// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! Utilities for vector manipulation The `vec` module contains useful code to help work with vector values. Vectors are Rust's list type. Vectors contain zero or more values of homogeneous types: ```rust let int_vector = [1,2,3]; let str_vector = ["one", "two", "three"]; ``` This is a big module, but for a high-level overview: ## Structs Several structs that are useful for vectors, such as `VecIterator`, which represents iteration over a vector. ## Traits A number of traits add methods that allow you to accomplish tasks with vectors. Traits defined for the `&[T]` type (a vector slice), have methods that can be called on either owned vectors, denoted `~[T]`, or on vector slices themselves. These traits include `ImmutableVector`, and `MutableVector` for the `&mut [T]` case. An example is the method `.slice(a, b)` that returns an immutable "view" into a vector or a vector slice from the index interval `[a, b)`: ```rust let numbers = [0, 1, 2]; let last_numbers = numbers.slice(1, 3); // last_numbers is now &[1, 2] ``` Traits defined for the `~[T]` type, like `OwnedVector`, can only be called on such vectors. These methods deal with adding elements or otherwise changing the allocation of the vector. An example is the method `.push(element)` that will add an element at the end of the vector: ```rust let mut numbers = ~[0, 1, 2]; numbers.push(7); // numbers is now ~[0, 1, 2, 7]; ``` ## Implementations of other traits Vectors are a very useful type, and so there's several implementations of traits from other modules. Some notable examples: * `Clone` * `Eq`, `Ord`, `TotalEq`, `TotalOrd` -- vectors can be compared, if the element type defines the corresponding trait. ## Iteration The method `iter()` returns an iteration value for a vector or a vector slice. The iterator yields references to the vector's elements, so if the element type of the vector is `int`, the element type of the iterator is `&int`. ```rust let numbers = [0, 1, 2]; for &x in numbers.iter() { println!("{} is a number!", x); } ``` * `.rev_iter()` returns an iterator with the same values as `.iter()`, but going in the reverse order, starting with the back element. * `.mut_iter()` returns an iterator that allows modifying each value. * `.move_iter()` converts an owned vector into an iterator that moves out a value from the vector each iteration. * Further iterators exist that split, chunk or permute the vector. ## Function definitions There are a number of free functions that create or take vectors, for example: * Creating a vector, like `from_elem` and `from_fn` * Creating a vector with a given size: `with_capacity` * Modifying a vector and returning it, like `append` * Operations on paired elements, like `unzip`. */ #[warn(non_camel_case_types)]; use cast; use ops::Drop; use clone::{Clone, DeepClone}; use container::{Container, Mutable}; use cmp::{Eq, TotalOrd, Ordering, Less, Equal, Greater}; use cmp; use default::Default; use iter::*; use libc::{c_char, c_void}; use num::{Integer, CheckedAdd, Saturating}; use option::{None, Option, Some}; use ptr::to_unsafe_ptr; use ptr; use ptr::RawPtr; use rt::global_heap::{malloc_raw, realloc_raw, exchange_free}; #[cfg(stage0)] use rt::local_heap::local_free; use mem; use mem::size_of; use uint; use unstable::finally::Finally; use unstable::intrinsics; #[cfg(stage0)] use unstable::intrinsics::{get_tydesc, owns_managed}; use unstable::raw::{Repr, Slice, Vec}; #[cfg(stage0)] use unstable::raw::Box; use util; /** * Creates and initializes an owned vector. * * Creates an owned vector of size `n_elts` and initializes the elements * to the value returned by the function `op`. */ pub fn from_fn(n_elts: uint, op: |uint| -> T) -> ~[T] { unsafe { let mut v = with_capacity(n_elts); let p = v.as_mut_ptr(); let mut i: uint = 0u; (|| { while i < n_elts { intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i as int)), op(i)); i += 1u; } }).finally(|| { v.set_len(i); }); v } } /** * Creates and initializes an owned vector. * * Creates an owned vector of size `n_elts` and initializes the elements * to the value `t`. */ pub fn from_elem(n_elts: uint, t: T) -> ~[T] { // FIXME (#7136): manually inline from_fn for 2x plus speedup (sadly very // important, from_elem is a bottleneck in borrowck!). Unfortunately it // still is substantially slower than using the unsafe // vec::with_capacity/ptr::set_memory for primitive types. unsafe { let mut v = with_capacity(n_elts); let p = v.as_mut_ptr(); let mut i = 0u; (|| { while i < n_elts { intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i as int)), t.clone()); i += 1u; } }).finally(|| { v.set_len(i); }); v } } /// Creates a new vector with a capacity of `capacity` #[inline] #[cfg(stage0)] pub fn with_capacity(capacity: uint) -> ~[T] { unsafe { if owns_managed::() { let mut vec = ~[]; vec.reserve(capacity); vec } else { let alloc = capacity * mem::nonzero_size_of::(); let size = alloc + mem::size_of::>(); if alloc / mem::nonzero_size_of::() != capacity || size < alloc { fail!("vector size is too large: {}", capacity); } let ptr = malloc_raw(size) as *mut Vec<()>; (*ptr).alloc = alloc; (*ptr).fill = 0; cast::transmute(ptr) } } } /// Creates a new vector with a capacity of `capacity` #[inline] #[cfg(not(stage0))] pub fn with_capacity(capacity: uint) -> ~[T] { unsafe { let alloc = capacity * mem::nonzero_size_of::(); let size = alloc + mem::size_of::>(); if alloc / mem::nonzero_size_of::() != capacity || size < alloc { fail!("vector size is too large: {}", capacity); } let ptr = malloc_raw(size) as *mut Vec<()>; (*ptr).alloc = alloc; (*ptr).fill = 0; cast::transmute(ptr) } } /** * Builds a vector by calling a provided function with an argument * function that pushes an element to the back of a vector. * The initial capacity for the vector may optionally be specified. * * # Arguments * * * size - An option, maybe containing initial size of the vector to reserve * * builder - A function that will construct the vector. It receives * as an argument a function that will push an element * onto the vector being constructed. */ #[inline] pub fn build(size: Option, builder: |push: |v: A||) -> ~[A] { let mut vec = with_capacity(size.unwrap_or(4)); builder(|x| vec.push(x)); vec } /** * Converts a pointer to A into a slice of length 1 (without copying). */ pub fn ref_slice<'a, A>(s: &'a A) -> &'a [A] { unsafe { cast::transmute(Slice { data: s, len: 1 }) } } /** * Converts a pointer to A into a slice of length 1 (without copying). */ pub fn mut_ref_slice<'a, A>(s: &'a mut A) -> &'a mut [A] { unsafe { let ptr: *A = cast::transmute(s); cast::transmute(Slice { data: ptr, len: 1 }) } } /// An iterator over the slices of a vector separated by elements that /// match a predicate function. pub struct SplitIterator<'a, T> { priv v: &'a [T], priv n: uint, priv pred: 'a |t: &T| -> bool, priv finished: bool } impl<'a, T> Iterator<&'a [T]> for SplitIterator<'a, T> { #[inline] fn next(&mut self) -> Option<&'a [T]> { if self.finished { return None; } if self.n == 0 { self.finished = true; return Some(self.v); } match self.v.iter().position(|x| (self.pred)(x)) { None => { self.finished = true; Some(self.v) } Some(idx) => { let ret = Some(self.v.slice(0, idx)); self.v = self.v.slice(idx + 1, self.v.len()); self.n -= 1; ret } } } #[inline] fn size_hint(&self) -> (uint, Option) { if self.finished { return (0, Some(0)) } // if the predicate doesn't match anything, we yield one slice // if it matches every element, we yield N+1 empty slices where // N is either the number of elements or the number of splits. match (self.v.len(), self.n) { (0,_) => (1, Some(1)), (_,0) => (1, Some(1)), (l,n) => (1, cmp::min(l,n).checked_add(&1u)) } } } /// An iterator over the slices of a vector separated by elements that /// match a predicate function, from back to front. pub struct RSplitIterator<'a, T> { priv v: &'a [T], priv n: uint, priv pred: 'a |t: &T| -> bool, priv finished: bool } impl<'a, T> Iterator<&'a [T]> for RSplitIterator<'a, T> { #[inline] fn next(&mut self) -> Option<&'a [T]> { if self.finished { return None; } if self.n == 0 { self.finished = true; return Some(self.v); } match self.v.iter().rposition(|x| (self.pred)(x)) { None => { self.finished = true; Some(self.v) } Some(idx) => { let ret = Some(self.v.slice(idx + 1, self.v.len())); self.v = self.v.slice(0, idx); self.n -= 1; ret } } } #[inline] fn size_hint(&self) -> (uint, Option) { if self.finished { return (0, Some(0)) } match (self.v.len(), self.n) { (0,_) => (1, Some(1)), (_,0) => (1, Some(1)), (l,n) => (1, cmp::min(l,n).checked_add(&1u)) } } } // Appending /// Iterates over the `rhs` vector, copying each element and appending it to the /// `lhs`. Afterwards, the `lhs` is then returned for use again. #[inline] pub fn append(lhs: ~[T], rhs: &[T]) -> ~[T] { let mut v = lhs; v.push_all(rhs); v } /// Appends one element to the vector provided. The vector itself is then /// returned for use again. #[inline] pub fn append_one(lhs: ~[T], x: T) -> ~[T] { let mut v = lhs; v.push(x); v } // Functional utilities /** * Apply a function to each element of a vector and return a concatenation * of each result vector */ pub fn flat_map(v: &[T], f: |t: &T| -> ~[U]) -> ~[U] { let mut result = ~[]; for elem in v.iter() { result.push_all_move(f(elem)); } result } #[allow(missing_doc)] pub trait VectorVector { // FIXME #5898: calling these .concat and .connect conflicts with // StrVector::con{cat,nect}, since they have generic contents. /// Flattens a vector of vectors of T into a single vector of T. fn concat_vec(&self) -> ~[T]; /// Concatenate a vector of vectors, placing a given separator between each. fn connect_vec(&self, sep: &T) -> ~[T]; } impl<'a, T: Clone, V: Vector> VectorVector for &'a [V] { fn concat_vec(&self) -> ~[T] { let size = self.iter().fold(0u, |acc, v| acc + v.as_slice().len()); let mut result = with_capacity(size); for v in self.iter() { result.push_all(v.as_slice()) } result } fn connect_vec(&self, sep: &T) -> ~[T] { let size = self.iter().fold(0u, |acc, v| acc + v.as_slice().len()); let mut result = with_capacity(size + self.len()); let mut first = true; for v in self.iter() { if first { first = false } else { result.push(sep.clone()) } result.push_all(v.as_slice()) } result } } /** * Convert an iterator of pairs into a pair of vectors. * * Returns a tuple containing two vectors where the i-th element of the first * vector contains the first element of the i-th tuple of the input iterator, * and the i-th element of the second vector contains the second element * of the i-th tuple of the input iterator. */ pub fn unzip>(mut iter: V) -> (~[T], ~[U]) { let (lo, _) = iter.size_hint(); let mut ts = with_capacity(lo); let mut us = with_capacity(lo); for (t, u) in iter { ts.push(t); us.push(u); } (ts, us) } /// An Iterator that yields the element swaps needed to produce /// a sequence of all possible permutations for an indexed sequence of /// elements. Each permutation is only a single swap apart. /// /// The Steinhaus–Johnson–Trotter algorithm is used. /// /// Generates even and odd permutations alternately. /// /// The last generated swap is always (0, 1), and it returns the /// sequence to its initial order. pub struct ElementSwaps { priv sdir: ~[SizeDirection], /// If true, emit the last swap that returns the sequence to initial state priv emit_reset: bool, } impl ElementSwaps { /// Create an `ElementSwaps` iterator for a sequence of `length` elements pub fn new(length: uint) -> ElementSwaps { // Initialize `sdir` with a direction that position should move in // (all negative at the beginning) and the `size` of the // element (equal to the original index). ElementSwaps{ emit_reset: true, sdir: range(0, length) .map(|i| SizeDirection{ size: i, dir: Neg }) .to_owned_vec() } } } enum Direction { Pos, Neg } /// An Index and Direction together struct SizeDirection { size: uint, dir: Direction, } impl Iterator<(uint, uint)> for ElementSwaps { #[inline] fn next(&mut self) -> Option<(uint, uint)> { fn new_pos(i: uint, s: Direction) -> uint { i + match s { Pos => 1, Neg => -1 } } // Find the index of the largest mobile element: // The direction should point into the vector, and the // swap should be with a smaller `size` element. let max = self.sdir.iter().map(|&x| x).enumerate() .filter(|&(i, sd)| new_pos(i, sd.dir) < self.sdir.len() && self.sdir[new_pos(i, sd.dir)].size < sd.size) .max_by(|&(_, sd)| sd.size); match max { Some((i, sd)) => { let j = new_pos(i, sd.dir); self.sdir.swap(i, j); // Swap the direction of each larger SizeDirection for x in self.sdir.mut_iter() { if x.size > sd.size { x.dir = match x.dir { Pos => Neg, Neg => Pos }; } } Some((i, j)) }, None => if self.emit_reset && self.sdir.len() > 1 { self.emit_reset = false; Some((0, 1)) } else { None } } } } /// An Iterator that uses `ElementSwaps` to iterate through /// all possible permutations of a vector. /// /// The first iteration yields a clone of the vector as it is, /// then each successive element is the vector with one /// swap applied. /// /// Generates even and odd permutations alternately. pub struct Permutations { priv swaps: ElementSwaps, priv v: ~[T], } impl Iterator<~[T]> for Permutations { #[inline] fn next(&mut self) -> Option<~[T]> { match self.swaps.next() { None => None, Some((a, b)) => { let elt = self.v.clone(); self.v.swap(a, b); Some(elt) } } } } /// An iterator over the (overlapping) slices of length `size` within /// a vector. #[deriving(Clone)] pub struct WindowIter<'a, T> { priv v: &'a [T], priv size: uint } impl<'a, T> Iterator<&'a [T]> for WindowIter<'a, T> { #[inline] fn next(&mut self) -> Option<&'a [T]> { if self.size > self.v.len() { None } else { let ret = Some(self.v.slice(0, self.size)); self.v = self.v.slice(1, self.v.len()); ret } } #[inline] fn size_hint(&self) -> (uint, Option) { if self.size > self.v.len() { (0, Some(0)) } else { let x = self.v.len() - self.size; (x.saturating_add(1), x.checked_add(&1u)) } } } /// An iterator over a vector in (non-overlapping) chunks (`size` /// elements at a time). /// /// When the vector len is not evenly divided by the chunk size, /// the last slice of the iteration will be the remainder. #[deriving(Clone)] pub struct ChunkIter<'a, T> { priv v: &'a [T], priv size: uint } impl<'a, T> Iterator<&'a [T]> for ChunkIter<'a, T> { #[inline] fn next(&mut self) -> Option<&'a [T]> { if self.v.len() == 0 { None } else { let chunksz = cmp::min(self.v.len(), self.size); let (fst, snd) = (self.v.slice_to(chunksz), self.v.slice_from(chunksz)); self.v = snd; Some(fst) } } #[inline] fn size_hint(&self) -> (uint, Option) { if self.v.len() == 0 { (0, Some(0)) } else { let (n, rem) = self.v.len().div_rem(&self.size); let n = if rem > 0 { n+1 } else { n }; (n, Some(n)) } } } impl<'a, T> DoubleEndedIterator<&'a [T]> for ChunkIter<'a, T> { #[inline] fn next_back(&mut self) -> Option<&'a [T]> { if self.v.len() == 0 { None } else { let remainder = self.v.len() % self.size; let chunksz = if remainder != 0 { remainder } else { self.size }; let (fst, snd) = (self.v.slice_to(self.v.len() - chunksz), self.v.slice_from(self.v.len() - chunksz)); self.v = fst; Some(snd) } } } impl<'a, T> RandomAccessIterator<&'a [T]> for ChunkIter<'a, T> { #[inline] fn indexable(&self) -> uint { self.v.len()/self.size + if self.v.len() % self.size != 0 { 1 } else { 0 } } #[inline] fn idx(&self, index: uint) -> Option<&'a [T]> { if index < self.indexable() { let lo = index * self.size; let mut hi = lo + self.size; if hi < lo || hi > self.v.len() { hi = self.v.len(); } Some(self.v.slice(lo, hi)) } else { None } } } // Equality #[cfg(not(test))] #[allow(missing_doc)] pub mod traits { use super::*; use container::Container; use clone::Clone; use cmp::{Eq, Ord, TotalEq, TotalOrd, Ordering, Equiv}; use iter::order; use ops::Add; impl<'a,T:Eq> Eq for &'a [T] { fn eq(&self, other: & &'a [T]) -> bool { self.len() == other.len() && order::eq(self.iter(), other.iter()) } fn ne(&self, other: & &'a [T]) -> bool { self.len() != other.len() || order::ne(self.iter(), other.iter()) } } impl Eq for ~[T] { #[inline] fn eq(&self, other: &~[T]) -> bool { self.as_slice() == *other } #[inline] fn ne(&self, other: &~[T]) -> bool { !self.eq(other) } } impl Eq for @[T] { #[inline] fn eq(&self, other: &@[T]) -> bool { self.as_slice() == *other } #[inline] fn ne(&self, other: &@[T]) -> bool { !self.eq(other) } } impl<'a,T:TotalEq> TotalEq for &'a [T] { fn equals(&self, other: & &'a [T]) -> bool { self.len() == other.len() && order::equals(self.iter(), other.iter()) } } impl TotalEq for ~[T] { #[inline] fn equals(&self, other: &~[T]) -> bool { self.as_slice().equals(&other.as_slice()) } } impl TotalEq for @[T] { #[inline] fn equals(&self, other: &@[T]) -> bool { self.as_slice().equals(&other.as_slice()) } } impl<'a,T:Eq, V: Vector> Equiv for &'a [T] { #[inline] fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() } } impl<'a,T:Eq, V: Vector> Equiv for ~[T] { #[inline] fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() } } impl<'a,T:Eq, V: Vector> Equiv for @[T] { #[inline] fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() } } impl<'a,T:TotalOrd> TotalOrd for &'a [T] { fn cmp(&self, other: & &'a [T]) -> Ordering { order::cmp(self.iter(), other.iter()) } } impl TotalOrd for ~[T] { #[inline] fn cmp(&self, other: &~[T]) -> Ordering { self.as_slice().cmp(&other.as_slice()) } } impl TotalOrd for @[T] { #[inline] fn cmp(&self, other: &@[T]) -> Ordering { self.as_slice().cmp(&other.as_slice()) } } impl<'a, T: Eq + Ord> Ord for &'a [T] { fn lt(&self, other: & &'a [T]) -> bool { order::lt(self.iter(), other.iter()) } #[inline] fn le(&self, other: & &'a [T]) -> bool { order::le(self.iter(), other.iter()) } #[inline] fn ge(&self, other: & &'a [T]) -> bool { order::ge(self.iter(), other.iter()) } #[inline] fn gt(&self, other: & &'a [T]) -> bool { order::gt(self.iter(), other.iter()) } } impl Ord for ~[T] { #[inline] fn lt(&self, other: &~[T]) -> bool { self.as_slice() < other.as_slice() } #[inline] fn le(&self, other: &~[T]) -> bool { self.as_slice() <= other.as_slice() } #[inline] fn ge(&self, other: &~[T]) -> bool { self.as_slice() >= other.as_slice() } #[inline] fn gt(&self, other: &~[T]) -> bool { self.as_slice() > other.as_slice() } } impl Ord for @[T] { #[inline] fn lt(&self, other: &@[T]) -> bool { self.as_slice() < other.as_slice() } #[inline] fn le(&self, other: &@[T]) -> bool { self.as_slice() <= other.as_slice() } #[inline] fn ge(&self, other: &@[T]) -> bool { self.as_slice() >= other.as_slice() } #[inline] fn gt(&self, other: &@[T]) -> bool { self.as_slice() > other.as_slice() } } impl<'a,T:Clone, V: