rust/src/base.rs

950 lines
36 KiB
Rust

use crate::prelude::*;
struct PrintOnPanic(String);
impl Drop for PrintOnPanic {
fn drop(&mut self) {
if ::std::thread::panicking() {
println!("{}", self.0);
}
}
}
pub fn trans_mono_item<'a, 'tcx: 'a>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
module: &mut Module<impl Backend>,
caches: &mut Caches,
ccx: &mut crate::constant::ConstantCx,
mono_item: MonoItem<'tcx>,
) {
match mono_item {
MonoItem::Fn(inst) => {
let _print_guard = PrintOnPanic(format!("{:?}", inst));
let mir = match inst.def {
InstanceDef::Item(_) | InstanceDef::DropGlue(_, _) | InstanceDef::Virtual(_, _) => {
let mut mir = ::std::io::Cursor::new(Vec::new());
::rustc_mir::util::write_mir_pretty(tcx, Some(inst.def_id()), &mut mir)
.unwrap();
mir.into_inner()
}
InstanceDef::FnPtrShim(_, _)
| InstanceDef::ClosureOnceShim { .. }
| InstanceDef::CloneShim(_, _) => {
// FIXME fix write_mir_pretty for these instances
format!("{:#?}", tcx.instance_mir(inst.def)).into_bytes()
}
InstanceDef::Intrinsic(_) => bug!("tried to codegen intrinsic"),
};
let mir_file_name =
"target/out/mir/".to_string() + &format!("{:?}", inst.def_id()).replace('/', "@");
::std::fs::write(mir_file_name, mir).unwrap();
trans_fn(tcx, module, ccx, caches, inst);
}
MonoItem::Static(def_id) => {
crate::constant::codegen_static(ccx, def_id);
}
MonoItem::GlobalAsm(node_id) => tcx
.sess
.fatal(&format!("Unimplemented global asm mono item {:?}", node_id)),
}
}
fn trans_fn<'a, 'tcx: 'a>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
module: &mut Module<impl Backend>,
constants: &mut crate::constant::ConstantCx,
caches: &mut Caches,
instance: Instance<'tcx>,
) {
// Step 1. Get mir
let mir = tcx.instance_mir(instance.def);
// Step 2. Declare function
let (name, sig) = get_function_name_and_sig(tcx, instance);
let func_id = module
.declare_function(&name, Linkage::Export, &sig)
.unwrap();
// Step 3. Make FunctionBuilder
let mut func = Function::with_name_signature(ExternalName::user(0, 0), sig);
let mut func_ctx = FunctionBuilderContext::new();
let mut bcx: FunctionBuilder = FunctionBuilder::new(&mut func, &mut func_ctx);
// Step 4. Predefine ebb's
let start_ebb = bcx.create_ebb();
let mut ebb_map: HashMap<BasicBlock, Ebb> = HashMap::new();
for (bb, _bb_data) in mir.basic_blocks().iter_enumerated() {
ebb_map.insert(bb, bcx.create_ebb());
}
// Step 5. Make FunctionCx
let mut fx = FunctionCx {
tcx,
module,
instance,
mir,
bcx,
param_substs: {
assert!(!instance.substs.needs_infer());
instance.substs
},
ebb_map,
local_map: HashMap::new(),
comments: HashMap::new(),
constants,
caches,
top_nop: None,
};
// Step 6. Codegen function
crate::abi::codegen_fn_prelude(&mut fx, start_ebb);
codegen_fn_content(&mut fx);
fx.bcx.seal_all_blocks();
fx.bcx.finalize();
// Step 7. Print function to terminal for debugging
let mut writer = crate::pretty_clif::CommentWriter(fx.comments);
let mut cton = String::new();
::cranelift::codegen::write::decorate_function(&mut writer, &mut cton, &func, None).unwrap();
let clif_file_name = "target/out/clif/".to_string() + &tcx.symbol_name(instance).as_str();
::std::fs::write(clif_file_name, cton.as_bytes()).unwrap();
// Step 8. Verify function
verify_func(tcx, writer, &func);
// Step 9. Define function
// TODO: cranelift doesn't yet support some of the things needed
if should_codegen(tcx.sess) {
caches.context.func = func;
module
.define_function(func_id, &mut caches.context)
.unwrap();
caches.context.clear();
}
}
fn verify_func(tcx: TyCtxt, writer: crate::pretty_clif::CommentWriter, func: &Function) {
let flags = settings::Flags::new(settings::builder());
match ::cranelift::codegen::verify_function(&func, &flags) {
Ok(_) => {}
Err(err) => {
tcx.sess.err(&format!("{:?}", err));
