01ded5898b
We now have a really simple function signature: pub fn from_str_radix_float<T: Float>(src: &str, radix: uint) -> Option<T> By removing some of the arguments, we remove the possibility of some invalid states.
776 lines
24 KiB
Rust
776 lines
24 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Operations and constants for 32-bits floats (`f32` type)
|
|
|
|
#![experimental]
|
|
#![allow(missing_docs)]
|
|
#![allow(unsigned_negation)]
|
|
#![doc(primitive = "f32")]
|
|
|
|
use prelude::*;
|
|
|
|
use from_str::FromStr;
|
|
use intrinsics;
|
|
use libc::c_int;
|
|
use num::strconv;
|
|
use num;
|
|
|
|
pub use core::f32::{RADIX, MANTISSA_DIGITS, DIGITS, EPSILON, MIN_VALUE};
|
|
pub use core::f32::{MIN_POS_VALUE, MAX_VALUE, MIN_EXP, MAX_EXP, MIN_10_EXP};
|
|
pub use core::f32::{MAX_10_EXP, NAN, INFINITY, NEG_INFINITY};
|
|
pub use core::f32::consts;
|
|
|
|
#[allow(dead_code)]
|
|
mod cmath {
|
|
use libc::{c_float, c_int};
|
|
|
|
#[link_name = "m"]
|
|
extern {
|
|
pub fn acosf(n: c_float) -> c_float;
|
|
pub fn asinf(n: c_float) -> c_float;
|
|
pub fn atanf(n: c_float) -> c_float;
|
|
pub fn atan2f(a: c_float, b: c_float) -> c_float;
|
|
pub fn cbrtf(n: c_float) -> c_float;
|
|
pub fn coshf(n: c_float) -> c_float;
|
|
pub fn erff(n: c_float) -> c_float;
|
|
pub fn erfcf(n: c_float) -> c_float;
|
|
pub fn expm1f(n: c_float) -> c_float;
|
|
pub fn fdimf(a: c_float, b: c_float) -> c_float;
|
|
pub fn frexpf(n: c_float, value: &mut c_int) -> c_float;
|
|
pub fn fmaxf(a: c_float, b: c_float) -> c_float;
|
|
pub fn fminf(a: c_float, b: c_float) -> c_float;
|
|
pub fn fmodf(a: c_float, b: c_float) -> c_float;
|
|
pub fn nextafterf(x: c_float, y: c_float) -> c_float;
|
|
pub fn hypotf(x: c_float, y: c_float) -> c_float;
|
|
pub fn ldexpf(x: c_float, n: c_int) -> c_float;
|
|
pub fn logbf(n: c_float) -> c_float;
|
|
pub fn log1pf(n: c_float) -> c_float;
|
|
pub fn ilogbf(n: c_float) -> c_int;
|
|
pub fn modff(n: c_float, iptr: &mut c_float) -> c_float;
|
|
pub fn sinhf(n: c_float) -> c_float;
|
|
pub fn tanf(n: c_float) -> c_float;
|
|
pub fn tanhf(n: c_float) -> c_float;
|
|
pub fn tgammaf(n: c_float) -> c_float;
|
|
|
|
#[cfg(unix)]
|
|
pub fn lgammaf_r(n: c_float, sign: &mut c_int) -> c_float;
|
|
|
|
#[cfg(windows)]
|
|
#[link_name="__lgammaf_r"]
|
|
pub fn lgammaf_r(n: c_float, sign: &mut c_int) -> c_float;
|
|
}
|
|
}
|
|
|
|
impl FloatMath for f32 {
|
|
/// Constructs a floating point number by multiplying `x` by 2 raised to the
|
|
/// power of `exp`
|
|
#[inline]
|
|
fn ldexp(x: f32, exp: int) -> f32 {
|
|
unsafe { cmath::ldexpf(x, exp as c_int) }
|
|
}
|
|
|
|
/// Breaks the number into a normalized fraction and a base-2 exponent,
|
|
/// satisfying:
|
|
///
|
|
/// - `self = x * pow(2, exp)`
|
|
/// - `0.5 <= abs(x) < 1.0`
|
|
#[inline]
|
|
fn frexp(self) -> (f32, int) {
|
|
unsafe {
|
|
let mut exp = 0;
|
|
let x = cmath::frexpf(self, &mut exp);
|
|
(x, exp as int)
|
|
}
|
|
}
|
|
|
|
/// Returns the next representable floating-point value in the direction of
|
|
/// `other`.