Vector> Add for &'a [T] { #[inline] fn add(&self, rhs: &V) -> ~[T] { let mut res = with_capacity(self.len() + rhs.as_slice().len()); res.push_all(*self); res.push_all(rhs.as_slice()); res } } impl> Add for ~[T] { #[inline] fn add(&self, rhs: &V) -> ~[T] { self.as_slice() + rhs.as_slice() } } } #[cfg(test)] pub mod traits {} /// Any vector that can be represented as a slice. pub trait Vector { /// Work with `self` as a slice. fn as_slice<'a>(&'a self) -> &'a [T]; } impl<'a,T> Vector for &'a [T] { #[inline(always)] fn as_slice<'a>(&'a self) -> &'a [T] { *self } } impl Vector for ~[T] { #[inline(always)] fn as_slice<'a>(&'a self) -> &'a [T] { let v: &'a [T] = *self; v } } impl Vector for @[T] { #[inline(always)] fn as_slice<'a>(&'a self) -> &'a [T] { let v: &'a [T] = *self; v } } impl<'a, T> Container for &'a [T] { /// Returns the length of a vector #[inline] fn len(&self) -> uint { self.repr().len } } impl Container for ~[T] { /// Returns the length of a vector #[inline] fn len(&self) -> uint { self.as_slice().len() } } /// Extension methods for vector slices with copyable elements pub trait CopyableVector { /// Copy `self` into a new owned vector fn to_owned(&self) -> ~[T]; /// Convert `self` into a owned vector, not making a copy if possible. fn into_owned(self) -> ~[T]; } /// Extension methods for vector slices impl<'a, T: Clone> CopyableVector for &'a [T] { /// Returns a copy of `v`. #[inline] fn to_owned(&self) -> ~[T] { let mut result = with_capacity(self.len()); for e in self.iter() { result.push((*e).clone()); } result } #[inline(always)] fn into_owned(self) -> ~[T] { self.to_owned() } } /// Extension methods for owned vectors impl CopyableVector for ~[T] { #[inline] fn to_owned(&self) -> ~[T] { self.clone() } #[inline(always)] fn into_owned(self) -> ~[T] { self } } /// Extension methods for managed vectors impl CopyableVector for @[T] { #[inline] fn to_owned(&self) -> ~[T] { self.as_slice().to_owned() } #[inline(always)] fn into_owned(self) -> ~[T] { self.to_owned() } } /// Extension methods for vectors pub trait ImmutableVector<'a, T> { /** * Returns a slice of self between `start` and `end`. * * Fails when `start` or `end` point outside the bounds of self, * or when `start` > `end`. */ fn slice(&self, start: uint, end: uint) -> &'a [T]; /** * Returns a slice of self from `start` to the end of the vec. * * Fails when `start` points outside the bounds of self. */ fn slice_from(&self, start: uint) -> &'a [T]; /** * Returns a slice of self from the start of the vec to `end`. * * Fails when `end` points outside the bounds of self. */ fn slice_to(&self, end: uint) -> &'a [T]; /// Returns an iterator over the vector fn iter(self) -> VecIterator<'a, T>; /// Returns a reversed iterator over a vector fn rev_iter(self) -> RevIterator<'a, T>; /// Returns an iterator over the subslices of the vector which are /// separated by elements that match `pred`. The matched element /// is not contained in the subslices. fn split(self, pred: 'a |&T| -> bool) -> SplitIterator<'a, T>; /// Returns an iterator over the subslices of the vector which are /// separated by elements that match `pred`, limited to splitting /// at most `n` times. The matched element is not contained in /// the subslices. fn splitn(self, n: uint, pred: 'a |&T| -> bool) -> SplitIterator<'a, T>; /// Returns an iterator over the subslices of the vector which are /// separated by elements that match `pred`. This starts at the /// end of the vector and works backwards. The matched element is /// not contained in the subslices. fn rsplit(self, pred: 'a |&T| -> bool) -> RSplitIterator<'a, T>; /// Returns an iterator over the subslices of the vector which are /// separated by elements that match `pred` limited to splitting /// at most `n` times. This starts at the end of the vector and /// works backwards. The matched element is not contained in the /// subslices. fn rsplitn(self, n: uint, pred: 'a |&T| -> bool) -> RSplitIterator<'a, T>; /** * Returns an iterator over all contiguous windows of length * `size`. The windows overlap. If the vector is shorter than * `size`, the iterator returns no values. * * # Failure * * Fails if `size` is 0. * * # Example * * Print the adjacent pairs of a vector (i.e. `[1,2]`, `[2,3]`, * `[3,4]`): * * ```rust * let v = &[1,2,3,4]; * for win in v.windows(2) { * println!("{:?}", win); * } * ``` * */ fn windows(self, size: uint) -> WindowIter<'a, T>; /** * * Returns an iterator over `size` elements of the vector at a * time. The chunks do not overlap. If `size` does not divide the * length of the vector, then the last chunk will not have length * `size`. * * # Failure * * Fails if `size` is 0. * * # Example * * Print the vector two elements at a time (i.e. `[1,2]`, * `[3,4]`, `[5]`): * * ```rust * let v = &[1,2,3,4,5]; * for win in v.chunks(2) { * println!("{:?}", win); * } * ``` * */ fn chunks(self, size: uint) -> ChunkIter<'a, T>; /// Returns the element of a vector at the given index, or `None` if the /// index is out of bounds fn get_opt(&self, index: uint) -> Option<&'a T>; /// Returns the first element of a vector, failing if the vector is empty. fn head(&self) -> &'a T; /// Returns the first element of a vector, or `None` if it is empty fn head_opt(&self) -> Option<&'a T>; /// Returns all but the first element of a vector fn tail(&self) -> &'a [T]; /// Returns all but the first `n' elements of a vector fn tailn(&self, n: uint) -> &'a [T]; /// Returns all but the last element of a vector fn init(&self) -> &'a [T]; /// Returns all but the last `n' elements of a vector fn initn(&self, n: uint) -> &'a [T]; /// Returns the last element of a vector, failing if the vector is empty. fn last(&self) -> &'a T; /// Returns the last element of a vector, or `None` if it is empty. fn last_opt(&self) -> Option<&'a T>; /** * Apply a function to each element of a vector and return a concatenation * of each result vector */ fn flat_map(&self, f: |t: &T| -> ~[U]) -> ~[U]; /// Returns a pointer to the element at the given index, without doing /// bounds checking. unsafe fn unsafe_ref(&self, index: uint) -> *T; /** * Returns an unsafe pointer to the vector's buffer * * The caller must ensure that the vector outlives the pointer this * function returns, or else it will end up pointing to garbage. * * Modifying the vector may cause its buffer to be reallocated, which * would also make any pointers to it invalid. */ fn as_ptr(&self) -> *T; /** * Binary search a sorted vector with a comparator function. * * The comparator function should implement an order consistent * with the sort order of the underlying vector, returning an * order code that indicates whether its argument is `Less`, * `Equal` or `Greater` the desired target. * * Returns the index where the comparator returned `Equal`, or `None` if * not found. */ fn bsearch(&self, f: |&T| -> Ordering) -> Option; /// Deprecated, use iterators where possible /// (`self.iter().map(f)`). Apply a function to each element /// of a vector and return the results. fn map(&self, |t: &T| -> U) -> ~[U]; /** * Returns a mutable reference to the first element in this slice * and adjusts the slice in place so that it no longer contains * that element. O(1). * * Equivalent to: * * ``` * let head = &self[0]; * *self = self.slice_from(1); * head * ``` * * Fails if slice is empty. */ fn shift_ref(&mut self) -> &'a T; /** * Returns a mutable reference to the last element in this slice * and adjusts the slice in place so that it no longer contains * that element. O(1). * * Equivalent to: * * ``` * let tail = &self[self.len() - 1]; * *self = self.slice_to(self.len() - 1); * tail * ``` * * Fails if slice is empty. */ fn pop_ref(&mut self) -> &'a T; } impl<'a,T> ImmutableVector<'a, T> for &'a [T] { #[inline] fn slice(&self, start: uint, end: uint) -> &'a [T] { assert!(start <= end); assert!(end <= self.len()); unsafe { cast::transmute(Slice { data: self.as_ptr().offset(start as int), len: (end - start) }) } } #[inline] fn slice_from(&self, start: uint) -> &'a [T] { self.slice(start, self.len()) } #[inline] fn slice_to(&self, end: uint) -> &'a [T] { self.slice(0, end) } #[inline] fn iter(self) -> VecIterator<'a, T> { unsafe { let p = self.as_ptr(); if mem::size_of::() == 0 { VecIterator{ptr: p, end: (p as uint + self.len()) as *T, lifetime: None} } else { VecIterator{ptr: p, end: p.offset(self.len() as int), lifetime: None} } } } #[inline] fn rev_iter(self) -> RevIterator<'a, T> { self.iter().invert() } #[inline] fn split(self, pred: 'a |&T| -> bool) -> SplitIterator<'a, T> { self.splitn(uint::max_value, pred) } #[inline] fn splitn(self, n: uint, pred: 'a |&T| -> bool) -> SplitIterator<'a, T> { SplitIterator { v: self, n: n, pred: pred, finished: false } } #[inline] fn rsplit(self, pred: 'a |&T| -> bool) -> RSplitIterator<'a, T> { self.rsplitn(uint::max_value, pred) } #[inline] fn rsplitn(self, n: uint, pred: 'a |&T| -> bool) -> RSplitIterator<'a, T> { RSplitIterator { v: self, n: n, pred: pred, finished: false } } #[inline] fn windows(self, size: uint) -> WindowIter<'a, T> { assert!(size != 0); WindowIter { v: self, size: size } } #[inline] fn chunks(self, size: uint) -> ChunkIter<'a, T> { assert!(size != 0); ChunkIter { v: self, size: size } } #[inline] fn get_opt(&self, index: uint) -> Option<&'a T> { if index < self.len() { Some(&self[index]) } else { None } } #[inline] fn head(&self) -> &'a T { if self.len() == 0 { fail!