let pretty_error = ::cranelift::codegen::print_errors::pretty_verifier_error(
&func,
None,
Some(Box::new(writer)),
err,
);
tcx.sess
.fatal(&format!("cretonne verify error:\n{}", pretty_error));
}
}
}
fn codegen_fn_content<'a, 'tcx: 'a>(fx: &mut FunctionCx<'a, 'tcx, impl Backend>) {
for (bb, bb_data) in fx.mir.basic_blocks().iter_enumerated() {
let ebb = fx.get_ebb(bb);
fx.bcx.switch_to_block(ebb);
fx.bcx.ins().nop();
for stmt in &bb_data.statements {
trans_stmt(fx, ebb, stmt);
}
let mut terminator_head = "\n".to_string();
bb_data
.terminator()
.kind
.fmt_head(&mut terminator_head)
.unwrap();
let inst = fx.bcx.func.layout.last_inst(ebb).unwrap();
fx.add_comment(inst, terminator_head);
match &bb_data.terminator().kind {
TerminatorKind::Goto { target } => {
let ebb = fx.get_ebb(*target);
fx.bcx.ins().jump(ebb, &[]);
}
TerminatorKind::Return => {
crate::abi::codegen_return(fx);
}
TerminatorKind::Assert {
cond,
expected,
msg: _,
target,
cleanup: _,
} => {
let cond = trans_operand(fx, cond).load_value(fx);
// TODO HACK brz/brnz for i8/i16 is not yet implemented
let cond = fx.bcx.ins().uextend(types::I32, cond);
let target = fx.get_ebb(*target);
if *expected {
fx.bcx.ins().brnz(cond, target, &[]);
} else {
fx.bcx.ins().brz(cond, target, &[]);
};
fx.bcx.ins().trap(TrapCode::User(!0));
}
TerminatorKind::SwitchInt {
discr,
switch_ty: _,
values,
targets,
} => {
// TODO: prevent panics on large and negative disciminants
if should_codegen(fx.tcx.sess) {
let discr = trans_operand(fx, discr).load_value(fx);
let mut jt_data = JumpTableData::new();
for (i, value) in values.iter().enumerate() {
let ebb = fx.get_ebb(targets[i]);
jt_data.set_entry(*value as usize, ebb);
}
let jump_table = fx.bcx.create_jump_table(jt_data);
fx.bcx.ins().br_table(discr, jump_table);
let otherwise_ebb = fx.get_ebb(targets[targets.len() - 1]);
fx.bcx.ins().jump(otherwise_ebb, &[]);
} else {
fx.bcx.ins().trap(TrapCode::User(0));
}
}
TerminatorKind::Call {
func,
args,
destination,
cleanup: _,
} => {
crate::abi::codegen_call(fx, func, args, destination);
}
TerminatorKind::Resume | TerminatorKind::Abort | TerminatorKind::Unreachable => {
fx.bcx.ins().trap(TrapCode::User(!0));
}
TerminatorKind::Yield { .. }
| TerminatorKind::FalseEdges { .. }
| TerminatorKind::FalseUnwind { .. } => {
bug!("shouldn't exist at trans {:?}", bb_data.terminator());
}
TerminatorKind::Drop { target, .. } | TerminatorKind::DropAndReplace { target, .. } => {
// TODO call drop impl
// unimplemented!("terminator {:?}", bb_data.terminator());
let target_ebb = fx.get_ebb(*target);
fx.bcx.ins().jump(target_ebb, &[]);
}
TerminatorKind::GeneratorDrop => {
unimplemented!("terminator GeneratorDrop");
}
};
}
fx.bcx.seal_all_blocks();
fx.bcx.finalize();
}
fn trans_stmt<'a, 'tcx: 'a>(
fx: &mut FunctionCx<'a, 'tcx, impl Backend>,
cur_ebb: Ebb,
stmt: &Statement<'tcx>,
) {
let _print_guard = PrintOnPanic(format!("stmt {:?}", stmt));
let inst = fx.bcx.func.layout.last_inst(cur_ebb).unwrap();
fx.add_comment(inst, format!("{:?}", stmt));
match &stmt.kind {
StatementKind::SetDiscriminant {
place,
variant_index,
} => {
let place = trans_place(fx, place);
let layout = place.layout();
if layout.for_variant(&*fx, *variant_index).abi == layout::Abi::Uninhabited {
return;
}
match layout.variants {
layout::Variants::Single { index } => {
assert_eq!(index, *variant_index);
}
layout::Variants::Tagged { .. } => {
let ptr = place.place_field(fx, mir::Field::new(0));
let to = layout
.ty
.ty_adt_def()
.unwrap()
.discriminant_for_variant(fx.tcx, *variant_index)
.val;
let discr = CValue::const_val(fx, ptr.layout().ty, to as u64 as i64);
ptr.write_cvalue(fx, discr);
}
layout::Variants::NicheFilling {
dataful_variant,
ref niche_variants,
niche_start,
..