|
|
#[inline]
|
|
fn next_after(self, other: f32) -> f32 {
|
|
unsafe { cmath::nextafterf(self, other) }
|
|
}
|
|
|
|
#[inline]
|
|
fn max(self, other: f32) -> f32 {
|
|
unsafe { cmath::fmaxf(self, other) }
|
|
}
|
|
|
|
#[inline]
|
|
fn min(self, other: f32) -> f32 {
|
|
unsafe { cmath::fminf(self, other) }
|
|
}
|
|
|
|
#[inline]
|
|
fn cbrt(self) -> f32 {
|
|
unsafe { cmath::cbrtf(self) }
|
|
}
|
|
|
|
#[inline]
|
|
fn hypot(self, other: f32) -> f32 {
|
|
unsafe { cmath::hypotf(self, other) }
|
|
}
|
|
|
|
#[inline]
|
|
fn sin(self) -> f32 {
|
|
unsafe { intrinsics::sinf32(self) }
|
|
}
|
|
|
|
#[inline]
|
|
fn cos(self) -> f32 {
|
|
unsafe { intrinsics::cosf32(self) }
|
|
}
|
|
|
|
#[inline]
|
|
fn tan(self) -> f32 {
|
|
unsafe { cmath::tanf(self) }
|
|
}
|
|
|
|
#[inline]
|
|
fn asin(self) -> f32 {
|
|
unsafe { cmath::asinf(self) }
|
|
}
|
|
|
|
#[inline]
|
|
fn acos(self) -> f32 {
|
|
unsafe { cmath::acosf(self) }
|
|
}
|
|
|
|
#[inline]
|
|
fn atan(self) -> f32 {
|
|
unsafe { cmath::atanf(self) }
|
|
}
|
|
|
|
#[inline]
|
|
fn atan2(self, other: f32) -> f32 {
|
|
unsafe { cmath::atan2f(self, other) }
|
|
}
|
|
|
|
/// Simultaneously computes the sine and cosine of the number
|
|
#[inline]
|
|
fn sin_cos(self) -> (f32, f32) {
|
|
(self.sin(), self.cos())
|
|
}
|
|
|
|
/// Returns the exponential of the number, minus `1`, in a way that is
|
|
/// accurate even if the number is close to zero
|
|
#[inline]
|
|
fn exp_m1(self) -> f32 {
|
|
unsafe { cmath::expm1f(self) }
|
|
}
|
|
|
|
/// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more
|
|
/// accurately than if the operations were performed separately
|
|
#[inline]
|
|
fn ln_1p(self) -> f32 {
|
|
unsafe { cmath::log1pf(self) }
|
|
}
|
|
|
|
#[inline]
|
|
fn sinh(self) -> f32 {
|
|
unsafe { cmath::sinhf(self) }
|
|
}
|
|
|
|
#[inline]
|
|
fn cosh(self) -> f32 {
|
|
unsafe { cmath::coshf(self) }
|
|
}
|
|
|
|
#[inline]
|
|
fn tanh(self) -> f32 {
|
|
unsafe { cmath::tanhf(self) }
|
|
}
|
|
|
|
/// Inverse hyperbolic sine
|
|
///
|
|
/// # Returns
|
|
///
|
|
/// - on success, the inverse hyperbolic sine of `self` will be returned
|
|
/// - `self` if `self` is `0.0`, `-0.0`, `INFINITY`, or `NEG_INFINITY`
|
|
/// - `NAN` if `self` is `NAN`
|
|
#[inline]
|
|
fn asinh(self) -> f32 {
|
|
match self {
|
|
NEG_INFINITY => NEG_INFINITY,
|
|
x => (x + ((x * x) + 1.0).sqrt()).ln(),
|
|
}
|
|
}
|
|
|
|
/// Inverse hyperbolic cosine
|
|
///
|
|
/// # Returns
|
|
///
|
|
/// - on success, the inverse hyperbolic cosine of `self` will be returned
|
|
/// - `INFINITY` if `self` is `INFINITY`
|
|
/// - `NAN` if `self` is `NAN` or `self < 1.0` (including `NEG_INFINITY`)
|
|
#[inline]
|
|
fn acosh(self) -> f32 {
|
|
match self {
|
|
x if x < 1.0 => Float::nan(),
|
|
x => (x + ((x * x) - 1.0).sqrt()).ln(),
|
|
}
|
|
}
|
|
|
|
/// Inverse hyperbolic tangent
|
|
///
|
|
/// # Returns
|
|
///
|
|
/// - on success, the inverse hyperbolic tangent of `self` will be returned
|
|
/// - `self` if `self` is `0.0` or `-0.0`
|
|
/// - `INFINITY` if `self` is `1.0`
|
|
/// - `NEG_INFINITY` if `self` is `-1.0`
|
|
/// - `NAN` if the `self` is `NAN` or outside the domain of `-1.0 <= self <= 1.0`
|
|
/// (including `INFINITY` and `NEG_INFINITY`)
|
|
#[inline]
|
|
fn atanh(self) -> f32 {
|
|
0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
|
|
}
|
|
}
|
|
|
|
//
|
|
// Section: String Conversions
|
|
//
|
|
|
|
/// Converts a float to a string