("head: empty vector") } &self[0] } #[inline] fn head_opt(&self) -> Option<&'a T> { if self.len() == 0 { None } else { Some(&self[0]) } } #[inline] fn tail(&self) -> &'a [T] { self.slice(1, self.len()) } #[inline] fn tailn(&self, n: uint) -> &'a [T] { self.slice(n, self.len()) } #[inline] fn init(&self) -> &'a [T] { self.slice(0, self.len() - 1) } #[inline] fn initn(&self, n: uint) -> &'a [T] { self.slice(0, self.len() - n) } #[inline] fn last(&self) -> &'a T { if self.len() == 0 { fail!("last: empty vector") } &self[self.len() - 1] } #[inline] fn last_opt(&self) -> Option<&'a T> { if self.len() == 0 { None } else { Some(&self[self.len() - 1]) } } #[inline] fn flat_map(&self, f: |t: &T| -> ~[U]) -> ~[U] { flat_map(*self, f) } #[inline] unsafe fn unsafe_ref(&self, index: uint) -> *T { self.repr().data.offset(index as int) } #[inline] fn as_ptr(&self) -> *T { self.repr().data } fn bsearch(&self, f: |&T| -> Ordering) -> Option { let mut base : uint = 0; let mut lim : uint = self.len(); while lim != 0 { let ix = base + (lim >> 1); match f(&self[ix]) { Equal => return Some(ix), Less => { base = ix + 1; lim -= 1; } Greater => () } lim >>= 1; } return None; } fn map(&self, f: |t: &T| -> U) -> ~[U] { self.iter().map(f).collect() } fn shift_ref(&mut self) -> &'a T { unsafe { let s: &mut Slice = cast::transmute(self); &*raw::shift_ptr(s) } } fn pop_ref(&mut self) -> &'a T { unsafe { let s: &mut Slice = cast::transmute(self); &*raw::pop_ptr(s) } } } /// Extension methods for vectors contain `Eq` elements. pub trait ImmutableEqVector { /// Find the first index containing a matching value fn position_elem(&self, t: &T) -> Option; /// Find the last index containing a matching value fn rposition_elem(&self, t: &T) -> Option; /// Return true if a vector contains an element with the given value fn contains(&self, x: &T) -> bool; /// Returns true if `needle` is a prefix of the vector. fn starts_with(&self, needle: &[T]) -> bool; /// Returns true if `needle` is a suffix of the vector. fn ends_with(&self, needle: &[T]) -> bool; } impl<'a,T:Eq> ImmutableEqVector for &'a [T] { #[inline] fn position_elem(&self, x: &T) -> Option { self.iter().position(|y| *x == *y) } #[inline] fn rposition_elem(&self, t: &T) -> Option { self.iter().rposition(|x| *x == *t) } #[inline] fn contains(&self, x: &T) -> bool { self.iter().any(|elt| *x == *elt) } #[inline] fn starts_with(&self, needle: &[T]) -> bool { let n = needle.len(); self.len() >= n && needle == self.slice_to(n) } #[inline] fn ends_with(&self, needle: &[T]) -> bool { let (m, n) = (self.len(), needle.len()); m >= n && needle == self.slice_from(m - n) } } /// Extension methods for vectors containing `TotalOrd` elements. pub trait ImmutableTotalOrdVector { /** * Binary search a sorted vector for a given element. * * Returns the index of the element or None if not found. */ fn bsearch_elem(&self, x: &T) -> Option; } impl<'a, T: TotalOrd> ImmutableTotalOrdVector for &'a [T] { fn bsearch_elem(&self, x: &T) -> Option { self.bsearch(|p| p.cmp(x)) } } /// Extension methods for vectors containing `Clone` elements. pub trait ImmutableCopyableVector { /** * Partitions the vector into those that satisfies the predicate, and * those that do not. */ fn partitioned(&self, f: |&T| -> bool) -> (~[T], ~[T]); /// Create an iterator that yields every possible permutation of the /// vector in succession. fn permutations(self) -> Permutations; } impl<'a,T:Clone> ImmutableCopyableVector for &'a [T] { #[inline] fn partitioned(&self, f: |&T| -> bool) -> (~[T], ~[T]) { let mut lefts = ~[]; let mut rights = ~[]; for elt in self.iter() { if f(elt) { lefts.push((*elt).clone()); } else { rights.push((*elt).clone()); } } (lefts, rights) } fn permutations(self) -> Permutations { Permutations{ swaps: ElementSwaps::new(self.len()), v: self.to_owned(), } } } /// Extension methods for owned vectors. pub trait OwnedVector { /// Creates a consuming iterator, that is, one that moves each /// value out of the vector (from start to end). The vector cannot /// be used after calling this. /// /// # Examples /// /// ```rust /// let v = ~[~"a", ~"b"]; /// for s in v.move_iter() { /// // s has type ~str, not &~str /// println!("{}", s); /// } /// ``` fn move_iter(self) -> MoveIterator; /// Creates a consuming iterator that moves out of the vector in /// reverse order. fn move_rev_iter(self) -> MoveRevIterator; /** * Reserves capacity for exactly `n` elements in the given vector. * * If the capacity for `self` is already equal to or greater than the requested * capacity, then no action is taken. * * # Arguments * * * n - The number of elements to reserve space for * * # Failure * * This method always succeeds in reserving space for `n` elements, or it does * not return. */ fn reserve(&mut self, n: uint); /** * Reserves capacity for at least `n` elements in the given vector. * * This function will over-allocate in order to amortize the allocation costs * in scenarios where the caller may need to repeatedly reserve additional * space. * * If the capacity for `self` is already equal to or greater than the requested * capacity, then no action is taken. * * # Arguments * * * n - The number of elements to reserve space for */ fn reserve_at_least(&mut self, n: uint); /** * Reserves capacity for at least `n` additional elements in the given vector. * * # Failure * * Fails if the new required capacity overflows uint. * * May also fail if `reserve` fails. */ fn reserve_additional(&mut self, n: uint); /// Returns the number of elements the vector can hold without reallocating. fn capacity(&self) -> uint; /// Shrink the capacity of the vector to match the length fn shrink_to_fit(&mut self); /// Append an element to a vector fn push(&mut self, t: T); /// Takes ownership of the vector `rhs`, moving all elements into /// the current vector. This does not copy any elements, and it is /// illegal to use the `rhs` vector after calling this method /// (because it is moved here). /// /// # Example /// /// ```rust /// let mut a = ~[~1]; /// a.push_all_move(~[~2, ~3, ~4]); /// assert!(a == ~[~1, ~2, ~3, ~4]); /// ``` fn push_all_move(&mut self, rhs: ~[T]); /// Remove the last element from a vector and return it, failing if it is empty fn pop(&mut self) -> T; /// Remove the last element from a vector and return it, or `None` if it is empty fn pop_opt(&mut self) -> Option; /// Removes the first element from a vector and return it fn shift(&mut self) -> T; /// Removes the first element from a vector and return it, or `None` if it is empty fn shift_opt(&mut self) -> Option; /// Prepend an element to the vector fn unshift(&mut self, x: T); /// Insert an element at position i within v, shifting all /// elements after position i one position to the right. fn insert(&mut self, i: uint, x:T); /// Remove and return the element at position `i` within `v`, /// shifting all elements after position `i` one position to the /// left. Returns `None` if `i` is out of bounds. /// /// # Example /// ```rust /// let mut v = ~[1, 2, 3]; /// assert_eq!(v.remove_opt(1), Some(2)); /// assert_eq!(v, ~[1, 3]); /// /// assert_eq!(v.remove_opt(4), None); /// // v is unchanged: /// assert_eq!(v, ~[1, 3]); /// ``` fn remove_opt(&mut self, i: uint) -> Option; /// Remove and return the element at position i within v, shifting /// all elements after position i one position to the left. fn remove(&mut self, i: uint) -> T; /** * Remove an element from anywhere in the vector and return it, replacing it * with the last element. This does not preserve ordering, but is O(1). * * Fails if index >= length. */ fn swap_remove(&mut self, index: uint) -> T; /// Shorten a vector, dropping excess elements. fn truncate(&mut self, newlen: uint); /** * Like `filter()`, but in place. Preserves order of `v`. Linear time. */ fn retain(&mut self, f: |t: &T| -> bool); /** * Partitions the vector into those that satisfies the predicate, and * those that do not. */ fn partition(self, f: |&T| -> bool) -> (~[T], ~[T]); /** * Expands a vector in place, initializing the new elements to the result of * a function. * * Function `init_op` is called `n` times with the values [0..`n`) * * # Arguments * * * n - The number of elements to add * * init_op - A function to call to retrieve each appended element's * value */ fn grow_fn(&mut self, n: uint, op: |uint| -> T); /** * Sets the length of a vector * * This will explicitly set the size of the vector, without actually * modifying its buffers, so it is up to the caller to ensure that * the vector is actually the specified size. */ unsafe fn set_len(&mut self, new_len: uint); } impl OwnedVector for ~[T] { #[inline] fn move_iter(self) -> MoveIterator { unsafe { let iter = cast::transmute(self.iter()); let ptr = cast::transmute(self); MoveIterator { allocation: ptr, iter: iter } } } #[inline] fn move_rev_iter(self) -> MoveRevIterator { self.move_iter().invert() } #[cfg(stage0)] fn reserve(&mut self, n: uint) { // Only make the (slow) call into the runtime if we have to if self.capacity() < n { unsafe { let td = get_tydesc::(); if owns_managed::() { let ptr: *mut *mut Box> = cast::transmute(self); ::at_vec::raw::reserve_raw(td, ptr, n); } else { let ptr: *mut *mut Vec<()> = cast::transmute(self); let alloc = n * mem::nonzero_size_of::(); let size = alloc + mem::size_of::>(); if alloc / mem::nonzero_size_of::() != n || size < alloc { fail!