} => {
if *variant_index != dataful_variant {
let niche = place.place_field(fx, mir::Field::new(0));
//let niche_llty = niche.layout.immediate_llvm_type(bx.cx);
let niche_value = ((variant_index - *niche_variants.start()) as u128)
.wrapping_add(niche_start);
// FIXME(eddyb) Check the actual primitive type here.
let niche_llval = if niche_value == 0 {
CValue::const_val(fx, niche.layout().ty, 0)
} else {
CValue::const_val(fx, niche.layout().ty, niche_value as u64 as i64)
};
niche.write_cvalue(fx, niche_llval);
}
}
}
}
StatementKind::Assign(to_place, rval) => {
let lval = trans_place(fx, to_place);
let dest_layout = lval.layout();
match rval {
Rvalue::Use(operand) => {
let val = trans_operand(fx, operand);
lval.write_cvalue(fx, val);
}
Rvalue::Ref(_, _, place) => {
let place = trans_place(fx, place);
let addr = place.expect_addr();
lval.write_cvalue(fx, CValue::ByVal(addr, dest_layout));
}
Rvalue::BinaryOp(bin_op, lhs, rhs) => {
let ty = fx.monomorphize(&lhs.ty(&fx.mir.local_decls, fx.tcx));
let lhs = trans_operand(fx, lhs);
let rhs = trans_operand(fx, rhs);
let res = match ty.sty {
ty::Bool => trans_bool_binop(fx, *bin_op, lhs, rhs, lval.layout().ty),
ty::Uint(_) => {
trans_int_binop(fx, *bin_op, lhs, rhs, lval.layout().ty, false)
}
ty::Int(_) => {
trans_int_binop(fx, *bin_op, lhs, rhs, lval.layout().ty, true)
}
ty::Float(_) => trans_float_binop(fx, *bin_op, lhs, rhs, lval.layout().ty),
ty::Char => trans_char_binop(fx, *bin_op, lhs, rhs, lval.layout().ty),
ty::RawPtr(..) => trans_ptr_binop(fx, *bin_op, lhs, rhs, lval.layout().ty),
_ => unimplemented!("binop {:?} for {:?}", bin_op, ty),
};
lval.write_cvalue(fx, res);
}
Rvalue::CheckedBinaryOp(bin_op, lhs, rhs) => {
let ty = fx.monomorphize(&lhs.ty(&fx.mir.local_decls, fx.tcx));
let lhs = trans_operand(fx, lhs);
let rhs = trans_operand(fx, rhs);
let res = match ty.sty {
ty::Uint(_) => {
trans_checked_int_binop(fx, *bin_op, lhs, rhs, lval.layout().ty, false)
}
ty::Int(_) => {
trans_checked_int_binop(fx, *bin_op, lhs, rhs, lval.layout().ty, true)
}
_ => unimplemented!("checked binop {:?} for {:?}", bin_op, ty),
};
lval.write_cvalue(fx, res);
}
Rvalue::UnaryOp(un_op, operand) => {
let ty = fx.monomorphize(&operand.ty(&fx.mir.local_decls, fx.tcx));
let layout = fx.layout_of(ty);
let val = trans_operand(fx, operand).load_value(fx);
let res = match un_op {
UnOp::Not => fx.bcx.ins().bnot(val),
UnOp::Neg => match ty.sty {
ty::Int(_) => {
let clif_ty = fx.cton_type(ty).unwrap();
let zero = fx.bcx.ins().iconst(clif_ty, 0);
fx.bcx.ins().isub(zero, val)
}
ty::Float(_) => fx.bcx.ins().fneg(val),
_ => unimplemented!("un op Neg for {:?}", ty),
},
};
lval.write_cvalue(fx, CValue::ByVal(res, layout));
}
Rvalue::Cast(CastKind::ReifyFnPointer, operand, ty) => {
let operand = trans_operand(fx, operand);
let layout = fx.layout_of(ty);
lval.write_cvalue(fx, operand.unchecked_cast_to(layout));
}
Rvalue::Cast(CastKind::UnsafeFnPointer, operand, ty) => {
let operand = trans_operand(fx, operand);
let layout = fx.layout_of(ty);
lval.write_cvalue(fx, operand.unchecked_cast_to(layout));
}
Rvalue::Cast(CastKind::Misc, operand, to_ty) => {
let operand = trans_operand(fx, operand);
let from_ty = operand.layout().ty;
match (&from_ty.sty, &to_ty.sty) {
(ty::Ref(..), ty::Ref(..))
