#![allow(rustc::potential_query_instability)] #![deny(rustc::untranslatable_diagnostic)] #![deny(rustc::diagnostic_outside_of_impl)] #![feature(box_patterns)] #![feature(is_sorted)] #![feature(let_chains)] #![feature(map_try_insert)] #![feature(min_specialization)] #![feature(never_type)] #![feature(option_get_or_insert_default)] #![feature(trusted_step)] #![feature(try_blocks)] #![feature(yeet_expr)] #![feature(if_let_guard)] #![recursion_limit = "256"] #[macro_use] extern crate tracing; #[macro_use] extern crate rustc_middle; use required_consts::RequiredConstsVisitor; use rustc_const_eval::util; use rustc_data_structures::fx::FxIndexSet; use rustc_data_structures::steal::Steal; use rustc_hir as hir; use rustc_hir::def::DefKind; use rustc_hir::def_id::LocalDefId; use rustc_hir::intravisit::{self, Visitor}; use rustc_index::IndexVec; use rustc_middle::mir::visit::Visitor as _; use rustc_middle::mir::{ traversal, AnalysisPhase, Body, CallSource, ClearCrossCrate, ConstQualifs, Constant, LocalDecl, MirPass, MirPhase, Operand, Place, ProjectionElem, Promoted, RuntimePhase, Rvalue, SourceInfo, Statement, StatementKind, TerminatorKind, START_BLOCK, }; use rustc_middle::query::Providers; use rustc_middle::ty::{self, TyCtxt, TypeVisitableExt}; use rustc_span::sym; use rustc_trait_selection::traits; #[macro_use] mod pass_manager; use pass_manager::{self as pm, Lint, MirLint, WithMinOptLevel}; mod abort_unwinding_calls; mod add_call_guards; mod add_moves_for_packed_drops; mod add_retag; mod check_const_item_mutation; mod check_packed_ref; pub mod check_unsafety; mod remove_place_mention; // This pass is public to allow external drivers to perform MIR cleanup pub mod cleanup_post_borrowck; mod const_debuginfo; mod const_goto; mod const_prop; mod const_prop_lint; mod copy_prop; mod coverage; mod ctfe_limit; mod dataflow_const_prop; mod dead_store_elimination; mod deduce_param_attrs; mod deduplicate_blocks; mod deref_separator; mod dest_prop; pub mod dump_mir; mod early_otherwise_branch; mod elaborate_box_derefs; mod elaborate_drops; mod errors; mod ffi_unwind_calls; mod function_item_references; mod generator; mod inline; mod instsimplify; mod large_enums; mod lower_intrinsics; mod lower_slice_len; mod match_branches; mod multiple_return_terminators; mod normalize_array_len; mod nrvo; mod prettify; mod ref_prop; mod remove_noop_landing_pads; mod remove_storage_markers; mod remove_uninit_drops; mod remove_unneeded_drops; mod remove_zsts; mod required_consts; mod reveal_all; mod separate_const_switch; mod shim; mod ssa; // This pass is public to allow external drivers to perform MIR cleanup mod check_alignment; pub mod simplify; mod simplify_branches; mod simplify_comparison_integral; mod sroa; mod uninhabited_enum_branching; mod unreachable_prop; use rustc_const_eval::transform::check_consts::{self, ConstCx}; use rustc_const_eval::transform::promote_consts; use rustc_const_eval::transform::validate; use rustc_mir_dataflow::rustc_peek; use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage}; use rustc_fluent_macro::fluent_messages; fluent_messages! { "../messages.ftl" } pub fn provide(providers: &mut Providers) { check_unsafety::provide(providers); coverage::query::provide(providers); ffi_unwind_calls::provide(providers); shim::provide(providers); *providers = Providers { mir_keys, mir_const, mir_const_qualif, mir_promoted, mir_drops_elaborated_and_const_checked, mir_for_ctfe, mir_generator_witnesses: generator::mir_generator_witnesses, optimized_mir, is_mir_available, is_ctfe_mir_available: |tcx, did| is_mir_available(tcx, did), mir_callgraph_reachable: inline::cycle::mir_callgraph_reachable, mir_inliner_callees: inline::cycle::mir_inliner_callees, promoted_mir, deduced_param_attrs: deduce_param_attrs::deduced_param_attrs, ..