("vector size is too large: {}", n); } *ptr = realloc_raw(*ptr as *mut c_void, size) as *mut Vec<()>; (**ptr).alloc = alloc; } } } } #[cfg(not(stage0))] fn reserve(&mut self, n: uint) { // Only make the (slow) call into the runtime if we have to if self.capacity() < n { unsafe { let ptr: *mut *mut Vec<()> = cast::transmute(self); let alloc = n * mem::nonzero_size_of::(); let size = alloc + mem::size_of::>(); if alloc / mem::nonzero_size_of::() != n || size < alloc { fail!("vector size is too large: {}", n); } *ptr = realloc_raw(*ptr as *mut c_void, size) as *mut Vec<()>; (**ptr).alloc = alloc; } } } #[inline] fn reserve_at_least(&mut self, n: uint) { self.reserve(uint::next_power_of_two_opt(n).unwrap_or(n)); } #[inline] fn reserve_additional(&mut self, n: uint) { if self.capacity() - self.len() < n { match self.len().checked_add(&n) { None => fail!("vec::reserve_additional: `uint` overflow"), Some(new_cap) => self.reserve_at_least(new_cap) } } } #[inline] #[cfg(stage0)] fn capacity(&self) -> uint { unsafe { if owns_managed::() { let repr: **Box> = cast::transmute(self); (**repr).data.alloc / mem::nonzero_size_of::() } else { let repr: **Vec<()> = cast::transmute(self); (**repr).alloc / mem::nonzero_size_of::() } } } #[inline] #[cfg(not(stage0))] fn capacity(&self) -> uint { unsafe { let repr: **Vec<()> = cast::transmute(self); (**repr).alloc / mem::nonzero_size_of::() } } fn shrink_to_fit(&mut self) { unsafe { let ptr: *mut *mut Vec<()> = cast::transmute(self); let alloc = (**ptr).fill; let size = alloc + mem::size_of::>(); *ptr = realloc_raw(*ptr as *mut c_void, size) as *mut Vec<()>; (**ptr).alloc = alloc; } } #[inline] #[cfg(stage0)] fn push(&mut self, t: T) { unsafe { if owns_managed::() { let repr: **Box> = cast::transmute(&mut *self); let fill = (**repr).data.fill; if (**repr).data.alloc <= fill { self.reserve_additional(1); } push_fast(self, t); } else { let repr: **Vec<()> = cast::transmute(&mut *self); let fill = (**repr).fill; if (**repr).alloc <= fill { self.reserve_additional(1); } push_fast(self, t); } } // This doesn't bother to make sure we have space. #[inline] // really pretty please unsafe fn push_fast(this: &mut ~[T], t: T) { if owns_managed::() { let repr: **mut Box> = cast::transmute(this); let fill = (**repr).data.fill; (**repr).data.fill += mem::nonzero_size_of::(); let p = to_unsafe_ptr(&((**repr).data.data)); let p = ptr::offset(p, fill as int) as *mut T; intrinsics::move_val_init(&mut(*p), t); } else { let repr: **mut Vec = cast::transmute(this); let fill = (**repr).fill; (**repr).fill += mem::nonzero_size_of::(); let p = to_unsafe_ptr(&((**repr).data)); let p = ptr::offset(p, fill as int) as *mut T; intrinsics::move_val_init(&mut(*p), t); } } } #[inline] #[cfg(not(stage0))] fn push(&mut self, t: T) { unsafe { let repr: **Vec<()> = cast::transmute(&mut *self); let fill = (**repr).fill; if (**repr).alloc <= fill { self.reserve_additional(1); } push_fast(self, t); } // This doesn't bother to make sure we have space. #[inline] // really pretty please unsafe fn push_fast(this: &mut ~[T], t: T) { let repr: **mut Vec = cast::transmute(this); let fill = (**repr).fill; (**repr).fill += mem::nonzero_size_of::(); let p = to_unsafe_ptr(&((**repr).data)); let p = ptr::offset(p, fill as int) as *mut T; intrinsics::move_val_init(&mut(*p), t); } } #[inline] fn push_all_move(&mut self, mut rhs: ~[T]) { let self_len = self.len(); let rhs_len = rhs.len(); let new_len = self_len + rhs_len; self.reserve_additional(rhs.len()); unsafe { // Note: infallible. let self_p = self.as_mut_ptr(); let rhs_p = rhs.as_ptr(); ptr::copy_memory(ptr::mut_offset(self_p, self_len as int), rhs_p, rhs_len); self.set_len(new_len); rhs.set_len(0); } } fn pop_opt(&mut self) -> Option { match self.len() { 0 => None, ln => { let valptr = ptr::to_mut_unsafe_ptr(&mut self[ln - 1u]); unsafe { self.set_len(ln - 1u); Some(ptr::read_ptr(&*valptr)) } } } } #[inline] fn pop(&mut self) -> T { self.pop_opt().expect("pop: empty vector") } #[inline] fn shift(&mut self) -> T { self.shift_opt().expect("shift: empty vector") } fn shift_opt(&mut self) -> Option { self.remove_opt(0) } fn unshift(&mut self, x: T) { self.insert(0, x) } fn insert(&mut self, i: uint, x: T) { let len = self.len(); assert!(i <= len); // space for the new element self.reserve_additional(1); unsafe { // infallible // The spot to put the new value let p = self.as_mut_ptr().offset(i as int); // Shift everything over to make space. (Duplicating the // `i`th element into two consecutive places.) ptr::copy_memory(p.offset(1), p, len - i); // Write it in, overwriting the first copy of the `i`th // element. intrinsics::move_val_init(&mut *p, x); self.set_len(len + 1); } } #[inline] fn remove(&mut self, i: uint) -> T { match self.remove_opt(i) { Some(t) => t, None => fail!("remove: the len is {} but the index is {}", self.len(), i) } } fn remove_opt(&mut self, i: uint) -> Option { let len = self.len(); if i < len { unsafe { // infallible // the place we are taking from. let ptr = self.as_mut_ptr().offset(i as int); // copy it out, unsafely having a copy of the value on // the stack and in the vector at the same time. let ret = Some(ptr::read_ptr(ptr as *T)); // Shift everything down to fill in that spot. ptr::copy_memory(ptr, ptr.offset(1), len - i - 1); self.set_len(len - 1); ret } } else { None } } fn swap_remove(&mut self, index: uint) -> T { let ln = self.len(); if index >= ln { fail!("vec::swap_remove - index {} >= length {}", index, ln); } if index < ln - 1 { self.swap(index, ln - 1); } self.pop() } fn truncate(&mut self, newlen: uint) { let oldlen = self.len(); assert!(newlen <= oldlen); unsafe { let p = self.as_mut_ptr(); // This loop is optimized out for non-drop types. for i in range(newlen, oldlen) { ptr::read_and_zero_ptr(p.offset(i as int)); } } unsafe { self.set_len(newlen); } } fn retain(&mut self, f: |t: &T| -> bool) { let len = self.len(); let mut deleted: uint = 0; for i in range(0u, len) { if !f(&self[i]) { deleted += 1; } else if deleted > 0 { self.swap(i - deleted, i); } } if deleted > 0 { self.truncate(len - deleted); } } #[inline] fn partition(self, f: |&T| -> bool) -> (~[T], ~[T]) { let mut lefts = ~[]; let mut rights = ~[]; for elt in self.move_iter() { if f(&elt) { lefts.push(elt); } else { rights.push(elt); } } (lefts, rights) } fn grow_fn(&mut self, n: uint, op: |uint| -> T) { let new_len = self.len() + n; self.reserve_at_least(new_len); let mut i: uint = 0u; while i < n { self.push(op(i)); i += 1u; } } #[inline] #[cfg(stage0)] unsafe fn set_len(&mut self, new_len: uint) { if owns_managed::() { let repr: **mut Box> = cast::transmute(self); (**repr).data.fill = new_len * mem::nonzero_size_of::(); } else { let repr: **mut Vec<()> = cast::transmute(self); (**repr).fill = new_len * mem::nonzero_size_of::(); } } #[inline] #[cfg(not(stage0))] unsafe fn set_len(&mut self, new_len: uint) { let repr: **mut Vec<()> = cast::transmute(self); (**repr).fill = new_len * mem::nonzero_size_of::(); } } impl Mutable for ~[T] { /// Clear the vector, removing all values. fn clear(&mut self) { self.truncate(0) } } /// Extension methods for owned vectors containing `Clone` elements. pub trait OwnedCopyableVector { /// Iterates over the slice `rhs`, copies each element, and then appends it to /// the vector provided `v`. The `rhs` vector is traversed in-order. /// /// # Example /// /// ```rust /// let mut a = ~[1]; /// a.push_all([2, 3, 4]); /// assert!(a == ~[1, 2, 3, 4]); /// ``` fn push_all(&mut self, rhs: &[T]); /** * Expands a vector in place, initializing the new elements to a given value * * # Arguments * * * n - The number of elements to add * * initval - The value for the new elements */ fn grow(&mut self, n: uint, initval: &T); /** * Sets the value of a vector element at a given index, growing the vector as * needed * * Sets the element at position `index` to `val`. If `index` is past the end * of the vector, expands the vector by replicating `initval` to fill the * intervening space. */ fn grow_set(&mut self, index: uint, initval: &T, val: T); } impl OwnedCopyableVector for ~[T] { #[inline] fn push_all(&mut self, rhs: &[T]) { let new_len = self.len() + rhs.len(); self.reserve(new_len); for elt in rhs.iter() { self.push((*elt).clone()) } } fn grow(&mut self, n: uint, initval: &T) { let new_len = self.len() + n; self.reserve_at_least(new_len); let mut i: uint = 0u; while i < n { self.push((*initval).clone()); i += 1u; } } fn grow_set(&mut self, index: uint, initval: &T, val: T) { let l = self.len(); if index >= l { self.grow(index - l + 1u, initval); } self[index] = val; } } /// Extension methods for owned vectors containing `Eq` elements. pub trait OwnedEqVector { /** * Remove consecutive repeated elements from a vector; if the vector is * sorted, this removes all duplicates. */ fn dedup(&mut self); } impl OwnedEqVector for ~[T] { fn dedup(&mut self) { unsafe { // Although we have a mutable reference to `self`, we cannot make // *arbitrary* changes. The `Eq` comparisons could fail, so we // must ensure that the vector is in a valid state at all time. // // The way that we handle this is by using swaps; we iterate // over all the elements, swapping as we go so that at the end // the elements we wish