rust/src/libcore/num/int-template.rs
Brendan Zabarauskas 024bf2ec72 Rename Natural to Integer
'Natural' normally means 'positive integer' in mathematics. It is therefore strange to implement it on signed integer types. 'Integer' is probably a better choice.
2013-04-25 08:20:00 +10:00

818 lines
22 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use T = self::inst::T;
use from_str::FromStr;
use num::{ToStrRadix, FromStrRadix};
use num::strconv;
use prelude::*;
pub use cmp::{min, max};
pub static bits : uint = inst::bits;
pub static bytes : uint = (inst::bits / 8);
pub static min_value: T = (-1 as T) << (bits - 1);
pub static max_value: T = min_value - 1 as T;
#[inline(always)]
pub fn add(x: T, y: T) -> T { x + y }
#[inline(always)]
pub fn sub(x: T, y: T) -> T { x - y }
#[inline(always)]
pub fn mul(x: T, y: T) -> T { x * y }
#[inline(always)]
pub fn quot(x: T, y: T) -> T { x / y }
/**
* Returns the remainder of y / x.
*
* # Examples
* ~~~
* assert!(int::rem(5 / 2) == 1);
* ~~~
*
* When faced with negative numbers, the result copies the sign of the
* dividend.
*
* ~~~
* assert!(int::rem(2 / -3) == 2);
* ~~~
*
* ~~~
* assert!(int::rem(-2 / 3) == -2);
* ~~~
*
*/
#[inline(always)]
pub fn rem(x: T, y: T) -> T { x % y }
#[inline(always)]
pub fn lt(x: T, y: T) -> bool { x < y }
#[inline(always)]
pub fn le(x: T, y: T) -> bool { x <= y }
#[inline(always)]
pub fn eq(x: T, y: T) -> bool { x == y }
#[inline(always)]
pub fn ne(x: T, y: T) -> bool { x != y }
#[inline(always)]
pub fn ge(x: T, y: T) -> bool { x >= y }
#[inline(always)]
pub fn gt(x: T, y: T) -> bool { x > y }
/**
* Iterate over the range [`lo`..`hi`)
*
* # Arguments
*
* * `lo` - lower bound, inclusive
* * `hi` - higher bound, exclusive
*
* # Examples
* ~~~
* let mut sum = 0;
* for int::range(1, 5) |i| {
* sum += i;
* }
* assert!(sum == 10);
* ~~~
*/
#[inline(always)]
/// Iterate over the range [`start`,`start`+`step`..`stop`)
pub fn range_step(start: T, stop: T, step: T, it: &fn(T) -> bool) {
let mut i = start;
if step == 0 {
fail!(~"range_step called with step == 0");
} else if step > 0 { // ascending
while i < stop {
if !it(i) { break }
// avoiding overflow. break if i + step > max_value
if i > max_value - step { break; }
i += step;
}
} else { // descending
while i > stop {
if !it(i) { break }
// avoiding underflow. break if i + step < min_value
if i < min_value - step { break; }
i += step;
}
}
}
#[inline(always)]
/// Iterate over the range [`lo`..`hi`)
pub fn range(lo: T, hi: T, it: &fn(T) -> bool) {
range_step(lo, hi, 1 as T, it);
}
#[inline(always)]
/// Iterate over the range [`hi`..`lo`)
pub fn range_rev(hi: T, lo: T, it: &fn(T) -> bool) {
range_step(hi, lo, -1 as T, it);
}
/// Computes the bitwise complement
#[inline(always)]
pub fn compl(i: T) -> T {
-1 as T ^ i
}
/// Computes the absolute value
#[inline(always)]
pub fn abs(i: T) -> T { i.abs() }
impl Num for T {}
#[cfg(notest)]
impl Ord for T {
#[inline(always)]
fn lt(&self, other: &T) -> bool { return (*self) < (*other); }
#[inline(always)]
fn le(&self, other: &T) -> bool { return (*self) <= (*other); }
#[inline(always)]
fn ge(&self, other: &T) -> bool { return (*self) >= (*other); }
#[inline(always)]
fn gt(&self, other: &T) -> bool { return (*self) > (*other); }
}
#[cfg(notest)]
impl Eq for T {
#[inline(always)]
fn eq(&self, other: &T) -> bool { return (*self) == (*other); }
#[inline(always)]
fn ne(&self, other: &T) -> bool { return (*self) != (*other); }
}
impl num::Zero for T {
#[inline(always)]
fn zero() -> T { 0 }
}
impl num::One for T {
#[inline(always)]
fn one() -> T { 1 }
}
#[cfg(notest)]
impl Add<T,T> for T {
#[inline(always)]
fn add(&self, other: &T) -> T { *self + *other }
}
#[cfg(notest)]
impl Sub<T,T> for T {
#[inline(always)]
fn sub(&self, other: &T) -> T { *self - *other }
}
#[cfg(notest)]
impl Mul<T,T> for T {
#[inline(always)]
fn mul(&self, other: &T) -> T { *self * *other }
}
#[cfg(stage0,notest)]
impl Div<T,T> for T {
#[inline(always)]
fn div(&self, other: &T) -> T { *self / *other }
}
#[cfg(not(stage0),notest)]
impl Quot<T,T> for T {
/**
* Returns the integer quotient, truncated towards 0. As this behaviour reflects
* the underlying machine implementation it is more efficient than `Natural::div`.