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
#[inline]
|
|
pub fn to_string(num: f32) -> String {
|
|
let (r, _) = strconv::float_to_str_common(
|
|
num, 10u, true, strconv::SignNeg, strconv::DigAll, strconv::ExpNone, false);
|
|
r
|
|
}
|
|
|
|
/// Converts a float to a string in hexadecimal format
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
#[inline]
|
|
pub fn to_str_hex(num: f32) -> String {
|
|
let (r, _) = strconv::float_to_str_common(
|
|
num, 16u, true, strconv::SignNeg, strconv::DigAll, strconv::ExpNone, false);
|
|
r
|
|
}
|
|
|
|
/// Converts a float to a string in a given radix, and a flag indicating
|
|
/// whether it's a special value
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
/// * radix - The base to use
|
|
#[inline]
|
|
pub fn to_str_radix_special(num: f32, rdx: uint) -> (String, bool) {
|
|
strconv::float_to_str_common(num, rdx, true,
|
|
strconv::SignNeg, strconv::DigAll, strconv::ExpNone, false)
|
|
}
|
|
|
|
/// Converts a float to a string with exactly the number of
|
|
/// provided significant digits
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
/// * digits - The number of significant digits
|
|
#[inline]
|
|
pub fn to_str_exact(num: f32, dig: uint) -> String {
|
|
let (r, _) = strconv::float_to_str_common(
|
|
num, 10u, true, strconv::SignNeg, strconv::DigExact(dig), strconv::ExpNone, false);
|
|
r
|
|
}
|
|
|
|
/// Converts a float to a string with a maximum number of
|
|
/// significant digits
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
/// * digits - The number of significant digits
|
|
#[inline]
|
|
pub fn to_str_digits(num: f32, dig: uint) -> String {
|
|
let (r, _) = strconv::float_to_str_common(
|
|
num, 10u, true, strconv::SignNeg, strconv::DigMax(dig), strconv::ExpNone, false);
|
|
r
|
|
}
|
|
|
|
/// Converts a float to a string using the exponential notation with exactly the number of
|
|
/// provided digits after the decimal point in the significand
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
/// * digits - The number of digits after the decimal point
|
|
/// * upper - Use `E` instead of `e` for the exponent sign
|
|
#[inline]
|
|
pub fn to_str_exp_exact(num: f32, dig: uint, upper: bool) -> String {
|
|
let (r, _) = strconv::float_to_str_common(
|
|
num, 10u, true, strconv::SignNeg, strconv::DigExact(dig), strconv::ExpDec, upper);
|
|
r
|
|
}
|
|
|
|
/// Converts a float to a string using the exponential notation with the maximum number of
|
|
/// digits after the decimal point in the significand
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
/// * digits - The number of digits after the decimal point
|
|
/// * upper - Use `E` instead of `e` for the exponent sign
|
|
#[inline]
|
|
pub fn to_str_exp_digits(num: f32, dig: uint, upper: bool) -> String {
|
|
let (r, _) = strconv::float_to_str_common(
|
|
num, 10u, true, strconv::SignNeg, strconv::DigMax(dig), strconv::ExpDec, upper);
|
|
r
|
|
}
|
|
|
|
/// Convert a string in base 16 to a float.
|
|
/// Accepts an optional binary exponent.
|
|
///
|
|
/// This function accepts strings such as
|
|
///
|
|
/// * 'a4.fe'
|
|
/// * '+a4.fe', equivalent to 'a4.fe'
|
|
/// * '-a4.fe'
|
|
/// * '2b.aP128', or equivalently, '2b.ap128'
|
|
/// * '2b.aP-128'
|
|
/// * '.' (understood as 0)
|
|
/// * 'c.'
|
|
/// * '.c', or, equivalently, '0.c'
|
|
/// * '+inf', 'inf', '-inf', 'NaN'
|
|
///
|
|
/// Leading and trailing whitespace represent an error.
