"00100"), Some(100 as T));
|
|
|
|
assert_eq!(from_str(~"-1"), Some(-1 as T));
|
|
assert_eq!(from_str(~"-3"), Some(-3 as T));
|
|
assert_eq!(from_str(~"-10"), Some(-10 as T));
|
|
assert_eq!(i32::from_str(~"-123456789"), Some(-123456789 as i32));
|
|
assert_eq!(from_str(~"-00100"), Some(-100 as T));
|
|
|
|
assert!(from_str(~" ").is_none());
|
|
assert!(from_str(~"x").is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_parse_bytes() {
|
|
use str::to_bytes;
|
|
assert_eq!(parse_bytes(to_bytes(~"123"), 10u), Some(123 as T));
|
|
assert_eq!(parse_bytes(to_bytes(~"1001"), 2u), Some(9 as T));
|
|
assert_eq!(parse_bytes(to_bytes(~"123"), 8u), Some(83 as T));
|
|
assert_eq!(i32::parse_bytes(to_bytes(~"123"), 16u), Some(291 as i32));
|
|
assert_eq!(i32::parse_bytes(to_bytes(~"ffff"), 16u), Some(65535 as i32));
|
|
assert_eq!(i32::parse_bytes(to_bytes(~"FFFF"), 16u), Some(65535 as i32));
|
|
assert_eq!(parse_bytes(to_bytes(~"z"), 36u), Some(35 as T));
|
|
assert_eq!(parse_bytes(to_bytes(~"Z"), 36u), Some(35 as T));
|
|
|
|
assert_eq!(parse_bytes(to_bytes(~"-123"), 10u), Some(-123 as T));
|
|
assert_eq!(parse_bytes(to_bytes(~"-1001"), 2u), Some(-9 as T));
|
|
assert_eq!(parse_bytes(to_bytes(~"-123"), 8u), Some(-83 as T));
|
|
assert_eq!(i32::parse_bytes(to_bytes(~"-123"), 16u), Some(-291 as i32));
|
|
assert_eq!(i32::parse_bytes(to_bytes(~"-ffff"), 16u), Some(-65535 as i32));
|
|
assert_eq!(i32::parse_bytes(to_bytes(~"-FFFF"), 16u), Some(-65535 as i32));
|
|
assert_eq!(parse_bytes(to_bytes(~"-z"), 36u), Some(-35 as T));
|
|
assert_eq!(parse_bytes(to_bytes(~"-Z"), 36u), Some(-35 as T));
|
|
|
|
assert!(parse_bytes(to_bytes(~"Z"), 35u).is_none());
|
|
assert!(parse_bytes(to_bytes(~"-9"), 2u).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_to_str() {
|
|
assert_eq!(to_str_radix(0 as T, 10u), ~"0");
|
|
assert_eq!(to_str_radix(1 as T, 10u), ~"1");
|
|
assert_eq!(to_str_radix(-1 as T, 10u), ~"-1");
|
|
assert_eq!(to_str_radix(127 as T, 16u), ~"7f");
|
|
assert_eq!(to_str_radix(100 as T, 10u), ~"100");
|
|
|
|
}
|
|
|
|
#[test]
|
|
fn test_int_to_str_overflow() {
|
|
let mut i8_val: i8 = 127_i8;
|
|
assert_eq!(i8::to_str(i8_val), ~"127");
|
|
|
|
i8_val += 1 as i8;
|
|
assert_eq!(i8::to_str(i8_val), ~"-128");
|
|
|
|
let mut i16_val: i16 = 32_767_i16;
|
|
assert_eq!(i16::to_str(i16_val), ~"32767");
|
|
|
|
i16_val += 1 as i16;
|
|
assert_eq!(i16::to_str(i16_val), ~"-32768");
|
|
|
|
let mut i32_val: i32 = 2_147_483_647_i32;
|
|
assert_eq!(i32::to_str(i32_val), ~"2147483647");
|
|
|
|
i32_val += 1 as i32;
|
|
assert_eq!(i32::to_str(i32_val), ~"-2147483648");
|
|
|
|
let mut i64_val: i64 = 9_223_372_036_854_775_807_i64;