*
* # Examples
*
* ~~~
* assert!( 8 / 3 == 2);
* assert!( 8 / -3 == -2);
* assert!(-8 / 3 == -2);
* assert!(-8 / -3 == 2);
* assert!( 1 / 2 == 0);
* assert!( 1 / -2 == 0);
* assert!(-1 / 2 == 0);
* assert!(-1 / -2 == 0);
* ~~~
*/
#[inline(always)]
fn quot(&self, other: &T) -> T { *self / *other }
}
#[cfg(stage0,notest)]
impl Modulo<T,T> for T {
#[inline(always)]
fn modulo(&self, other: &T) -> T { *self % *other }
}
#[cfg(not(stage0),notest)]
impl Rem<T,T> for T {
/**
* Returns the integer remainder after division, satisfying:
*
* ~~~
* assert!((n / d) * d + (n % d) == n)
* ~~~
*
* # Examples
*
* ~~~
* assert!( 8 % 3 == 2);
* assert!( 8 % -3 == 2);
* assert!(-8 % 3 == -2);
* assert!(-8 % -3 == -2);
* assert!( 1 % 2 == 1);
* assert!( 1 % -2 == 1);
* assert!(-1 % 2 == -1);
* assert!(-1 % -2 == -1);
* ~~~
*/
#[inline(always)]
fn rem(&self, other: &T) -> T { *self % *other }
}
#[cfg(notest)]
impl Neg<T> for T {
#[inline(always)]
fn neg(&self) -> T { -*self }
}
impl Signed for T {
/// Computes the absolute value
#[inline(always)]
fn abs(&self) -> T {
if self.is_negative() { -*self } else { *self }
}
/**
* # Returns
*
* - `0` if the number is zero
* - `1` if the number is positive
* - `-1` if the number is negative
*/
#[inline(always)]
fn signum(&self) -> T {
match *self {
n if n > 0 => 1,
0 => 0,
_ => -1,
}
}
/// Returns true if the number is positive
#[inline(always)]
fn is_positive(&self) -> bool { *self > 0 }
/// Returns true if the number is negative
#[inline(always)]
fn is_negative(&self) -> bool { *self < 0 }
}
impl Integer for T {
/**
* Floored integer division
*
* # Examples
*
* ~~~
* assert!(( 8).div( 3) == 2);
* assert!(( 8).div(-3) == -3);
* assert!((-8).div( 3) == -3);
* assert!((-8).div(-3) == 2);
*
* assert!(( 1).div( 2) == 0);
* assert!(( 1).div(-2) == -1);
* assert!((-1).div( 2) == -1);
* assert!((-1).div(-2) == 0);
* ~~~
*/
#[inline(always)]
fn div(&self, other: T) -> T {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
match self.quot_rem(other) {
(q, r) if (r > 0 && other < 0)
|| (r < 0 && other > 0) => q - 1,
(q, _) => q,
}
}
/**
* Integer modulo, satisfying:
*
* ~~~
* assert!(n.div(d) * d + n.modulo(d) == n)
* ~~~
*
* # Examples
*
* ~~~
* assert!(( 8).modulo( 3) == 2);
* assert!(( 8).modulo(-3) == -1);
* assert!((-8).modulo( 3) == 1);
* assert!((-8).modulo(-3) == -2);
*
* assert!(( 1).modulo( 2) == 1);
* assert!(( 1).modulo(-2) == -1);
* assert!((-1).modulo( 2) == 1);
* assert!((-1).modulo(-2) == -1);
* ~~~
*/
#[inline(always)]
fn modulo(&self, other: T) -> T {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
match *self % other {
r if (r > 0 && other < 0)
|| (r < 0 && other > 0) => r + other,
r => r,
}
}
/// Calculates `div` and `modulo` simultaneously
#[inline(always)]
fn div_mod(&self, other: T) -> (T,T) {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