to keep are in the front, and those we // wish to reject are at the back. We can then truncate the // vector. This operation is still O(n). // // Example: We start in this state, where `r` represents "next // read" and `w` represents "next_write`. // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], tis is not a duplicate, so // we swap self[r] and self[w] (no effect as r==w) and then increment both // r and w, leaving us with: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this value is a duplicate, // so we increment `r` but leave everything else unchanged: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this is not a duplicate, // so swap self[r] and self[w] and advance r and w: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 2 | 1 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Not a duplicate, repeat: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 2 | 3 | 1 | 3 | // +---+---+---+---+---+---+ // w // // Duplicate, advance r. End of vec. Truncate to w. let ln = self.len(); if ln < 1 { return; } // Avoid bounds checks by using unsafe pointers. let p = self.as_mut_ptr(); let mut r = 1; let mut w = 1; while r < ln { let p_r = ptr::mut_offset(p, r as int); let p_wm1 = ptr::mut_offset(p, (w - 1) as int); if *p_r != *p_wm1 { if r != w { let p_w = ptr::mut_offset(p_wm1, 1); util::swap(&mut *p_r, &mut *p_w); } w += 1; } r += 1; } self.truncate(w); } } } fn merge_sort(v: &mut [T], compare: |&T, &T| -> Ordering) { // warning: this wildly uses unsafe. static INSERTION: uint = 8; let len = v.len(); // allocate some memory to use as scratch memory, we keep the // length 0 so we can keep shallow copies of the contents of `v` // without risking the dtors running on an object twice if // `compare` fails. let mut working_space = with_capacity(2 * len); // these both are buffers of length `len`. let mut buf_dat = working_space.as_mut_ptr(); let mut buf_tmp = unsafe {buf_dat.offset(len as int)}; // length `len`. let buf_v = v.as_ptr(); // step 1. sort short runs with insertion sort. This takes the // values from `v` and sorts them into `buf_dat`, leaving that // with sorted runs of length INSERTION. // We could hardcode the sorting comparisons here, and we could // manipulate/step the pointers themselves, rather than repeatedly // .offset-ing. for start in range_step(0, len, INSERTION) { // start <= i <= len; for i in range(start, cmp::min(start + INSERTION, len)) { // j satisfies: start <= j <= i; let mut j = i as int; unsafe { // `i` is in bounds. let read_ptr = buf_v.offset(i as int); // find where to insert, we need to do strict <, // rather than <=, to maintain stability. // start <= j - 1 < len, so .offset(j - 1) is in // bounds. while j > start as int && compare(&*read_ptr, &*buf_dat.offset(j - 1)) == Less { j -= 1; } // shift everything to the right, to make space to // insert this value. // j + 1 could be `len` (for the last `i`), but in // that case, `i == j` so we don't copy. The // `.offset(j)` is always in bounds. ptr::copy_memory(buf_dat.offset(j + 1), buf_dat.offset(j), i - j as uint); ptr::copy_nonoverlapping_memory(buf_dat.offset(j), read_ptr, 1); } } } // step 2. merge the sorted runs. let mut width = INSERTION; while width < len { // merge the sorted runs of length `width` in `buf_dat` two at // a time, placing the result in `buf_tmp`. // 0 <= start <= len. for start in range_step(0, len, 2 * width) { // manipulate pointers directly for speed (rather than // using a `for` loop with `range` and `.offset` inside // that loop). unsafe { // the end of the first run & start of the // second. Offset of `len` is defined, since this is // precisely one byte past the end of the object. let right_start = buf_dat.offset(cmp::min(start + width, len) as int); // end of the second. Similar reasoning to the above re safety. let right_end_idx = cmp::min(start + 2 * width, len); let right_end = buf_dat.offset(right_end_idx as int); // the pointers to the elements under consideration // from the two runs. // both of these are in bounds. let mut left = buf_dat.offset(start as int); let mut right = right_start; // where we're putting the results, it is a run of // length `2*width`, so we step it once for each step // of either `left` or `right`. `buf_tmp` has length // `len`, so these are in bounds. let mut out = buf_tmp.offset(start as int); let out_end = buf_tmp.offset(right_end_idx as int); while out < out_end { // Either the left or the right run are exhausted, // so just copy the remainder from the other run // and move on; this gives a huge speed-up (order // of 25%) for mostly sorted vectors (the best // case). if left == right_start { // the number remaining in this run. let elems = (right_end as uint - right as uint) / mem::size_of::(); ptr::copy_nonoverlapping_memory(out, right, elems); break; } else if right == right_end { let elems = (right_start as uint - left as uint) / mem::size_of::(); ptr::copy_nonoverlapping_memory(out, left, elems); break; } // check which side is smaller, and that's the // next element for the new run. // `left < right_start` and `right < right_end`, // so these are valid. let to_copy = if compare(&*left, &*right) == Greater { step(&mut right) } else { step(&mut left) }; ptr::copy_nonoverlapping_memory(out, to_copy, 1); step(&mut out); } } } util::swap(&mut buf_dat, &mut buf_tmp); width *= 2; } // write the result to `v` in one go, so that there are never two copies // of the same object in `v`. unsafe { ptr::copy_nonoverlapping_memory(v.as_mut_ptr(), buf_dat, len); } // increment the pointer, returning the old pointer. #[inline(always)] unsafe fn step(ptr: &mut *mut T) -> *mut T { let old = *ptr; *ptr = ptr.offset(1); old } } /// Extension methods for vectors such that their elements are /// mutable. pub trait MutableVector<'a, T> { /// Work with `self` as a mut slice. /// Primarily intended for getting a &mut [T] from a [T, ..N]. fn as_mut_slice(self) -> &'a mut [T]; /// Return a slice that points into another slice. fn mut_slice(self, start: uint, end: uint) -> &'a mut [T]; /** * Returns a slice of self from `start` to the end of the vec. * * Fails when `start` points outside the bounds of self. */ fn mut_slice_from(self, start: uint) -> &'a mut [T]; /** * Returns a slice of self from the start of the vec to `end`. * * Fails when `end` points outside the bounds of self. */ fn mut_slice_to(self, end: uint) -> &'a mut [T]; /// Returns an iterator that allows modifying each value fn mut_iter(self) -> VecMutIterator<'a, T>; /// Returns a mutable pointer to the last item in the vector. fn mut_last(self) -> &'a mut T; /// Returns a reversed iterator that allows modifying each value fn mut_rev_iter(self) -> MutRevIterator<'a, T>; /// Returns an iterator over the mutable subslices of the vector /// which are separated by elements that match `pred`. The /// matched element is not contained in the subslices. fn mut_split(self, pred: 'a |&T| -> bool) -> MutSplitIterator<'a, T>; /** * Returns an iterator over `size` elements of the vector at a time. * The chunks are mutable and do not overlap. If `size` does not divide the * length of the vector, then the last chunk will not have length * `size`. * * # Failure * * Fails if `size` is 0. */ fn mut_chunks(self, chunk_size: uint) -> MutChunkIter<'a, T>; /** * Returns a mutable reference to the first element in this slice * and adjusts the slice in place so that it no longer contains * that element. O(1). * * Equivalent to: * * ``` * let head = &mut self[0]; * *self = self.mut_slice_from(1); * head * ``` * * Fails if slice is empty. */ fn mut_shift_ref(&mut self) -> &'a mut T; /** * Returns a mutable reference to the last element in this slice * and adjusts the slice in place so that it no longer contains * that element. O(1). * * Equivalent to: * * ``` * let tail = &mut self[self.len() - 1]; * *self = self.mut_slice_to(self.len() - 1); * tail * ``` * * Fails if slice is empty. */ fn mut_pop_ref(&mut self) -> &'a mut T; /// Swaps two elements in a vector. /// /// Fails if `a` or `b` are out of bounds. /// /// # Arguments /// /// * a - The index of the first element /// * b - The index of the second element /// /// # Example /// /// ```rust /// let mut v = ["a", "b", "c", "d"]; /// v.swap(1, 3); /// assert_eq!(v, ["a", "d", "c", "b"]); /// ``` fn swap(self, a: uint, b: uint); /// Divides one `&mut` into two at an index. /// /// The first will contain all indices from `[0, mid)` (excluding /// the index `mid` itself) and the second will contain all /// indices from `[mid, len)` (excluding the index `len` itself). /// /// Fails if `mid > len`. /// /// # Example /// /// ```rust /// let mut v = [1, 2, 3, 4, 5, 6]; /// /// // scoped to restrict the lifetime of the borrows /// { /// let (left, right) = v.mut_split_at(0); /// assert_eq!(left, &mut []); /// assert_eq!(right, &mut [1, 2, 3, 4, 5, 6]); /// } /// /// { /// let (left, right) = v.mut_split_at(2); /// assert_eq!(left, &mut [1, 2]); /// assert_eq!(right, &mut [3, 4, 5, 6]); /// } /// /// { /// let (left, right) = v.mut_split_at(6); /// assert_eq!(left, &mut [1, 2, 3, 4, 5, 6]); /// assert_eq!(right, &mut []); /// } /// ``` fn mut_split_at(self, mid: uint) -> (&'a mut [T], &'a mut [T]); /// Reverse the order of elements in a vector, in place. /// /// # Example /// /// ```rust /// let mut v = [1, 2, 3]; /// v.reverse(); /// assert_eq!