| (ty::Ref(..), ty::RawPtr(..))
| (ty::RawPtr(..), ty::Ref(..))
| (ty::RawPtr(..), ty::RawPtr(..)) => {
lval.write_cvalue(fx, operand.unchecked_cast_to(dest_layout));
}
(ty::RawPtr(..), ty::Uint(_)) | (ty::FnPtr(..), ty::Uint(_))
if to_ty.sty == fx.tcx.types.usize.sty =>
{
lval.write_cvalue(fx, operand.unchecked_cast_to(dest_layout));
}
(ty::Uint(_), ty::RawPtr(..)) if from_ty.sty == fx.tcx.types.usize.sty => {
lval.write_cvalue(fx, operand.unchecked_cast_to(dest_layout));
}
(ty::Char, ty::Uint(_))
| (ty::Uint(_), ty::Char)
| (ty::Uint(_), ty::Int(_))
| (ty::Uint(_), ty::Uint(_)) => {
let from = operand.load_value(fx);
let res = crate::common::cton_intcast(
fx,
from,
fx.cton_type(to_ty).unwrap(),
false,
);
lval.write_cvalue(fx, CValue::ByVal(res, dest_layout));
}
(ty::Int(_), ty::Int(_)) | (ty::Int(_), ty::Uint(_)) => {
let from = operand.load_value(fx);
let res = crate::common::cton_intcast(
fx,
from,
fx.cton_type(to_ty).unwrap(),
true,
);
lval.write_cvalue(fx, CValue::ByVal(res, dest_layout));
}
(ty::Float(from_flt), ty::Float(to_flt)) => {
let from = operand.load_value(fx);
let res = match (from_flt, to_flt) {
(FloatTy::F32, FloatTy::F64) => {
fx.bcx.ins().fpromote(types::F64, from)
}
(FloatTy::F64, FloatTy::F32) => {
fx.bcx.ins().fdemote(types::F32, from)
}
_ => from,
};
lval.write_cvalue(fx, CValue::ByVal(res, dest_layout));
}
(ty::Int(_), ty::Float(_)) => {
let from = operand.load_value(fx);
let f_type = fx.cton_type(to_ty).unwrap();
let res = fx.bcx.ins().fcvt_from_sint(f_type, from);
lval.write_cvalue(fx, CValue::ByVal(res, dest_layout));
}
(ty::Uint(_), ty::Float(_)) => {
let from = operand.load_value(fx);
let f_type = fx.cton_type(to_ty).unwrap();
let res = fx.bcx.ins().fcvt_from_uint(f_type, from);
lval.write_cvalue(fx, CValue::ByVal(res, dest_layout));
}
(ty::Bool, ty::Uint(_)) | (ty::Bool, ty::Int(_)) => {
let to_ty = fx.cton_type(to_ty).unwrap();
let from = operand.load_value(fx);
let res = if to_ty != types::I8 {
fx.bcx.ins().uextend(to_ty, from)
} else {
from
};
lval.write_cvalue(fx, CValue::ByVal(res, dest_layout));
}
_ => unimpl!("rval misc {:?} {:?}", from_ty, to_ty),
}
}
Rvalue::Cast(CastKind::ClosureFnPointer, operand, ty) => {
unimplemented!("rval closure_fn_ptr {:?} {:?}", operand, ty)
}
Rvalue::Cast(CastKind::Unsize, operand, ty) => {
unimpl!("rval unsize {:?} {:?}", operand, ty);
}
Rvalue::Discriminant(place) => {
let place = trans_place(fx, place).to_cvalue(fx);
let discr = trans_get_discriminant(fx, place, dest_layout);
lval.write_cvalue(fx, discr);
}
Rvalue::Repeat(operand, times) => {
let operand = trans_operand(fx, operand);
for i in 0..*times {
let index = fx.bcx.ins().iconst(fx.module.pointer_type(), i as i64);
let to = lval.place_index(fx, index);
to.write_cvalue(fx, operand);
}
}