match self.quot_rem(other) {
(q, r) if (r > 0 && other < 0)
|| (r < 0 && other > 0) => (q - 1, r + other),
(q, r) => (q, r),
}
}
/// Calculates `quot` (`\`) and `rem` (`%`) simultaneously
#[inline(always)]
fn quot_rem(&self, other: T) -> (T,T) {
(*self / other, *self % other)
}
/**
* Calculates the Greatest Common Divisor (GCD) of the number and `other`
*
* The result is always positive
*/
#[inline(always)]
fn gcd(&self, other: T) -> T {
// Use Euclid's algorithm
let mut m = *self, n = other;
while m != 0 {
let temp = m;
m = n % temp;
n = temp;
}
n.abs()
}
/**
* Calculates the Lowest Common Multiple (LCM) of the number and `other`
*/
#[inline(always)]
fn lcm(&self, other: T) -> T {
((*self * other) / self.gcd(other)).abs() // should not have to recaluculate abs
}
/// Returns `true` if the number can be divided by `other` without leaving a remainder
#[inline(always)]
fn divisible_by(&self, other: T) -> bool { *self % other == 0 }
/// Returns `true` if the number is divisible by `2`
#[inline(always)]
fn is_even(&self) -> bool { self.divisible_by(2) }
/// Returns `true` if the number is not divisible by `2`
#[inline(always)]
fn is_odd(&self) -> bool { !self.is_even() }
}
#[cfg(notest)]
impl BitOr<T,T> for T {
#[inline(always)]
fn bitor(&self, other: &T) -> T { *self | *other }
}
#[cfg(notest)]
impl BitAnd<T,T> for T {
#[inline(always)]
fn bitand(&self, other: &T) -> T { *self & *other }
}
#[cfg(notest)]
impl BitXor<T,T> for T {
#[inline(always)]
fn bitxor(&self, other: &T) -> T { *self ^ *other }
}
#[cfg(notest)]
impl Shl<T,T> for T {
#[inline(always)]
fn shl(&self, other: &T) -> T { *self << *other }
}
#[cfg(notest)]
impl Shr<T,T> for T {
#[inline(always)]
fn shr(&self, other: &T) -> T { *self >> *other }
}
#[cfg(notest)]
impl Not<T> for T {
#[inline(always)]
fn not(&self) -> T { !*self }
}
// String conversion functions and impl str -> num
/// Parse a string as a number in base 10.
#[inline(always)]
pub fn from_str(s: &str) -> Option<T> {
strconv::from_str_common(s, 10u, true, false, false,
strconv::ExpNone, false, false)
}
/// Parse a string as a number in the given base.
#[inline(always)]
pub fn from_str_radix(s: &str, radix: uint) -> Option<T> {
strconv::from_str_common(s, radix, true, false, false,
strconv::ExpNone, false, false)
}
/// Parse a byte slice as a number in the given base.
#[inline(always)]
pub fn parse_bytes(buf: &[u8], radix: uint) -> Option<T> {
strconv::from_str_bytes_common(buf, radix, true, false, false,
strconv::ExpNone, false, false)
}
impl FromStr for T {
#[inline(always)]
fn from_str(s: &str) -> Option<T> {
from_str(s)
}
}
impl FromStrRadix for T {
#[inline(always)]
fn from_str_radix(s: &str, radix: uint) -> Option<T> {
from_str_radix(s, radix)
}
}
// String conversion functions and impl num -> str
/// Convert to a string as a byte slice in a given base.