(v, [3, 2, 1]); /// ``` fn reverse(self); /// Sort the vector, in place, using `compare` to compare /// elements. /// /// This sort is `O(n log n)` worst-case and stable, but allocates /// approximately `2 * n`, where `n` is the length of `self`. /// /// # Example /// /// ```rust /// let mut v = [5i, 4, 1, 3, 2]; /// v.sort_by(|a, b| a.cmp(b)); /// assert_eq!(v, [1, 2, 3, 4, 5]); /// /// // reverse sorting /// v.sort_by(|a, b| b.cmp(a)); /// assert_eq!(v, [5, 4, 3, 2, 1]); /// ``` fn sort_by(self, compare: |&T, &T| -> Ordering); /** * Consumes `src` and moves as many elements as it can into `self` * from the range [start,end). * * Returns the number of elements copied (the shorter of self.len() * and end - start). * * # Arguments * * * src - A mutable vector of `T` * * start - The index into `src` to start copying from * * end - The index into `str` to stop copying from */ fn move_from(self, src: ~[T], start: uint, end: uint) -> uint; /// Returns an unsafe mutable pointer to the element in index unsafe fn unsafe_mut_ref(self, index: uint) -> *mut T; /// Return an unsafe mutable pointer to the vector's buffer. /// /// The caller must ensure that the vector outlives the pointer this /// function returns, or else it will end up pointing to garbage. /// /// Modifying the vector may cause its buffer to be reallocated, which /// would also make any pointers to it invalid. #[inline] fn as_mut_ptr(self) -> *mut T; /// Unsafely sets the element in index to the value. /// /// This performs no bounds checks, and it is undefined behaviour /// if `index` is larger than the length of `self`. However, it /// does run the destructor at `index`. It is equivalent to /// `self[index] = val`. /// /// # Example /// /// ```rust /// let mut v = ~[~"foo", ~"bar", ~"baz"]; /// /// unsafe { /// // `~"baz"` is deallocated. /// v.unsafe_set(2, ~"qux"); /// /// // Out of bounds: could cause a crash, or overwriting /// // other data, or something else. /// // v.unsafe_set(10, ~"oops"); /// } /// ``` unsafe fn unsafe_set(self, index: uint, val: T); /// Unchecked vector index assignment. Does not drop the /// old value and hence is only suitable when the vector /// is newly allocated. /// /// # Example /// /// ```rust /// let mut v = [~"foo", ~"bar"]; /// /// // memory leak! `~"bar"` is not deallocated. /// unsafe { v.init_elem(1, ~"baz"); } /// ``` unsafe fn init_elem(self, i: uint, val: T); /// Copies raw bytes from `src` to `self`. /// /// This does not run destructors on the overwritten elements, and /// ignores move semantics. `self` and `src` must not /// overlap. Fails if `self` is shorter than `src`. unsafe fn copy_memory(self, src: &[T]); } impl<'a,T> MutableVector<'a, T> for &'a mut [T] { #[inline] fn as_mut_slice(self) -> &'a mut [T] { self } fn mut_slice(self, start: uint, end: uint) -> &'a mut [T] { assert!(start <= end); assert!(end <= self.len()); unsafe { cast::transmute(Slice { data: self.as_mut_ptr().offset(start as int) as *T, len: (end - start) }) } } #[inline] fn mut_slice_from(self, start: uint) -> &'a mut [T] { let len = self.len(); self.mut_slice(start, len) } #[inline] fn mut_slice_to(self, end: uint) -> &'a mut [T] { self.mut_slice(0, end) } #[inline] fn mut_split_at(self, mid: uint) -> (&'a mut [T], &'a mut [T]) { unsafe { let len = self.len(); let self2: &'a mut [T] = cast::transmute_copy(&self); (self.mut_slice(0, mid), self2.mut_slice(mid, len)) } } #[inline] fn mut_iter(self) -> VecMutIterator<'a, T> { unsafe { let p = self.as_mut_ptr(); if mem::size_of::() == 0 { VecMutIterator{ptr: p, end: (p as uint + self.len()) as *mut T, lifetime: None} } else { VecMutIterator{ptr: p, end: p.offset(self.len() as int), lifetime: None} } } } #[inline] fn mut_last(self) -> &'a mut T { let len = self.len(); if len == 0 { fail!("mut_last: empty vector") } &mut self[len - 1] } #[inline] fn mut_rev_iter(self) -> MutRevIterator<'a, T> { self.mut_iter().invert() } #[inline] fn mut_split(self, pred: 'a |&T| -> bool) -> MutSplitIterator<'a, T> { MutSplitIterator { v: self, pred: pred, finished: false } } #[inline] fn mut_chunks(self, chunk_size: uint) -> MutChunkIter<'a, T> { assert!(chunk_size > 0); MutChunkIter { v: self, chunk_size: chunk_size } } fn mut_shift_ref(&mut self) -> &'a mut T { unsafe { let s: &mut Slice = cast::transmute(self); cast::transmute_mut(&*raw::shift_ptr(s)) } } fn mut_pop_ref(&mut self) -> &'a mut T { unsafe { let s: &mut Slice = cast::transmute(self); cast::transmute_mut(&*raw::pop_ptr(s)) } } fn swap(self, a: uint, b: uint) { unsafe { // Can't take two mutable loans from one vector, so instead just cast // them to their raw pointers to do the swap let pa: *mut T = &mut self[a]; let pb: *mut T = &mut self[b]; ptr::swap_ptr(pa, pb); } } fn reverse(self) { let mut i: uint = 0; let ln = self.len(); while i < ln / 2 { self.swap(i, ln - i - 1); i += 1; } } #[inline] fn sort_by(self, compare: |&T, &T| -> Ordering) { merge_sort(self, compare) } #[inline] fn move_from(self, mut src: ~[T], start: uint, end: uint) -> uint { for (a, b) in self.mut_iter().zip(src.mut_slice(start, end).mut_iter()) { util::swap(a, b); } cmp::min(self.len(), end-start) } #[inline] unsafe fn unsafe_mut_ref(self, index: uint) -> *mut T { ptr::mut_offset(self.repr().data as *mut T, index as int) } #[inline] fn as_mut_ptr(self) -> *mut T { self.repr().data as *mut T } #[inline] unsafe fn unsafe_set(self, index: uint, val: T) { *self.unsafe_mut_ref(index) = val; } #[inline] unsafe fn init_elem(self, i: uint, val: T) { intrinsics::move_val_init(&mut (*self.as_mut_ptr().offset(i as int)), val); } #[inline] unsafe fn copy_memory(self, src: &[T]) { let len_src = src.len(); assert!(self.len() >= len_src); ptr::copy_nonoverlapping_memory(self.as_mut_ptr(), src.as_ptr(), len_src) } } /// Trait for &[T] where T is Cloneable pub trait MutableCloneableVector { /// Copies as many elements from `src` as it can into `self` (the /// shorter of `self.len()` and `src.len()`). Returns the number /// of elements copied. /// /// # Example /// /// ```rust /// use std::vec::MutableCloneableVector; /// /// let mut dst = [0, 0, 0]; /// let src = [1, 2]; /// /// assert_eq!(dst.copy_from(src), 2); /// assert_eq!(dst, [1, 2, 0]); /// /// let src2 = [3, 4, 5, 6]; /// assert_eq!(dst.copy_from(src2), 3); /// assert_eq!(dst, [3, 4, 5]); /// ``` fn copy_from(self, &[T]) -> uint; } impl<'a, T:Clone> MutableCloneableVector for &'a mut [T] { #[inline] fn copy_from(self, src: &[T]) -> uint { for (a, b) in self.mut_iter().zip(src.iter()) { a.clone_from(b); } cmp::min(self.len(), src.len()) } } /// Methods for mutable vectors with orderable elements, such as /// in-place sorting. pub trait MutableTotalOrdVector { /// Sort the vector, in place. /// /// This is equivalent to `self.sort_by(|a, b| a.cmp(b))`. /// /// # Example /// /// ```rust /// let mut v = [-5, 4, 1, -3, 2]; /// /// v.sort(); /// assert_eq!(v, [-5, -3, 1, 2, 4]); /// ``` fn sort(self); } impl<'a, T: TotalOrd> MutableTotalOrdVector for &'a mut [T] { #[inline] fn sort(self) { self.sort_by(|a,b| a.cmp(b)) } } /** * Constructs a vector from an unsafe pointer to a buffer * * # Arguments * * * ptr - An unsafe pointer to a buffer of `T` * * elts - The number of elements in the buffer */ // Wrapper for fn in raw: needs to be called by net_tcp::on_tcp_read_cb pub unsafe fn from_buf(ptr: *T, elts: uint) -> ~[T] { raw::from_buf_raw(ptr, elts) } /// Unsafe operations pub mod raw { use cast; use ptr; use vec::{with_capacity, MutableVector, OwnedVector}; use unstable::raw::Slice; /** * Form a slice from a pointer and length (as a number of units, * not bytes). */ #[inline] pub unsafe fn buf_as_slice(p: *T, len: uint, f: |v: &[T]| -> U) -> U { f(cast::transmute(Slice { data: p, len: len })) } /** * Form a slice from a pointer and length (as a number of units, * not bytes). */ #[inline] pub unsafe fn mut_buf_as_slice( p: *mut T, len: uint, f: |v: &mut [T]| -> U) -> U { f(cast::transmute(Slice { data: p as *T, len: len })) } /** * Constructs a vector from an unsafe pointer to a buffer * * # Arguments * * * ptr - An unsafe pointer to a buffer of `T` * * elts - The number of elements in the buffer */ // Was in raw, but needs to be called by net_tcp::on_tcp_read_cb #[inline] pub unsafe fn from_buf_raw(ptr: *T, elts: uint) -> ~[T] { let mut dst = with_capacity(elts); dst.set_len(elts); ptr::copy_memory(dst.as_mut_ptr(), ptr, elts); dst } /** * Returns a pointer to first element in slice and adjusts * slice so it no longer contains that element. Fails if * slice is empty. O(1). */ pub unsafe fn shift_ptr(slice: &mut Slice) -> *T { if slice.len == 0 { fail!("shift on empty slice"); } let head: *T = slice.data; slice.data = ptr::offset(slice.data, 1); slice.len -= 1; head } /** * Returns a pointer to last element in slice and adjusts * slice so it no longer contains that element. Fails if * slice is empty. O(1). */ pub unsafe fn pop_ptr(slice: &mut Slice) -> *T { if slice.len == 0 { fail!