*providers }; } fn remap_mir_for_const_eval_select<'tcx>( tcx: TyCtxt<'tcx>, mut body: Body<'tcx>, context: hir::Constness, ) -> Body<'tcx> { for bb in body.basic_blocks.as_mut().iter_mut() { let terminator = bb.terminator.as_mut().expect("invalid terminator"); match terminator.kind { TerminatorKind::Call { func: Operand::Constant(box Constant { ref literal, .. }), ref mut args, destination, target, unwind, fn_span, .. } if let ty::FnDef(def_id, _) = *literal.ty().kind() && tcx.item_name(def_id) == sym::const_eval_select && tcx.is_intrinsic(def_id) => { let [tupled_args, called_in_const, called_at_rt]: [_; 3] = std::mem::take(args).try_into().unwrap(); let ty = tupled_args.ty(&body.local_decls, tcx); let fields = ty.tuple_fields(); let num_args = fields.len(); let func = if context == hir::Constness::Const { called_in_const } else { called_at_rt }; let (method, place): (fn(Place<'tcx>) -> Operand<'tcx>, Place<'tcx>) = match tupled_args { Operand::Constant(_) => { // there is no good way of extracting a tuple arg from a constant (const generic stuff) // so we just create a temporary and deconstruct that. let local = body.local_decls.push(LocalDecl::new(ty, fn_span)); bb.statements.push(Statement { source_info: SourceInfo::outermost(fn_span), kind: StatementKind::Assign(Box::new((local.into(), Rvalue::Use(tupled_args.clone())))), }); (Operand::Move, local.into()) } Operand::Move(place) => (Operand::Move, place), Operand::Copy(place) => (Operand::Copy, place), }; let place_elems = place.projection; let arguments = (0..num_args).map(|x| { let mut place_elems = place_elems.to_vec(); place_elems.push(ProjectionElem::Field(x.into(), fields[x])); let projection = tcx.mk_place_elems(&place_elems); let place = Place { local: place.local, projection, }; method(place) }).collect(); terminator.kind = TerminatorKind::Call { func, args: arguments, destination, target, unwind, call_source: CallSource::Misc, fn_span }; } _ => {} } } body } fn is_mir_available(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool { tcx.mir_keys(()).contains(&def_id) } /// Finds the full set of `DefId`s within the current crate that have /// MIR associated with them. fn mir_keys(tcx: TyCtxt<'_>, (): ()) -> FxIndexSet { let mut set = FxIndexSet::default(); // All body-owners have MIR associated with them. set.extend(tcx.hir().body_owners()); // Additionally, tuple struct/variant constructors have MIR, but // they don't have a BodyId, so we need to build them separately. struct GatherCtors<'a> { set: &'a mut FxIndexSet, } impl<'tcx> Visitor<'tcx> for GatherCtors<'_> { fn visit_variant_data(&mut self, v: &'tcx hir::VariantData<'tcx>) { if let hir::VariantData::Tuple(_, _, def_id) = *v { self.set.insert(def_id); } intravisit::walk_struct_def(self, v) } } tcx.hir().visit_all_item_likes_in_crate(&mut GatherCtors { set: &mut set }); set } fn mir_const_qualif(tcx: TyCtxt<'_>, def: LocalDefId) -> ConstQualifs { let const_kind = tcx.hir().body_const_context(def); // No need to const-check a non-const `fn`. if const_kind.is_none() { return Default::default(); } // N.B., this `borrow()` is guaranteed to be valid (i.e., the value // cannot yet be stolen), because `mir_promoted()`, which steals // from `mir_const()`, forces this query to execute before // performing the steal. let body = &tcx.mir_const(def).borrow(); if body.return_ty().references_error() { tcx.sess.delay_span_bug(body.span, "mir_const_qualif: MIR had errors"); return Default::default(); } let ccx = check_consts::ConstCx { body, tcx, const_kind, param_env: tcx.param_env(def) }; let mut validator = check_consts::check::Checker::new(&ccx); validator.check_body(); // We return the qualifs in the return place for