#[inline(always)]
pub fn to_str_bytes<U>(n: T, radix: uint, f: &fn(v: &[u8]) -> U) -> U {
let (buf, _) = strconv::to_str_bytes_common(&n, radix, false,
strconv::SignNeg, strconv::DigAll);
f(buf)
}
/// Convert to a string in base 10.
#[inline(always)]
pub fn to_str(num: T) -> ~str {
let (buf, _) = strconv::to_str_common(&num, 10u, false,
strconv::SignNeg, strconv::DigAll);
buf
}
/// Convert to a string in a given base.
#[inline(always)]
pub fn to_str_radix(num: T, radix: uint) -> ~str {
let (buf, _) = strconv::to_str_common(&num, radix, false,
strconv::SignNeg, strconv::DigAll);
buf
}
impl ToStr for T {
#[inline(always)]
fn to_str(&self) -> ~str {
to_str(*self)
}
}
impl ToStrRadix for T {
#[inline(always)]
fn to_str_radix(&self, radix: uint) -> ~str {
to_str_radix(*self, radix)
}
}
#[cfg(test)]
mod tests {
use super::*;
use super::inst::T;
use prelude::*;
#[test]
fn test_num() {
num::test_num(10 as T, 2 as T);
}
#[test]
pub fn test_signed() {
assert_eq!((1 as T).abs(), 1 as T);
assert_eq!((0 as T).abs(), 0 as T);
assert_eq!((-1 as T).abs(), 1 as T);
assert_eq!((1 as T).signum(), 1 as T);
assert_eq!((0 as T).signum(), 0 as T);
assert_eq!((-0 as T).signum(), 0 as T);
assert_eq!((-1 as T).signum(), -1 as T);
assert!((1 as T).is_positive());
assert!(!(0 as T).is_positive());
assert!(!(-0 as T).is_positive());
assert!(!(-1 as T).is_positive());
assert!(!(1 as T).is_negative());
assert!(!(0 as T).is_negative());
assert!(!(-0 as T).is_negative());
assert!((-1 as T).is_negative());
}
/**
* Checks that the division rule holds for:
*
* - `n`: numerator (dividend)
* - `d`: denominator (divisor)
* - `qr`: quotient and remainder
*/
#[cfg(test)]
fn test_division_rule(nd: (T,T), qr: (T,T)) {
let (n,d) = nd,
(q,r) = qr;
assert_eq!(d * q + r, n);
}
#[test]
fn test_quot_rem() {
fn test_nd_qr(nd: (T,T), qr: (T,T)) {
let (n,d) = nd;
let separate_quot_rem = (n / d, n % d);
let combined_quot_rem = n.quot_rem(d);
assert_eq!(separate_quot_rem, qr);
assert_eq!(combined_quot_rem, qr);
test_division_rule(nd, separate_quot_rem);
test_division_rule(nd, combined_quot_rem);
}
test_nd_qr(( 8, 3), ( 2, 2));
test_nd_qr(( 8, -3), (-2, 2));
test_nd_qr((-8, 3), (-2, -2));
test_nd_qr((-8, -3), ( 2, -2));
test_nd_qr(( 1, 2), ( 0, 1));
test_nd_qr(( 1, -2), ( 0, 1));
test_nd_qr((-1, 2), ( 0, -1));
test_nd_qr((-1, -2), ( 0, -1));
}
#[test]
fn test_div_mod() {
fn test_nd_dm(nd: (T,T), dm: (T,T)) {
let (n,d) = nd;
let separate_div_mod = (n.div(d), n.modulo(d));
let combined_div_mod = n.div_mod(d);
assert_eq!(separate_div_mod, dm);
assert_eq!(combined_div_mod, dm);
test_division_rule(nd, separate_div_mod);
test_division_rule(nd, combined_div_mod);
}
test_nd_dm(( 8, 3), ( 2, 2));
test_nd_dm(( 8, -3), (-3, -1));
test_nd_dm((-8, 3), (-3, 1));
test_nd_dm((-8, -3), ( 2, -2));
test_nd_dm(( 1, 2), ( 0, 1));
test_nd_dm(( 1, -2), (-1, -1));
test_nd_dm((-1, 2), (-1, 1));
test_nd_dm((-1, -2), ( 0, -1));
}
#[test]
fn test_gcd() {