|
|
assert_eq!(i64::to_str(i64_val), ~"9223372036854775807");
|
|
|
|
i64_val += 1 as i64;
|
|
assert_eq!(i64::to_str(i64_val), ~"-9223372036854775808");
|
|
}
|
|
|
|
#[test]
|
|
fn test_int_from_str_overflow() {
|
|
let mut i8_val: i8 = 127_i8;
|
|
assert_eq!(i8::from_str(~"127"), Some(i8_val));
|
|
assert!(i8::from_str(~"128").is_none());
|
|
|
|
i8_val += 1 as i8;
|
|
assert_eq!(i8::from_str(~"-128"), Some(i8_val));
|
|
assert!(i8::from_str(~"-129").is_none());
|
|
|
|
let mut i16_val: i16 = 32_767_i16;
|
|
assert_eq!(i16::from_str(~"32767"), Some(i16_val));
|
|
assert!(i16::from_str(~"32768").is_none());
|
|
|
|
i16_val += 1 as i16;
|
|
assert_eq!(i16::from_str(~"-32768"), Some(i16_val));
|
|
assert!(i16::from_str(~"-32769").is_none());
|
|
|
|
let mut i32_val: i32 = 2_147_483_647_i32;
|
|
assert_eq!(i32::from_str(~"2147483647"), Some(i32_val));
|
|
assert!(i32::from_str(~"2147483648").is_none());
|
|
|
|
i32_val += 1 as i32;
|
|
assert_eq!(i32::from_str(~"-2147483648"), Some(i32_val));
|
|
assert!(i32::from_str(~"-2147483649").is_none());
|
|
|
|
let mut i64_val: i64 = 9_223_372_036_854_775_807_i64;
|
|
assert_eq!(i64::from_str(~"9223372036854775807"), Some(i64_val));
|
|
assert!(i64::from_str(~"9223372036854775808").is_none());
|
|
|
|
i64_val += 1 as i64;
|
|
assert_eq!(i64::from_str(~"-9223372036854775808"), Some(i64_val));
|
|
assert!(i64::from_str(~"-9223372036854775809").is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_ranges() {
|
|
let mut l = ~[];
|
|
|
|
for range(0,3) |i| {
|
|
l.push(i);
|
|
}
|
|
for range_rev(13,10) |i| {
|
|
l.push(i);
|
|
}
|
|
for range_step(20,26,2) |i| {
|
|
l.push(i);
|
|
}
|
|
for range_step(36,30,-2) |i| {
|
|
l.push(i);
|
|
}
|
|
for range_step(max_value - 2, max_value, 2) |i| {
|
|
l.push(i);
|
|
}
|
|
for range_step(max_value - 3, max_value, 2) |i| {
|
|
l.push(i);
|
|
}
|
|
for range_step(min_value + 2, min_value, -2) |i| {
|
|
l.push(i);
|
|
}
|
|
for range_step(min_value + 3, min_value, -2) |i| {
|
|
l.push(i);
|
|
}
|
|
assert_eq!(l, ~[0,1,2,
|
|
13,12,11,
|
|
20,22,24,
|
|
36,34,32,
|
|
max_value-2,
|
|
max_value-3,max_value-1,
|
|
min_value+2,
|
|
min_value+3,min_value+1]);
|
|
|
|
// None of the `fail`s should execute.
|
|
for range(10,0) |_i| {
|
|
fail!(~"unreachable");
|
|
}
|
|
for range_rev(0,10) |_i| {
|
|
fail!(~"unreachable");
|
|
}
|
|
for range_step(10,0,1) |_i| {
|
|
fail!(~"unreachable");
|
|
}
|
|
for range_step(0,10,-1) |_i| {
|
|
fail!(~"unreachable");
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
#[ignore(cfg(windows))]
|
|
fn test_range_step_zero_step() {
|
|
for range_step(0,10,0) |_i| {}
|
|
}
|
|
}
|