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - A string
|
|
///
|
|
/// # Return value
|
|
///
|
|
/// `None` if the string did not represent a valid number. Otherwise,
|
|
/// `Some(n)` where `n` is the floating-point number represented by `[num]`.
|
|
#[inline]
|
|
pub fn from_str_hex(src: &str) -> Option<f32> {
|
|
strconv::from_str_radix_float(src, 16u)
|
|
}
|
|
|
|
impl FromStr for f32 {
|
|
/// Convert a string in base 10 to a float.
|
|
/// Accepts an optional decimal exponent.
|
|
///
|
|
/// This function accepts strings such as
|
|
///
|
|
/// * '3.14'
|
|
/// * '+3.14', equivalent to '3.14'
|
|
/// * '-3.14'
|
|
/// * '2.5E10', or equivalently, '2.5e10'
|
|
/// * '2.5E-10'
|
|
/// * '.' (understood as 0)
|
|
/// * '5.'
|
|
/// * '.5', or, equivalently, '0.5'
|
|
/// * '+inf', 'inf', '-inf', 'NaN'
|
|
///
|
|
/// Leading and trailing whitespace represent an error.
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - A string
|
|
///
|
|
/// # Return value
|
|
///
|
|
/// `None` if the string did not represent a valid number. Otherwise,
|
|
/// `Some(n)` where `n` is the floating-point number represented by `num`.
|
|
#[inline]
|
|
fn from_str(src: &str) -> Option<f32> {
|
|
strconv::from_str_radix_float(src, 10u)
|
|
}
|
|
}
|
|
|
|
impl num::FromStrRadix for f32 {
|
|
/// Convert a string in a given base to a float.
|
|
///
|
|
/// Due to possible conflicts, this function does **not** accept
|
|
/// the special values `inf`, `-inf`, `+inf` and `NaN`, **nor**
|
|
/// does it recognize exponents of any kind.
|
|
///
|
|
/// Leading and trailing whitespace represent an error.
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - A string
|
|
/// * radix - The base to use. Must lie in the range [2 .. 36]
|
|
///
|
|
/// # Return value
|
|
///
|
|
/// `None` if the string did not represent a valid number. Otherwise,
|
|
/// `Some(n)` where `n` is the floating-point number represented by `num`.
|
|
#[inline]
|
|
fn from_str_radix(src: &str, radix: uint) -> Option<f32> {
|
|
strconv::from_str_radix_float(src, radix)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use f32::*;
|
|
use num::*;
|
|
use num;
|
|
|
|
#[test]
|
|
fn test_min_nan() {
|
|
assert_eq!(NAN.min(2.0), 2.0);
|
|
assert_eq!(2.0f32.min(NAN), 2.0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_max_nan() {
|
|
assert_eq!(NAN.max(2.0), 2.0);
|
|
assert_eq!(2.0f32.max(NAN), 2.0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_num() {
|
|
num::test_num(10f32, 2f32);
|
|
}
|
|
|
|
#[test]
|
|
fn test_floor() {
|
|
assert_approx_eq!(1.0f32.floor(), 1.0f32);
|
|
assert_approx_eq!(1.3f32.floor(), 1.0f32);
|
|
assert_approx_eq!(1.5f32.floor(), 1.0f32);
|
|
assert_approx_eq!(1.7f32.floor(), 1.0f32);
|
|
assert_approx_eq!(0.0f32.floor(), 0.0f32);
|
|
assert_approx_eq!((-0.0f32).floor(), -0.0f32);
|
|
assert_approx_eq!((-1.0f32).floor(), -1.0f32);