assert_eq!((10 as T).gcd(2), 2 as T);
assert_eq!((10 as T).gcd(3), 1 as T);
assert_eq!((0 as T).gcd(3), 3 as T);
assert_eq!((3 as T).gcd(3), 3 as T);
assert_eq!((56 as T).gcd(42), 14 as T);
assert_eq!((3 as T).gcd(-3), 3 as T);
assert_eq!((-6 as T).gcd(3), 3 as T);
assert_eq!((-4 as T).gcd(-2), 2 as T);
}
#[test]
fn test_lcm() {
assert_eq!((1 as T).lcm(0), 0 as T);
assert_eq!((0 as T).lcm(1), 0 as T);
assert_eq!((1 as T).lcm(1), 1 as T);
assert_eq!((-1 as T).lcm(1), 1 as T);
assert_eq!((1 as T).lcm(-1), 1 as T);
assert_eq!((-1 as T).lcm(-1), 1 as T);
assert_eq!((8 as T).lcm(9), 72 as T);
assert_eq!((11 as T).lcm(5), 55 as T);
}
#[test]
fn test_bitwise_ops() {
assert_eq!(0b1110 as T, (0b1100 as T).bitor(&(0b1010 as T)));
assert_eq!(0b1000 as T, (0b1100 as T).bitand(&(0b1010 as T)));
assert_eq!(0b0110 as T, (0b1100 as T).bitxor(&(0b1010 as T)));
assert_eq!(0b1110 as T, (0b0111 as T).shl(&(1 as T)));
assert_eq!(0b0111 as T, (0b1110 as T).shr(&(1 as T)));
assert_eq!(-(0b11 as T) - (1 as T), (0b11 as T).not());
}
#[test]
fn test_from_str() {
assert_eq!(from_str(~"0"), Some(0 as T));
assert_eq!(from_str(~"3"), Some(3 as T));
assert_eq!(from_str(~"10"), Some(10 as T));
assert_eq!(i32::from_str(~"123456789"), Some(123456789 as i32));
assert_eq!(from_str(~"00100"), Some(100 as T));
assert_eq!(from_str(~"-1"), Some(-1 as T));
assert_eq!(from_str(~"-3"), Some(-3 as T));
assert_eq!(from_str(~"-10"), Some(-10 as T));
assert_eq!(i32::from_str(~"-123456789"), Some(-123456789 as i32));
assert_eq!(from_str(~"-00100"), Some(-100 as T));
assert!(from_str(~" ").is_none());
assert!(from_str(~"x").is_none());
}
#[test]
fn test_parse_bytes() {
use str::to_bytes;
assert_eq!(parse_bytes(to_bytes(~"123"), 10u), Some(123 as T));
assert_eq!(parse_bytes(to_bytes(~"1001"), 2u), Some(9 as T));
assert_eq!(parse_bytes(to_bytes(~"123"), 8u), Some(83 as T));
assert_eq!(i32::parse_bytes(to_bytes(~"123"), 16u), Some(291 as i32));
assert_eq!(i32::parse_bytes(to_bytes(~"ffff"), 16u), Some(65535 as i32));
assert_eq!(i32::parse_bytes(to_bytes(~"FFFF"), 16u), Some(65535 as i32));
assert_eq!(parse_bytes(to_bytes(~"z"), 36u), Some(35 as T));
assert_eq!(parse_bytes(to_bytes(~"Z"), 36u), Some(35 as T));
assert_eq!(parse_bytes(to_bytes(~"-123"), 10u), Some(-123 as T));
assert_eq!(parse_bytes(to_bytes(~"-1001"), 2u), Some(-9 as T));
assert_eq!(parse_bytes(to_bytes(~"-123"), 8u), Some(-83 as T));
assert_eq!(i32::parse_bytes(to_bytes(~"-123"), 16u), Some(-291 as i32));
assert_eq!(i32::parse_bytes(to_bytes(~"-ffff"), 16u), Some(-65535 as i32));
assert_eq!(i32::parse_bytes(to_bytes(~"-FFFF"), 16u), Some(-65535 as i32));
assert_eq!(parse_bytes(to_bytes(~"-z"), 36u), Some(-35 as T));
assert_eq!(parse_bytes(to_bytes(~"-Z"), 36u), Some(-35 as T));
assert!(parse_bytes(to_bytes(~"Z"), 35u).is_none());
assert!(parse_bytes(to_bytes(~"-9"), 2u).is_none());
}
#[test]
fn test_to_str() {
assert_eq!(to_str_radix(0 as T, 10u), ~"0");