Rvalue::Len(lval) => unimpl!("rval len {:?}", lval),
Rvalue::NullaryOp(NullOp::Box, ty) => unimplemented!("rval box {:?}", ty),
Rvalue::NullaryOp(NullOp::SizeOf, ty) => {
assert!(
lval.layout()
.ty
.is_sized(fx.tcx.at(DUMMY_SP), ParamEnv::reveal_all())
);
let ty_size = fx.layout_of(ty).size.bytes();
let val = CValue::const_val(fx, fx.tcx.types.usize, ty_size as i64);
lval.write_cvalue(fx, val);
}
Rvalue::Aggregate(kind, operands) => match **kind {
AggregateKind::Array(_ty) => {
for (i, operand) in operands.into_iter().enumerate() {
let operand = trans_operand(fx, operand);
let index = fx.bcx.ins().iconst(fx.module.pointer_type(), i as i64);
let to = lval.place_index(fx, index);
to.write_cvalue(fx, operand);
}
}
_ => unimpl!("shouldn't exist at trans {:?}", rval),
},
}
}
StatementKind::StorageLive(_)
| StatementKind::StorageDead(_)
| StatementKind::Nop
| StatementKind::ReadForMatch(_)
| StatementKind::Validate(_, _)
| StatementKind::EndRegion(_)
| StatementKind::UserAssertTy(_, _) => {}
StatementKind::InlineAsm { .. } => unimpl!("Inline assembly is not supported"),
}
}
pub fn trans_get_discriminant<'a, 'tcx: 'a>(
fx: &mut FunctionCx<'a, 'tcx, impl Backend>,
value: CValue<'tcx>,
dest_layout: TyLayout<'tcx>,
) -> CValue<'tcx> {
let layout = value.layout();
if layout.abi == layout::Abi::Uninhabited {
fx.bcx.ins().trap(TrapCode::User(!0));
}
match layout.variants {
layout::Variants::Single { index } => {
let discr_val = layout.ty.ty_adt_def().map_or(index as u128, |def| {
def.discriminant_for_variant(fx.tcx, index).val
});
return CValue::const_val(fx, dest_layout.ty, discr_val as u64 as i64);
}
layout::Variants::Tagged { .. } | layout::Variants::NicheFilling { .. } => {}
}
let discr = value.value_field(fx, mir::Field::new(0));
let discr_ty = discr.layout().ty;
let lldiscr = discr.load_value(fx);
match layout.variants {
layout::Variants::Single { .. } => bug!(),
layout::Variants::Tagged { ref tag, .. } => {
let signed = match tag.value {
layout::Int(_, signed) => signed,
_ => false,
};
let val = cton_intcast(fx, lldiscr, fx.cton_type(dest_layout.ty).unwrap(), signed);
return CValue::ByVal(val, dest_layout);
}
layout::Variants::NicheFilling {
dataful_variant,
ref niche_variants,
niche_start,
..
} => {
let niche_llty = fx.cton_type(discr_ty).unwrap();
let dest_cton_ty = fx.cton_type(dest_layout.ty).unwrap();
if niche_variants.start() == niche_variants.end() {
let b = fx
.bcx
.ins()
.icmp_imm(IntCC::Equal, lldiscr, niche_start as u64 as i64);
let if_true = fx
.bcx
.ins()
.iconst(dest_cton_ty, *niche_variants.start() as u64 as i64);
let if_false = fx
.bcx
.ins()
.iconst(dest_cton_ty, dataful_variant as u64 as i64);
let val = fx.bcx.ins().select(b, if_true, if_false);
return CValue::ByVal(val, dest_layout);
} else {
// Rebase from niche values to discriminant values.