|
|
assert_approx_eq!((-1.3f32).floor(), -2.0f32);
|
|
assert_approx_eq!((-1.5f32).floor(), -2.0f32);
|
|
assert_approx_eq!((-1.7f32).floor(), -2.0f32);
|
|
}
|
|
|
|
#[test]
|
|
fn test_ceil() {
|
|
assert_approx_eq!(1.0f32.ceil(), 1.0f32);
|
|
assert_approx_eq!(1.3f32.ceil(), 2.0f32);
|
|
assert_approx_eq!(1.5f32.ceil(), 2.0f32);
|
|
assert_approx_eq!(1.7f32.ceil(), 2.0f32);
|
|
assert_approx_eq!(0.0f32.ceil(), 0.0f32);
|
|
assert_approx_eq!((-0.0f32).ceil(), -0.0f32);
|
|
assert_approx_eq!((-1.0f32).ceil(), -1.0f32);
|
|
assert_approx_eq!((-1.3f32).ceil(), -1.0f32);
|
|
assert_approx_eq!((-1.5f32).ceil(), -1.0f32);
|
|
assert_approx_eq!((-1.7f32).ceil(), -1.0f32);
|
|
}
|
|
|
|
#[test]
|
|
fn test_round() {
|
|
assert_approx_eq!(1.0f32.round(), 1.0f32);
|
|
assert_approx_eq!(1.3f32.round(), 1.0f32);
|
|
assert_approx_eq!(1.5f32.round(), 2.0f32);
|
|
assert_approx_eq!(1.7f32.round(), 2.0f32);
|
|
assert_approx_eq!(0.0f32.round(), 0.0f32);
|
|
assert_approx_eq!((-0.0f32).round(), -0.0f32);
|
|
assert_approx_eq!((-1.0f32).round(), -1.0f32);
|
|
assert_approx_eq!((-1.3f32).round(), -1.0f32);
|
|
assert_approx_eq!((-1.5f32).round(), -2.0f32);
|
|
assert_approx_eq!((-1.7f32).round(), -2.0f32);
|
|
}
|
|
|
|
#[test]
|
|
fn test_trunc() {
|
|
assert_approx_eq!(1.0f32.trunc(), 1.0f32);
|
|
assert_approx_eq!(1.3f32.trunc(), 1.0f32);
|
|
assert_approx_eq!(1.5f32.trunc(), 1.0f32);
|
|
assert_approx_eq!(1.7f32.trunc(), 1.0f32);
|
|
assert_approx_eq!(0.0f32.trunc(), 0.0f32);
|
|
assert_approx_eq!((-0.0f32).trunc(), -0.0f32);
|
|
assert_approx_eq!((-1.0f32).trunc(), -1.0f32);
|
|
assert_approx_eq!((-1.3f32).trunc(), -1.0f32);
|
|
assert_approx_eq!((-1.5f32).trunc(), -1.0f32);
|
|
assert_approx_eq!((-1.7f32).trunc(), -1.0f32);
|
|
}
|
|
|
|
#[test]
|
|
fn test_fract() {
|
|
assert_approx_eq!(1.0f32.fract(), 0.0f32);
|
|
assert_approx_eq!(1.3f32.fract(), 0.3f32);
|
|
assert_approx_eq!(1.5f32.fract(), 0.5f32);
|
|
assert_approx_eq!(1.7f32.fract(), 0.7f32);
|
|
assert_approx_eq!(0.0f32.fract(), 0.0f32);
|
|
assert_approx_eq!((-0.0f32).fract(), -0.0f32);
|
|
assert_approx_eq!((-1.0f32).fract(), -0.0f32);
|
|
assert_approx_eq!((-1.3f32).fract(), -0.3f32);
|
|
assert_approx_eq!((-1.5f32).fract(), -0.5f32);
|
|
assert_approx_eq!((-1.7f32).fract(), -0.7f32);
|
|
}
|
|
|
|
#[test]
|
|
fn test_asinh() {
|
|
assert_eq!(0.0f32.asinh(), 0.0f32);
|
|
assert_eq!((-0.0f32).asinh(), -0.0f32);
|
|
|
|
let inf: f32 = Float::infinity();
|
|
let neg_inf: f32 = Float::neg_infinity();
|
|
let nan: f32 = Float::nan();
|
|
assert_eq!(inf.asinh(), inf);
|
|
assert_eq!(neg_inf.asinh(), neg_inf);
|
|
assert!(nan.asinh().is_nan());
|
|
assert_approx_eq!(2.0f32.asinh(), 1.443635475178810342493276740273105f32);
|
|
assert_approx_eq!((-2.0f32).asinh(), -1.443635475178810342493276740273105f32);
|
|
}
|
|
|
|
#[test]
|
|
fn test_acosh() {