every MIR body, even though it is only used // when deciding to promote a reference to a `const` for now. validator.qualifs_in_return_place() } /// Make MIR ready for const evaluation. This is run on all MIR, not just on consts! /// FIXME(oli-obk): it's unclear whether we still need this phase (and its corresponding query). /// We used to have this for pre-miri MIR based const eval. fn mir_const(tcx: TyCtxt<'_>, def: LocalDefId) -> &Steal> { // Unsafety check uses the raw mir, so make sure it is run. if !tcx.sess.opts.unstable_opts.thir_unsafeck { tcx.ensure_with_value().unsafety_check_result(def); } // has_ffi_unwind_calls query uses the raw mir, so make sure it is run. tcx.ensure_with_value().has_ffi_unwind_calls(def); let mut body = tcx.mir_built(def).steal(); pass_manager::dump_mir_for_phase_change(tcx, &body); pm::run_passes( tcx, &mut body, &[ // MIR-level lints. &Lint(check_packed_ref::CheckPackedRef), &Lint(check_const_item_mutation::CheckConstItemMutation), &Lint(function_item_references::FunctionItemReferences), // What we need to do constant evaluation. &simplify::SimplifyCfg::Initial, &rustc_peek::SanityCheck, // Just a lint ], None, ); tcx.alloc_steal_mir(body) } /// Compute the main MIR body and the list of MIR bodies of the promoteds. fn mir_promoted( tcx: TyCtxt<'_>, def: LocalDefId, ) -> (&Steal>, &Steal>>) { // Ensure that we compute the `mir_const_qualif` for constants at // this point, before we steal the mir-const result. // Also this means promotion can rely on all const checks having been done. let const_qualifs = tcx.mir_const_qualif(def); let mut body = tcx.mir_const(def).steal(); if let Some(error_reported) = const_qualifs.tainted_by_errors { body.tainted_by_errors = Some(error_reported); } let mut required_consts = Vec::new(); let mut required_consts_visitor = RequiredConstsVisitor::new(&mut required_consts); for (bb, bb_data) in traversal::reverse_postorder(&body) { required_consts_visitor.visit_basic_block_data(bb, bb_data); } body.required_consts = required_consts; // What we need to run borrowck etc. let promote_pass = promote_consts::PromoteTemps::default(); pm::run_passes( tcx, &mut body, &[&promote_pass, &simplify::SimplifyCfg::PromoteConsts, &coverage::InstrumentCoverage], Some(MirPhase::Analysis(AnalysisPhase::Initial)), ); let promoted = promote_pass.promoted_fragments.into_inner(); (tcx.alloc_steal_mir(body), tcx.alloc_steal_promoted(promoted)) } /// Compute the MIR that is used during CTFE (and thus has no optimizations run on it) fn mir_for_ctfe(tcx: TyCtxt<'_>, def_id: LocalDefId) -> &Body<'_> { tcx.arena.alloc(inner_mir_for_ctfe(tcx, def_id)) } fn inner_mir_for_ctfe(tcx: TyCtxt<'_>, def: LocalDefId) -> Body<'_> { // FIXME: don't duplicate this between the optimized_mir/mir_for_ctfe queries if tcx.is_constructor(def.to_def_id()) { // There's no reason to run all of the MIR passes on constructors when // we can just output the MIR we want directly. This also saves const // qualification and borrow checking the trouble of special casing // constructors. return shim::build_adt_ctor(tcx, def.to_def_id()); } let context = tcx .hir() .body_const_context(def) .expect("mir_for_ctfe should not be used for runtime functions"); let body = tcx.mir_drops_elaborated_and_const_checked(def).borrow().clone(); let mut body = remap_mir_for_const_eval_select(tcx, body, hir::Constness::Const); match context { // Do not const prop functions, either they get executed at runtime or exported to metadata, // so we run const prop on them, or they don't, in which case we const evaluate some control // flow paths of the function and any errors in those paths will get emitted as const eval // errors. hir::ConstContext::ConstFn => {} // Static items always get evaluated, so