let delta = niche_start.wrapping_sub(*niche_variants.start() as u128);
let delta = fx.bcx.ins().iconst(niche_llty, delta as u64 as i64);
let lldiscr = fx.bcx.ins().isub(lldiscr, delta);
let b = fx.bcx.ins().icmp_imm(
IntCC::UnsignedLessThanOrEqual,
lldiscr,
*niche_variants.end() as u64 as i64,
);
let if_true =
cton_intcast(fx, lldiscr, fx.cton_type(dest_layout.ty).unwrap(), false);
let if_false = fx
.bcx
.ins()
.iconst(dest_cton_ty, dataful_variant as u64 as i64);
let val = fx.bcx.ins().select(b, if_true, if_false);
return CValue::ByVal(val, dest_layout);
}
}
}
}
macro_rules! binop_match {
(@single $fx:expr, $bug_fmt:expr, $var:expr, $signed:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, bug) => {
bug!("binop {} on {} lhs: {:?} rhs: {:?}", stringify!($var), $bug_fmt, $lhs, $rhs)
};
(@single $fx:expr, $bug_fmt:expr, $var:expr, $signed:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, icmp($cc:ident)) => {{
assert_eq!($fx.tcx.types.bool, $ret_ty);
let ret_layout = $fx.layout_of($ret_ty);
// TODO HACK no encoding for icmp.i8
use crate::common::cton_intcast;
let (lhs, rhs) = (
cton_intcast($fx, $lhs, types::I64, $signed),
cton_intcast($fx, $rhs, types::I64, $signed),
);
let b = $fx.bcx.ins().icmp(IntCC::$cc, lhs, rhs);
CValue::ByVal($fx.bcx.ins().bint(types::I8, b), ret_layout)
}};
(@single $fx:expr, $bug_fmt:expr, $var:expr, $signed:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, fcmp($cc:ident)) => {{
assert_eq!($fx.tcx.types.bool, $ret_ty);
let ret_layout = $fx.layout_of($ret_ty);
let b = $fx.bcx.ins().fcmp(FloatCC::$cc, $lhs, $rhs);
CValue::ByVal($fx.bcx.ins().bint(types::I8, b), ret_layout)
}};
(@single $fx:expr, $bug_fmt:expr, $var:expr, $signed:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, custom(|| $body:expr)) => {{
$body
}};
(@single $fx:expr, $bug_fmt:expr, $var:expr, $signed:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, $name:ident) => {{
let ret_layout = $fx.layout_of($ret_ty);
CValue::ByVal($fx.bcx.ins().$name($lhs, $rhs), ret_layout)
}};
(
$fx:expr, $bin_op:expr, $signed:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, $bug_fmt:expr;
$(
$var:ident ($sign:pat) $name:tt $( ( $($next:tt)* ) )? ;
)*
) => {{
let lhs = $lhs.load_value($fx);
let rhs = $rhs.load_value($fx);
match ($bin_op, $signed) {
$(
(BinOp::$var, $sign) => binop_match!(@single $fx, $bug_fmt, $var, $signed, lhs, rhs, $ret_ty, $name $( ( $($next)* ) )?),
)*
}
}}
}
fn trans_bool_binop<'a, 'tcx: 'a>(
fx: &mut FunctionCx<'a, 'tcx, impl Backend>,
bin_op: BinOp,
lhs: CValue<'tcx>,
rhs: CValue<'tcx>,
ty: Ty<'tcx>,
) -> CValue<'tcx> {
let res = binop_match! {
fx, bin_op, false, lhs, rhs, ty, "bool";
Add (_) bug;
Sub (_) bug;
Mul (_) bug;
Div (_) bug;
Rem (_) bug;
BitXor (_) bxor;
BitAnd (_) band;
BitOr (_) bor;
Shl (_) bug;
Shr (_) bug;
Eq (_) icmp(Equal);
Lt (_) icmp(UnsignedLessThan);
Le (_) icmp(UnsignedLessThanOrEqual);
Ne (_) icmp(NotEqual);
Ge (_) icmp(UnsignedGreaterThanOrEqual);
Gt (_) icmp(UnsignedGreaterThan);
Offset (_) bug;
};
res
}
pub fn trans_int_binop<'a, 'tcx: 'a>(