|
|
assert_eq!(1.0f32.acosh(), 0.0f32);
|
|
assert!(0.999f32.acosh().is_nan());
|
|
|
|
let inf: f32 = Float::infinity();
|
|
let neg_inf: f32 = Float::neg_infinity();
|
|
let nan: f32 = Float::nan();
|
|
assert_eq!(inf.acosh(), inf);
|
|
assert!(neg_inf.acosh().is_nan());
|
|
assert!(nan.acosh().is_nan());
|
|
assert_approx_eq!(2.0f32.acosh(), 1.31695789692481670862504634730796844f32);
|
|
assert_approx_eq!(3.0f32.acosh(), 1.76274717403908605046521864995958461f32);
|
|
}
|
|
|
|
#[test]
|
|
fn test_atanh() {
|
|
assert_eq!(0.0f32.atanh(), 0.0f32);
|
|
assert_eq!((-0.0f32).atanh(), -0.0f32);
|
|
|
|
let inf32: f32 = Float::infinity();
|
|
let neg_inf32: f32 = Float::neg_infinity();
|
|
assert_eq!(1.0f32.atanh(), inf32);
|
|
assert_eq!((-1.0f32).atanh(), neg_inf32);
|
|
|
|
assert!(2f64.atanh().atanh().is_nan());
|
|
assert!((-2f64).atanh().atanh().is_nan());
|
|
|
|
let inf64: f32 = Float::infinity();
|
|
let neg_inf64: f32 = Float::neg_infinity();
|
|
let nan32: f32 = Float::nan();
|
|
assert!(inf64.atanh().is_nan());
|
|
assert!(neg_inf64.atanh().is_nan());
|
|
assert!(nan32.atanh().is_nan());
|
|
|
|
assert_approx_eq!(0.5f32.atanh(), 0.54930614433405484569762261846126285f32);
|
|
assert_approx_eq!((-0.5f32).atanh(), -0.54930614433405484569762261846126285f32);
|
|
}
|
|
|
|
#[test]
|
|
fn test_real_consts() {
|
|
let pi: f32 = Float::pi();
|
|
let two_pi: f32 = Float::two_pi();
|
|
let frac_pi_2: f32 = Float::frac_pi_2();
|
|
let frac_pi_3: f32 = Float::frac_pi_3();
|
|
let frac_pi_4: f32 = Float::frac_pi_4();
|
|
let frac_pi_6: f32 = Float::frac_pi_6();
|
|
let frac_pi_8: f32 = Float::frac_pi_8();
|
|
let frac_1_pi: f32 = Float::frac_1_pi();
|
|
let frac_2_pi: f32 = Float::frac_2_pi();
|
|
let frac_2_sqrtpi: f32 = Float::frac_2_sqrtpi();
|
|
let sqrt2: f32 = Float::sqrt2();
|
|
let frac_1_sqrt2: f32 = Float::frac_1_sqrt2();
|
|
let e: f32 = Float::e();
|
|
let log2_e: f32 = Float::log2_e();
|
|
let log10_e: f32 = Float::log10_e();
|
|
let ln_2: f32 = Float::ln_2();
|
|
let ln_10: f32 = Float::ln_10();
|
|
|
|
assert_approx_eq!(two_pi, 2f32 * pi);
|
|
assert_approx_eq!(frac_pi_2, pi / 2f32);
|
|
assert_approx_eq!(frac_pi_3, pi / 3f32);
|
|
assert_approx_eq!(frac_pi_4, pi / 4f32);
|
|
assert_approx_eq!(frac_pi_6, pi / 6f32);
|
|
assert_approx_eq!(frac_pi_8, pi / 8f32);
|
|
assert_approx_eq!(frac_1_pi, 1f32 / pi);
|
|
assert_approx_eq!(frac_2_pi, 2f32 / pi);
|
|
assert_approx_eq!(frac_2_sqrtpi, 2f32 / pi.sqrt());
|
|
assert_approx_eq!(sqrt2, 2f32.sqrt());
|
|
assert_approx_eq!(frac_1_sqrt2, 1f32 / 2f32.sqrt());
|
|
assert_approx_eq!(log2_e, e.log2());
|
|
assert_approx_eq!(log10_e, e.log10());
|
|
assert_approx_eq!(ln_2, 2f32.ln());
|
|
assert_approx_eq!(ln_10, 10f32.ln());
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_abs() {
|
|
assert_eq!(INFINITY.abs(), INFINITY);
|
|
assert_eq!(1f32.abs(), 1f32);