we can just let const eval see if any erroneous // control flow paths get executed. hir::ConstContext::Static(_) => {} // Associated constants get const prop run so we detect common failure situations in the // crate that defined the constant. // Technically we want to not run on regular const items, but oli-obk doesn't know how to // conveniently detect that at this point without looking at the HIR. hir::ConstContext::Const => { pm::run_passes( tcx, &mut body, &[&const_prop::ConstProp], Some(MirPhase::Runtime(RuntimePhase::Optimized)), ); } } pm::run_passes(tcx, &mut body, &[&ctfe_limit::CtfeLimit], None); body } /// Obtain just the main MIR (no promoteds) and run some cleanups on it. This also runs /// mir borrowck *before* doing so in order to ensure that borrowck can be run and doesn't /// end up missing the source MIR due to stealing happening. fn mir_drops_elaborated_and_const_checked(tcx: TyCtxt<'_>, def: LocalDefId) -> &Steal> { if tcx.sess.opts.unstable_opts.drop_tracking_mir && let DefKind::Generator = tcx.def_kind(def) { tcx.ensure_with_value().mir_generator_witnesses(def); } let mir_borrowck = tcx.mir_borrowck(def); let is_fn_like = tcx.def_kind(def).is_fn_like(); if is_fn_like { // Do not compute the mir call graph without said call graph actually being used. if inline::Inline.is_enabled(&tcx.sess) { tcx.ensure_with_value().mir_inliner_callees(ty::InstanceDef::Item(def.to_def_id())); } } let (body, _) = tcx.mir_promoted(def); let mut body = body.steal(); if let Some(error_reported) = mir_borrowck.tainted_by_errors { body.tainted_by_errors = Some(error_reported); } // Check if it's even possible to satisfy the 'where' clauses // for this item. // // This branch will never be taken for any normal function. // However, it's possible to `#!feature(trivial_bounds)]` to write // a function with impossible to satisfy clauses, e.g.: // `fn foo() where String: Copy {}` // // We don't usually need to worry about this kind of case, // since we would get a compilation error if the user tried // to call it. However, since we optimize even without any // calls to the function, we need to make sure that it even // makes sense to try to evaluate the body. // // If there are unsatisfiable where clauses, then all bets are // off, and we just give up. // // We manually filter the predicates, skipping anything that's not // "global". We are in a potentially generic context // (e.g. we are evaluating a function without substituting generic // parameters, so this filtering serves two purposes: // // 1. We skip evaluating any predicates that we would // never be able prove are unsatisfiable (e.g. `` // 2. We avoid trying to normalize predicates involving generic // parameters (e.g. `::MyItem`). This can confuse // the normalization code (leading to cycle errors), since // it's usually never invoked in this way. let predicates = tcx .predicates_of(body.source.def_id()) .predicates .iter() .filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None }); if traits::impossible_predicates(tcx, traits::elaborate(tcx, predicates).collect()) { trace!("found unsatisfiable predicates for {:?}", body.source); // Clear the body to only contain a single `unreachable` statement. let bbs = body.basic_blocks.as_mut(); bbs.raw.truncate(1); bbs[START_BLOCK].statements.clear(); bbs[START_BLOCK].terminator_mut().kind = TerminatorKind::Unreachable; body.var_debug_info.clear(); body.local_decls.raw.truncate(body.arg_count + 1); } run_analysis_to_runtime_passes(tcx, &mut body); tcx.alloc_steal_mir(body) } fn run_analysis_to_runtime_passes<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) { assert!(body.phase == MirPhase::Analysis(AnalysisPhase::Initial)); let did = body.source.def_id(); debug!