fx: &mut FunctionCx<'a, 'tcx, impl Backend>,
bin_op: BinOp,
lhs: CValue<'tcx>,
rhs: CValue<'tcx>,
out_ty: Ty<'tcx>,
signed: bool,
) -> CValue<'tcx> {
if bin_op != BinOp::Shl && bin_op != BinOp::Shr {
assert_eq!(
lhs.layout().ty,
rhs.layout().ty,
"int binop requires lhs and rhs of same type"
);
}
binop_match! {
fx, bin_op, signed, lhs, rhs, out_ty, "int/uint";
Add (_) iadd;
Sub (_) isub;
Mul (_) imul;
Div (false) udiv;
Div (true) sdiv;
Rem (false) urem;
Rem (true) srem;
BitXor (_) bxor;
BitAnd (_) band;
BitOr (_) bor;
Shl (_) ishl;
Shr (false) ushr;
Shr (true) sshr;
Eq (_) icmp(Equal);
Lt (false) icmp(UnsignedLessThan);
Lt (true) icmp(SignedLessThan);
Le (false) icmp(UnsignedLessThanOrEqual);
Le (true) icmp(SignedLessThanOrEqual);
Ne (_) icmp(NotEqual);
Ge (false) icmp(UnsignedGreaterThanOrEqual);
Ge (true) icmp(SignedGreaterThanOrEqual);
Gt (false) icmp(UnsignedGreaterThan);
Gt (true) icmp(SignedGreaterThan);
Offset (_) bug;
}
}
pub fn trans_checked_int_binop<'a, 'tcx: 'a>(
fx: &mut FunctionCx<'a, 'tcx, impl Backend>,
bin_op: BinOp,
in_lhs: CValue<'tcx>,
in_rhs: CValue<'tcx>,
out_ty: Ty<'tcx>,
signed: bool,
) -> CValue<'tcx> {
if bin_op != BinOp::Shl && bin_op != BinOp::Shr {
assert_eq!(
in_lhs.layout().ty,
in_rhs.layout().ty,
"checked int binop requires lhs and rhs of same type"
);
}
let res_ty = match out_ty.sty {
ty::Tuple(tys) => tys[0],
_ => bug!(
"Checked int binop requires tuple as output, but got {:?}",
out_ty
),
};
let lhs = in_lhs.load_value(fx);
let rhs = in_rhs.load_value(fx);
let res = match bin_op {
BinOp::Add => fx.bcx.ins().iadd(lhs, rhs),
BinOp::Sub => fx.bcx.ins().isub(lhs, rhs),
BinOp::Mul => fx.bcx.ins().imul(lhs, rhs),
BinOp::Shl => fx.bcx.ins().ishl(lhs, rhs),
BinOp::Shr => if !signed {
fx.bcx.ins().ushr(lhs, rhs)
} else {
fx.bcx.ins().sshr(lhs, rhs)
},
_ => bug!(
"binop {:?} on checked int/uint lhs: {:?} rhs: {:?}",
bin_op,
in_lhs,
in_rhs
),
};
// TODO: check for overflow
let has_overflow = fx.bcx.ins().iconst(types::I8, 0);
let out_place = CPlace::temp(fx, out_ty);
let out_layout = out_place.layout();
out_place.write_cvalue(fx, CValue::ByValPair(res, has_overflow, out_layout));
out_place.to_cvalue(fx)
}
fn trans_float_binop<'a, 'tcx: 'a>(
fx: &mut FunctionCx<'a, 'tcx, impl Backend>,
bin_op: BinOp,
lhs: CValue<'tcx>,
rhs: CValue<'tcx>,
ty: Ty<'tcx>,
) -> CValue<'tcx> {
let res = binop_match! {
fx, bin_op, false, lhs, rhs, ty, "float";
Add (_) fadd;
Sub (_) fsub;
Mul (_) fmul;
Div (_) fdiv;
Rem (_) custom(|| {
assert_eq!(lhs.layout().ty, ty);
assert_eq!(rhs.layout().ty, ty);
match ty.sty {
ty::Float(FloatTy::F32) => fx.easy_call("fmodf", &[lhs, rhs], ty),
ty::Float(FloatTy::F64) => fx.easy_call("fmod", &[lhs, rhs], ty),
_ => bug!(),
}
});
BitXor (_) bxor;
BitAnd (_) band;
BitOr (_) bor;
Shl (_) bug;
Shr (_) bug;
Eq (_) fcmp(Equal);
Lt (_) fcmp(LessThan);
Le (_) fcmp(LessThanOrEqual);
Ne (_) fcmp(NotEqual);
Ge (_) fcmp(GreaterThanOrEqual);
Gt (_) fcmp(GreaterThan);
Offset (_) bug;
};
res
}
fn trans_char_binop<'a, 'tcx: 'a>(
fx: &mut FunctionCx<'a, 'tcx, impl Backend>,
bin_op: BinOp,