|
|
assert_eq!(0f32.abs(), 0f32);
|
|
assert_eq!((-0f32).abs(), 0f32);
|
|
assert_eq!((-1f32).abs(), 1f32);
|
|
assert_eq!(NEG_INFINITY.abs(), INFINITY);
|
|
assert_eq!((1f32/NEG_INFINITY).abs(), 0f32);
|
|
assert!(NAN.abs().is_nan());
|
|
}
|
|
|
|
#[test]
|
|
fn test_abs_sub() {
|
|
assert_eq!((-1f32).abs_sub(&1f32), 0f32);
|
|
assert_eq!(1f32.abs_sub(&1f32), 0f32);
|
|
assert_eq!(1f32.abs_sub(&0f32), 1f32);
|
|
assert_eq!(1f32.abs_sub(&-1f32), 2f32);
|
|
assert_eq!(NEG_INFINITY.abs_sub(&0f32), 0f32);
|
|
assert_eq!(INFINITY.abs_sub(&1f32), INFINITY);
|
|
assert_eq!(0f32.abs_sub(&NEG_INFINITY), INFINITY);
|
|
assert_eq!(0f32.abs_sub(&INFINITY), 0f32);
|
|
}
|
|
|
|
#[test]
|
|
fn test_abs_sub_nowin() {
|
|
assert!(NAN.abs_sub(&-1f32).is_nan());
|
|
assert!(1f32.abs_sub(&NAN).is_nan());
|
|
}
|
|
|
|
#[test]
|
|
fn test_signum() {
|
|
assert_eq!(INFINITY.signum(), 1f32);
|
|
assert_eq!(1f32.signum(), 1f32);
|
|
assert_eq!(0f32.signum(), 1f32);
|
|
assert_eq!((-0f32).signum(), -1f32);
|
|
assert_eq!((-1f32).signum(), -1f32);
|
|
assert_eq!(NEG_INFINITY.signum(), -1f32);
|
|
assert_eq!((1f32/NEG_INFINITY).signum(), -1f32);
|
|
assert!(NAN.signum().is_nan());
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_positive() {
|
|
assert!(INFINITY.is_positive());
|
|
assert!(1f32.is_positive());
|
|
assert!(0f32.is_positive());
|
|
assert!(!(-0f32).is_positive());
|
|
assert!(!(-1f32).is_positive());
|
|
assert!(!NEG_INFINITY.is_positive());
|
|
assert!(!(1f32/NEG_INFINITY).is_positive());
|
|
assert!(!NAN.is_positive());
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_negative() {
|
|
assert!(!INFINITY.is_negative());
|
|
assert!(!1f32.is_negative());
|
|
assert!(!0f32.is_negative());
|
|
assert!((-0f32).is_negative());
|
|
assert!((-1f32).is_negative());
|
|
assert!(NEG_INFINITY.is_negative());
|
|
assert!((1f32/NEG_INFINITY).is_negative());
|
|
assert!(!NAN.is_negative());
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_normal() {
|
|
let nan: f32 = Float::nan();
|
|
let inf: f32 = Float::infinity();
|
|
let neg_inf: f32 = Float::neg_infinity();
|
|
let zero: f32 = Zero::zero();
|
|
let neg_zero: f32 = Float::neg_zero();
|
|
assert!(!nan.is_normal());
|
|
assert!(!inf.is_normal());
|
|
assert!(!neg_inf.is_normal());
|
|
assert!(!zero.is_normal());
|
|
assert!(!neg_zero.is_normal());
|
|
assert!(1f32.is_normal());
|
|
assert!(1e-37f32.is_normal());
|
|
assert!(!1e-38f32.is_normal());
|
|
}
|
|
|
|
#[test]
|
|
fn test_classify() {
|
|
let nan: f32 = Float::nan();
|
|
let inf: f32 = Float::infinity();
|
|
let neg_inf: f32 = Float::neg_infinity();
|
|
let zero: f32 = Zero::zero();
|
|
let neg_zero: f32 = Float::neg_zero();
|
|
assert_eq!(nan.classify(), FPNaN);
|
|
assert_eq!(inf.classify(), FPInfinite);
|
|
assert_eq!(neg_inf.classify(), FPInfinite);
|
|
assert_eq!(zero.classify(), FPZero);