assert_eq!(to_str_radix(1 as T, 10u), ~"1");
assert_eq!(to_str_radix(-1 as T, 10u), ~"-1");
assert_eq!(to_str_radix(127 as T, 16u), ~"7f");
assert_eq!(to_str_radix(100 as T, 10u), ~"100");
}
#[test]
fn test_int_to_str_overflow() {
let mut i8_val: i8 = 127_i8;
assert_eq!(i8::to_str(i8_val), ~"127");
i8_val += 1 as i8;
assert_eq!(i8::to_str(i8_val), ~"-128");
let mut i16_val: i16 = 32_767_i16;
assert_eq!(i16::to_str(i16_val), ~"32767");
i16_val += 1 as i16;
assert_eq!(i16::to_str(i16_val), ~"-32768");
let mut i32_val: i32 = 2_147_483_647_i32;
assert_eq!(i32::to_str(i32_val), ~"2147483647");
i32_val += 1 as i32;
assert_eq!(i32::to_str(i32_val), ~"-2147483648");
let mut i64_val: i64 = 9_223_372_036_854_775_807_i64;
assert_eq!(i64::to_str(i64_val), ~"9223372036854775807");
i64_val += 1 as i64;
assert_eq!(i64::to_str(i64_val), ~"-9223372036854775808");
}
#[test]
fn test_int_from_str_overflow() {
let mut i8_val: i8 = 127_i8;
assert_eq!(i8::from_str(~"127"), Some(i8_val));
assert!(i8::from_str(~"128").is_none());
i8_val += 1 as i8;
assert_eq!(i8::from_str(~"-128"), Some(i8_val));
assert!(i8::from_str(~"-129").is_none());
let mut i16_val: i16 = 32_767_i16;
assert_eq!(i16::from_str(~"32767"), Some(i16_val));
assert!(i16::from_str(~"32768").is_none());
i16_val += 1 as i16;
assert_eq!(i16::from_str(~"-32768"), Some(i16_val));
assert!(i16::from_str(~"-32769").is_none());
let mut i32_val: i32 = 2_147_483_647_i32;
assert_eq!(i32::from_str(~"2147483647"), Some(i32_val));
assert!(i32::from_str(~"2147483648").is_none());
i32_val += 1 as i32;
assert_eq!(i32::from_str(~"-2147483648"), Some(i32_val));
assert!(i32::from_str(~"-2147483649").is_none());
let mut i64_val: i64 = 9_223_372_036_854_775_807_i64;
assert_eq!(i64::from_str(~"9223372036854775807"), Some(i64_val));
assert!(i64::from_str(~"9223372036854775808").is_none());
i64_val += 1 as i64;
assert_eq!(i64::from_str(~"-9223372036854775808"), Some(i64_val));
assert!(i64::from_str(~"-9223372036854775809").is_none());
}
#[test]
fn test_ranges() {
let mut l = ~[];
for range(0,3) |i| {
l.push(i);
}
for range_rev(13,10) |i| {
l.push(i);
}
for range_step(20,26,2) |i| {
l.push(i);
}
for range_step(36,30,-2) |i| {
l.push(i);
}
for range_step(max_value - 2, max_value, 2) |i| {
l.push(i);
}
for range_step(max_value - 3, max_value, 2) |i| {
l.push(i);
}
for range_step(min_value + 2, min_value, -2) |i| {
l.push(i);
}
for range_step(min_value + 3, min_value, -2) |i| {
l.push(i);
}
assert_eq!(l, ~[0,1,2,
13,12,11,
20,22,24,
36,34,32,
max_value-2,
max_value-3,max_value-1,
min_value+2,
min_value+3,min_value+1]);
// None of the `fail`s should execute.
for range(10,0) |_i| {
fail!(~"unreachable");
}
for range_rev(0,10) |_i| {
fail!(~"unreachable");
}
for range_step(10,0,1) |_i| {
fail!(~"unreachable");
}
for range_step(0,10,-1) |_i| {
fail!(~"unreachable");
}
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_range_step_zero_step() {
for range_step(0,10,0) |_i| {}
}
}