lhs: CValue<'tcx>,
rhs: CValue<'tcx>,
ty: Ty<'tcx>,
) -> CValue<'tcx> {
let res = binop_match! {
fx, bin_op, false, lhs, rhs, ty, "char";
Add (_) bug;
Sub (_) bug;
Mul (_) bug;
Div (_) bug;
Rem (_) bug;
BitXor (_) bug;
BitAnd (_) bug;
BitOr (_) bug;
Shl (_) bug;
Shr (_) bug;
Eq (_) icmp(Equal);
Lt (_) icmp(UnsignedLessThan);
Le (_) icmp(UnsignedLessThanOrEqual);
Ne (_) icmp(NotEqual);
Ge (_) icmp(UnsignedGreaterThanOrEqual);
Gt (_) icmp(UnsignedGreaterThan);
Offset (_) bug;
};
res
}
fn trans_ptr_binop<'a, 'tcx: 'a>(
fx: &mut FunctionCx<'a, 'tcx, impl Backend>,
bin_op: BinOp,
lhs: CValue<'tcx>,
rhs: CValue<'tcx>,
ty: Ty<'tcx>,
) -> CValue<'tcx> {
match lhs.layout().ty.sty {
ty::RawPtr(TypeAndMut { ty, mutbl: _ }) => {
if !ty.is_sized(fx.tcx.at(DUMMY_SP), ParamEnv::reveal_all()) {
unimpl!("Unsized values are not yet implemented");
}
}
_ => bug!("trans_ptr_binop on non ptr"),
}
binop_match! {
fx, bin_op, false, lhs, rhs, ty, "ptr";
Add (_) bug;
Sub (_) bug;
Mul (_) bug;
Div (_) bug;
Rem (_) bug;
BitXor (_) bug;
BitAnd (_) bug;
BitOr (_) bug;
Shl (_) bug;
Shr (_) bug;
Eq (_) icmp(Equal);
Lt (_) icmp(UnsignedLessThan);
Le (_) icmp(UnsignedLessThanOrEqual);
Ne (_) icmp(NotEqual);
Ge (_) icmp(UnsignedGreaterThanOrEqual);
Gt (_) icmp(UnsignedGreaterThan);
Offset (_) iadd;
}
}
pub fn trans_place<'a, 'tcx: 'a>(
fx: &mut FunctionCx<'a, 'tcx, impl Backend>,
place: &Place<'tcx>,
) -> CPlace<'tcx> {
match place {
Place::Local(local) => fx.get_local_place(*local),
Place::Promoted(promoted) => crate::constant::trans_promoted(fx, promoted.0),
Place::Static(static_) => crate::constant::codegen_static_ref(fx, static_),
Place::Projection(projection) => {
let base = trans_place(fx, &projection.base);
match projection.elem {
ProjectionElem::Deref => {
let layout = fx.layout_of(place.ty(&*fx.mir, fx.tcx).to_ty(fx.tcx));
if layout.is_unsized() {
unimpl!("Unsized places are not yet implemented");
}
CPlace::Addr(base.to_cvalue(fx).load_value(fx), layout)
}
ProjectionElem::Field(field, _ty) => base.place_field(fx, field),
ProjectionElem::Index(local) => {
let index = fx.get_local_place(local).to_cvalue(fx).load_value(fx);
base.place_index(fx, index)
}
ProjectionElem::ConstantIndex {
offset,
min_length: _,
from_end: false,
} => unimplemented!(
"projection const index {:?} offset {:?} not from end",
projection.base,
offset
),
ProjectionElem::ConstantIndex {
offset,
min_length: _,
from_end: true,
} => unimplemented!(
"projection const index {:?} offset {:?} from end",
projection.base,
offset
),
ProjectionElem::Subslice { from, to } => unimplemented!(
"projection subslice {:?} from {} to {}",
projection.base,
from,
to
),
ProjectionElem::Downcast(_adt_def, variant) => base.downcast_variant(fx, variant),
}
}
}
}
pub fn trans_operand<'a, 'tcx>(
fx: &mut FunctionCx<'a, 'tcx, impl Backend>,
operand: &Operand<'tcx>,
) -> CValue<'tcx> {
match operand {
Operand::Move(place) | Operand::Copy(place) => {
let cplace = trans_place(fx, place);
cplace.to_cvalue(fx)
}
Operand::Constant(const_) => crate::constant::trans_constant(fx, const_),
}
}