|
|
assert_eq!(neg_zero.classify(), FPZero);
|
|
assert_eq!(1f32.classify(), FPNormal);
|
|
assert_eq!(1e-37f32.classify(), FPNormal);
|
|
assert_eq!(1e-38f32.classify(), FPSubnormal);
|
|
}
|
|
|
|
#[test]
|
|
fn test_ldexp() {
|
|
// We have to use from_str until base-2 exponents
|
|
// are supported in floating-point literals
|
|
let f1: f32 = from_str_hex("1p-123").unwrap();
|
|
let f2: f32 = from_str_hex("1p-111").unwrap();
|
|
assert_eq!(FloatMath::ldexp(1f32, -123), f1);
|
|
assert_eq!(FloatMath::ldexp(1f32, -111), f2);
|
|
|
|
assert_eq!(FloatMath::ldexp(0f32, -123), 0f32);
|
|
assert_eq!(FloatMath::ldexp(-0f32, -123), -0f32);
|
|
|
|
let inf: f32 = Float::infinity();
|
|
let neg_inf: f32 = Float::neg_infinity();
|
|
let nan: f32 = Float::nan();
|
|
assert_eq!(FloatMath::ldexp(inf, -123), inf);
|
|
assert_eq!(FloatMath::ldexp(neg_inf, -123), neg_inf);
|
|
assert!(FloatMath::ldexp(nan, -123).is_nan());
|
|
}
|
|
|
|
#[test]
|
|
fn test_frexp() {
|
|
// We have to use from_str until base-2 exponents
|
|
// are supported in floating-point literals
|
|
let f1: f32 = from_str_hex("1p-123").unwrap();
|
|
let f2: f32 = from_str_hex("1p-111").unwrap();
|
|
let (x1, exp1) = f1.frexp();
|
|
let (x2, exp2) = f2.frexp();
|
|
assert_eq!((x1, exp1), (0.5f32, -122));
|
|
assert_eq!((x2, exp2), (0.5f32, -110));
|
|
assert_eq!(FloatMath::ldexp(x1, exp1), f1);
|
|
assert_eq!(FloatMath::ldexp(x2, exp2), f2);
|
|
|
|
assert_eq!(0f32.frexp(), (0f32, 0));
|
|
assert_eq!((-0f32).frexp(), (-0f32, 0));
|
|
}
|
|
|
|
#[test] #[cfg_attr(windows, ignore)] // FIXME #8755
|
|
fn test_frexp_nowin() {
|
|
let inf: f32 = Float::infinity();
|
|
let neg_inf: f32 = Float::neg_infinity();
|
|
let nan: f32 = Float::nan();
|
|
assert_eq!(match inf.frexp() { (x, _) => x }, inf)
|
|
assert_eq!(match neg_inf.frexp() { (x, _) => x }, neg_inf)
|
|
assert!(match nan.frexp() { (x, _) => x.is_nan() })
|
|
}
|
|
|
|
#[test]
|
|
fn test_integer_decode() {
|
|
assert_eq!(3.14159265359f32.integer_decode(), (13176795u64, -22i16, 1i8));
|
|
assert_eq!((-8573.5918555f32).integer_decode(), (8779358u64, -10i16, -1i8));
|
|
assert_eq!(2f32.powf(100.0).integer_decode(), (8388608u64, 77i16, 1i8));
|
|
assert_eq!(0f32.integer_decode(), (0u64, -150i16, 1i8));
|
|
assert_eq!((-0f32).integer_decode(), (0u64, -150i16, -1i8));
|
|
assert_eq!(INFINITY.integer_decode(), (8388608u64, 105i16, 1i8));
|
|
assert_eq!(NEG_INFINITY.integer_decode(), (8388608u64, 105i16, -1i8));
|
|
assert_eq!(NAN.integer_decode(), (12582912u64, 105i16, 1i8));
|
|
}
|
|
|
|
#[test]
|
|
fn test_sqrt_domain() {
|
|
assert!(NAN.sqrt().is_nan());
|
|
assert!(NEG_INFINITY.sqrt().is_nan());
|
|
assert!((-1.0f32).sqrt().is_nan());
|
|
assert_eq!((-0.0f32).sqrt(), -0.0);
|
|
assert_eq!(0.0f32.sqrt(), 0.0);
|
|
assert_eq!(1.0f32.sqrt(), 1.0);
|
|
assert_eq!(INFINITY.sqrt(), INFINITY);
|
|
}
|
|
}
|