("analysis_mir_cleanup({:?})", did); run_analysis_cleanup_passes(tcx, body); assert!(body.phase == MirPhase::Analysis(AnalysisPhase::PostCleanup)); // Do a little drop elaboration before const-checking if `const_precise_live_drops` is enabled. if check_consts::post_drop_elaboration::checking_enabled(&ConstCx::new(tcx, &body)) { pm::run_passes( tcx, body, &[&remove_uninit_drops::RemoveUninitDrops, &simplify::SimplifyCfg::RemoveFalseEdges], None, ); check_consts::post_drop_elaboration::check_live_drops(tcx, &body); // FIXME: make this a MIR lint } debug!("runtime_mir_lowering({:?})", did); run_runtime_lowering_passes(tcx, body); assert!(body.phase == MirPhase::Runtime(RuntimePhase::Initial)); debug!("runtime_mir_cleanup({:?})", did); run_runtime_cleanup_passes(tcx, body); assert!(body.phase == MirPhase::Runtime(RuntimePhase::PostCleanup)); } // FIXME(JakobDegen): Can we make these lists of passes consts? /// After this series of passes, no lifetime analysis based on borrowing can be done. fn run_analysis_cleanup_passes<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) { let passes: &[&dyn MirPass<'tcx>] = &[ &cleanup_post_borrowck::CleanupPostBorrowck, &remove_noop_landing_pads::RemoveNoopLandingPads, &simplify::SimplifyCfg::EarlyOpt, &deref_separator::Derefer, ]; pm::run_passes(tcx, body, passes, Some(MirPhase::Analysis(AnalysisPhase::PostCleanup))); } /// Returns the sequence of passes that lowers analysis to runtime MIR. fn run_runtime_lowering_passes<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) { let passes: &[&dyn MirPass<'tcx>] = &[ // These next passes must be executed together &add_call_guards::CriticalCallEdges, &elaborate_drops::ElaborateDrops, // This will remove extraneous landing pads which are no longer // necessary as well as well as forcing any call in a non-unwinding // function calling a possibly-unwinding function to abort the process. &abort_unwinding_calls::AbortUnwindingCalls, // AddMovesForPackedDrops needs to run after drop // elaboration. &add_moves_for_packed_drops::AddMovesForPackedDrops, // `AddRetag` needs to run after `ElaborateDrops`. Otherwise it should run fairly late, // but before optimizations begin. &elaborate_box_derefs::ElaborateBoxDerefs, &generator::StateTransform, &add_retag::AddRetag, &Lint(const_prop_lint::ConstProp), ]; pm::run_passes_no_validate(tcx, body, passes, Some(MirPhase::Runtime(RuntimePhase::Initial))); } /// Returns the sequence of passes that do the initial cleanup of runtime MIR. fn run_runtime_cleanup_passes<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) { let passes: &[&dyn MirPass<'tcx>] = &[ &lower_intrinsics::LowerIntrinsics, &remove_place_mention::RemovePlaceMention, &simplify::SimplifyCfg::ElaborateDrops, ]; pm::run_passes(tcx, body, passes, Some(MirPhase::Runtime(RuntimePhase::PostCleanup))); // Clear this by anticipation. Optimizations and runtime MIR have no reason to look // into this information, which is meant for borrowck diagnostics. for decl in &mut body.local_decls { decl.local_info = ClearCrossCrate::Clear; } } fn run_optimization_passes<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) { fn o1(x: T) -> WithMinOptLevel { WithMinOptLevel(1, x) } // The main optimizations that we do on MIR. pm::run_passes( tcx, body, &[ &check_alignment::CheckAlignment, &reveal_all::RevealAll, // has to be done before inlining, since inlined code is in RevealAll mode. &lower_slice_len::LowerSliceLenCalls, // has to be done before inlining, otherwise actual call will be almost always inlined. Also simple, so can just do first &unreachable_prop::UnreachablePropagation, &uninhabited_enum_branching::UninhabitedEnumBranching, &o1(simplify::SimplifyCfg::AfterUninhabitedEnumBranching), &inline::Inline, &remove_storage_markers::RemoveStorageMarkers, &remove_zsts::RemoveZsts, &normalize_array_len::NormalizeArrayLen, // has to run after `slice::len` lowering &const_goto::ConstGoto, &remove_unneeded_drops::RemoveUnneededDrops, &ref_prop::ReferencePropagation, &sroa::ScalarReplacementOfAggregates, &match_branches::MatchBranchSimplification, // inst combine is after MatchBranchSimplification to clean up Ne(_1, false) &multiple_return_terminators::MultipleReturnTerminators, &instsimplify::InstSimplify, &simplify::SimplifyLocals::BeforeConstProp, ©_prop::CopyProp, // Perform `SeparateConstSwitch` after SSA-based analyses, as cloning blocks may // destroy the SSA property. It should still happen before const-propagation, so the // latter pass will leverage the created opportunities. &separate_const_switch::SeparateConstSwitch, &const_prop::ConstProp, &dataflow_const_prop::DataflowConstProp, // // Const-prop runs unconditionally, but doesn't mutate the MIR at mir-opt-level=0. &const_debuginfo::ConstDebugInfo, &o1(simplify_branches::SimplifyConstCondition::AfterConstProp), &early_otherwise_branch::EarlyOtherwiseBranch, &simplify_comparison_integral::SimplifyComparisonIntegral, &dead_store_elimination::DeadStoreElimination, &dest_prop::DestinationPropagation, &o1(simplify_branches::SimplifyConstCondition::Final), &o1(remove_noop_landing_pads::RemoveNoopLandingPads), &o1(simplify::SimplifyCfg::Final), &nrvo::RenameReturnPlace, &simplify::SimplifyLocals::Final, &multiple_return_terminators::MultipleReturnTerminators, &deduplicate_blocks::DeduplicateBlocks, &large_enums::EnumSizeOpt { discrepancy: 128 }, // Some cleanup necessary at least for LLVM and potentially other codegen backends. &add_call_guards::CriticalCallEdges, // Cleanup for human readability, off by default. &prettify::ReorderBasicBlocks, &prettify::ReorderLocals, // Dump the end result for testing and debugging purposes. &dump_mir::Marker("PreCodegen"), ], Some(MirPhase::Runtime(RuntimePhase::Optimized)), ); } /// Optimize the MIR and prepare it for codegen. fn optimized_mir(tcx: TyCtxt<'_>, did: LocalDefId) -> &Body<'_> { tcx.arena.alloc(inner_optimized_mir(tcx, did)) } fn inner_optimized_mir(tcx: TyCtxt<'_>, did: LocalDefId) -> Body<'_> { if tcx.is_constructor(did.to_def_id()) { // There's no reason to run all of the MIR passes on constructors when // we can just output the MIR we want directly. This also saves const // qualification and borrow checking the trouble of special casing // constructors. return shim::build_adt_ctor(tcx, did.to_def_id()); } match tcx.hir().body_const_context(did) { // Run the `mir_for_ctfe` query, which depends on `mir_drops_elaborated_and_const_checked` // which we are going to steal below. Thus we need to run `mir_for_ctfe` first, so it // computes and caches its result. Some(hir::ConstContext::ConstFn) => tcx.ensure_with_value().mir_for_ctfe(did), None => {} Some(other) => panic!("do not use `optimized_mir` for constants: {:?}", other), } debug!("about to call mir_drops_elaborated..."); let body = tcx.mir_drops_elaborated_and_const_checked(did).steal(); let mut body = remap_mir_for_const_eval_select(tcx, body, hir::Constness::NotConst); debug!("body: {:#?}", body); run_optimization_passes(tcx, &mut body); body } /// Fetch all the promoteds of an item and prepare their MIR bodies to be ready for /// constant evaluation once all substitutions become known. fn promoted_mir(tcx: TyCtxt<'_>, def: LocalDefId) -> &IndexVec> { if tcx.is_constructor(def.to_def_id()) { return tcx.arena.alloc(IndexVec::new()); } tcx.ensure_with_value().mir_borrowck(def); let mut promoted = tcx.mir_promoted(def).1.steal(); for body in &mut promoted { run_analysis_to_runtime_passes(tcx, body); } tcx.arena.alloc(promoted) }