("pop on empty slice"); } let tail: *T = ptr::offset(slice.data, (slice.len - 1) as int); slice.len -= 1; tail } } /// Operations on `[u8]`. pub mod bytes { use container::Container; use vec::{MutableVector, OwnedVector, ImmutableVector}; use ptr; use ptr::RawPtr; /// A trait for operations on mutable `[u8]`s. pub trait MutableByteVector { /// Sets all bytes of the receiver to the given value. fn set_memory(self, value: u8); } impl<'a> MutableByteVector for &'a mut [u8] { #[inline] fn set_memory(self, value: u8) { unsafe { ptr::set_memory(self.as_mut_ptr(), value, self.len()) }; } } /// Copies data from `src` to `dst` /// /// `src` and `dst` must not overlap. Fails if the length of `dst` /// is less than the length of `src`. #[inline] pub fn copy_memory(dst: &mut [u8], src: &[u8]) { // Bound checks are done at .copy_memory. unsafe { dst.copy_memory(src) } } /** * Allocate space in `dst` and append the data to `src`. */ #[inline] pub fn push_bytes(dst: &mut ~[u8], src: &[u8]) { let old_len = dst.len(); dst.reserve_additional(src.len()); unsafe { ptr::copy_memory(dst.as_mut_ptr().offset(old_len as int), src.as_ptr(), src.len()); dst.set_len(old_len + src.len()); } } } impl Clone for ~[A] { #[inline] fn clone(&self) -> ~[A] { self.iter().map(|item| item.clone()).collect() } fn clone_from(&mut self, source: &~[A]) { if self.len() < source.len() { *self = source.clone() } else { self.truncate(source.len()); for (x, y) in self.mut_iter().zip(source.iter()) { x.clone_from(y); } } } } impl DeepClone for ~[A] { #[inline] fn deep_clone(&self) -> ~[A] { self.iter().map(|item| item.deep_clone()).collect() } fn deep_clone_from(&mut self, source: &~[A]) { if self.len() < source.len() { *self = source.deep_clone() } else { self.truncate(source.len()); for (x, y) in self.mut_iter().zip(source.iter()) { x.deep_clone_from(y); } } } } // This works because every lifetime is a sub-lifetime of 'static impl<'a, A> Default for &'a [A] { fn default() -> &'a [A] { &'a [] } } impl Default for ~[A] { fn default() -> ~[A] { ~[] } } impl Default for @[A] { fn default() -> @[A] { @[] } } macro_rules! iterator { (struct $name:ident -> $ptr:ty, $elem:ty) => { /// An iterator for iterating over a vector. pub struct $name<'a, T> { priv ptr: $ptr, priv end: $ptr, priv lifetime: Option<$elem> // FIXME: #5922 } impl<'a, T> Iterator<$elem> for $name<'a, T> { #[inline] fn next(&mut self) -> Option<$elem> { // could be implemented with slices, but this avoids bounds checks unsafe { if self.ptr == self.end { None } else { let old = self.ptr; self.ptr = if mem::size_of::() == 0 { // purposefully don't use 'ptr.offset' because for // vectors with 0-size elements this would return the // same pointer. cast::transmute(self.ptr as uint + 1) } else { self.ptr.offset(1) }; Some(cast::transmute(old)) } } } #[inline] fn size_hint(&self) -> (uint, Option) { let diff = (self.end as uint) - (self.ptr as uint); let exact = diff / mem::nonzero_size_of::(); (exact, Some(exact)) } } impl<'a, T> DoubleEndedIterator<$elem> for $name<'a, T> { #[inline] fn next_back(&mut self) -> Option<$elem> { // could be implemented with slices, but this avoids bounds checks unsafe { if self.end == self.ptr { None } else { self.end = if mem::size_of::() == 0 { // See above for why 'ptr.offset' isn't used cast::transmute(self.end as uint - 1) } else { self.end.offset(-1) }; Some(cast::transmute(self.end)) } } } } } } impl<'a, T> RandomAccessIterator<&'a T> for VecIterator<'a, T> { #[inline] fn indexable(&self) -> uint { let (exact, _) = self.size_hint(); exact } #[inline] fn idx(&self, index: uint) -> Option<&'a T> { unsafe { if index < self.indexable() { cast::transmute(self.ptr.offset(index as int)) } else { None } } } } iterator!{struct VecIterator -> *T, &'a T} pub type RevIterator<'a, T> = Invert>; impl<'a, T> ExactSize<&'a T> for VecIterator<'a, T> {} impl<'a, T> ExactSize<&'a mut T> for VecMutIterator<'a, T> {} impl<'a, T> Clone for VecIterator<'a, T> { fn clone(&self) -> VecIterator<'a, T> { *self } } iterator!{struct VecMutIterator -> *mut T, &'a mut T} pub type MutRevIterator<'a, T> = Invert>; /// An iterator over the subslices of the vector which are separated /// by elements that match `pred`. pub struct MutSplitIterator<'a, T> { priv v: &'a mut [T], priv pred: 'a |t: &T| -> bool, priv finished: bool } impl<'a, T> Iterator<&'a mut [T]> for MutSplitIterator<'a, T> { #[inline] fn next(&mut self) -> Option<&'a mut [T]> { if self.finished { return None; } match self.v.iter().position(|x| (self.pred)(x)) { None => { self.finished = true; let tmp = util::replace(&mut self.v, &mut []); let len = tmp.len(); let (head, tail) = tmp.mut_split_at(len); self.v = tail; Some(head) } Some(idx) => { let tmp = util::replace(&mut self.v, &mut []); let (head, tail) = tmp.mut_split_at(idx); self.v = tail.mut_slice_from(1); Some(head) } } } #[inline] fn size_hint(&self) -> (uint, Option) { if self.finished { (0, Some(0)) } else { // if the predicate doesn't match anything, we yield one slice // if it matches every element, we yield len+1 empty slices. (1, Some(self.v.len() + 1)) } } } impl<'a, T> DoubleEndedIterator<&'a mut [T]> for MutSplitIterator<'a, T> { #[inline] fn next_back(&mut self) -> Option<&'a mut [T]> { if self.finished { return None; } match self.v.iter().rposition(|x| (self.pred)(x)) { None => { self.finished = true; let tmp = util::replace(&mut self.v, &mut []); Some(tmp) } Some(idx) => { let tmp = util::replace(&mut self.v, &mut []); let (head, tail) = tmp.mut_split_at(idx); self.v = head; Some(tail.mut_slice_from(1)) } } } } /// An iterator over a vector in (non-overlapping) mutable chunks (`size` elements at a time). When /// the vector len is not evenly divided by the chunk size, the last slice of the iteration will be /// the remainder. pub struct MutChunkIter<'a, T> { priv v: &'a mut [T], priv chunk_size: uint } impl<'a, T> Iterator<&'a mut [T]> for MutChunkIter<'a, T> { #[inline] fn next(&mut self) -> Option<&'a mut [T]> { if self.v.len() == 0 { None } else { let sz = cmp::min(self.v.len(), self.chunk_size); let tmp = util::replace(&mut self.v, &mut []); let (head, tail) = tmp.mut_split_at(sz); self.v = tail; Some(head) } } #[inline] fn size_hint(&self) -> (uint, Option) { if self.v.len() == 0 { (0, Some(0)) } else { let (n, rem) = self.v.len().div_rem(&self.chunk_size); let n = if rem > 0 { n + 1 } else { n }; (n, Some(n)) } } } impl<'a, T> DoubleEndedIterator<&'a mut [T]> for MutChunkIter<'a, T> { #[inline] fn next_back(&mut self) -> Option<&'a mut [T]> { if self.v.len() == 0 { None } else { let remainder = self.v.len() % self.chunk_size; let sz = if remainder != 0 { remainder } else { self.chunk_size }; let tmp = util::replace(&mut self.v, &mut []); let tmp_len = tmp.len(); let (head, tail) = tmp.mut_split_at(tmp_len - sz); self.v = head; Some(tail) } } } /// An iterator that moves out of a vector. pub struct MoveIterator { priv allocation: *mut u8, // the block of memory allocated for the vector priv iter: VecIterator<'static, T> } impl Iterator for MoveIterator { #[inline] fn next(&mut self) -> Option { unsafe { self.iter.next().map(|x| ptr::read_ptr(x)) } } #[inline] fn size_hint(&self) -> (uint, Option) { self.iter.size_hint() } } impl DoubleEndedIterator for MoveIterator { #[inline] fn next_back(&mut self) -> Option { unsafe { self.iter.next_back().map(|x| ptr::read_ptr(x)) } } } #[unsafe_destructor] #[cfg(stage0)] impl Drop for MoveIterator { fn drop(&mut self) { // destroy the remaining elements for _x in *self {} unsafe { if owns_managed::() { local_free(self.allocation as *u8 as *c_char) } else { exchange_free(self.allocation as *u8 as *c_char) } } } } #[unsafe_destructor] #[cfg(not(stage0))] impl Drop for MoveIterator { fn drop(&mut self) { // destroy the remaining elements for _x in *self {} unsafe { exchange_free(self.allocation as *u8 as *c_char) } } } /// An iterator that moves out of a vector in reverse order. pub type MoveRevIterator = Invert>; impl FromIterator for ~[A] { fn from_iterator>(iterator: &mut T) -> ~[A] { let (lower, _) = iterator.size_hint(); let mut xs = with_capacity(lower); for x in *iterator { xs.push(x); } xs } } impl Extendable for ~[A] { fn extend>(&mut self, iterator: &mut T) { let (lower, _) = iterator.size_hint(); let len = self.len(); self.reserve(len + lower); for x in *iterator { self.push(x); } } } #[cfg(test)] mod tests { use prelude::*; use mem; use vec::*; use cmp::*; use rand::{Rng, task_rng}; fn square(n: uint) -> uint { n * n } fn square_ref(n: &uint) -> uint { square(*n) } fn is_odd(n: &uint) -> bool { *n % 2u == 1u } #[test] fn test_unsafe_ptrs() { unsafe { // Test on-stack copy-from-buf. let a = ~[1, 2, 3]; let mut ptr = a.as_ptr(); let b = from_buf(ptr, 3u); assert_eq!(b.len(), 3u); assert_eq!(b[0], 1); assert_eq!(b[1], 2); assert_eq!(b[2], 3); // Test on-heap copy-from-buf. let c = ~[1, 2, 3, 4, 5]; ptr = c.as_ptr(); let d = from_buf(ptr, 5u); assert_eq!(d.len(), 5u); assert_eq!(d[0], 1); assert_eq!(d[1], 2); assert_eq!(d[2], 3); assert_eq!(d[3], 4); assert_eq!(d[4], 5); } } #[test] fn test_from_fn() { // Test on-stack from_fn. let mut v = from_fn(3u, square); assert_eq!(v.len(), 3u); assert_eq!(v[0], 0u); assert_eq!(v[1], 1u); assert_eq!(v[2], 4u); // Test on-heap from_fn. v = from_fn(5u, square); assert_eq!(v.len(), 5u); assert_eq!(v[0], 0u); assert_eq!(v[1], 1u); assert_eq!(v[2], 4u); assert_eq!(v[3], 9u); assert_eq!(v[4], 16u); } #[test] fn test_from_elem() { // Test on-stack from_elem. let mut v = from_elem(2u, 10u); assert_eq!(v.len(), 2u); assert_eq!(v[0], 10u); assert_eq!(v[1], 10u); // Test on-heap from_elem. v = from_elem(6u, 20u); assert_eq!(v[0], 20u); assert_eq!(v[1], 20u); assert_eq!(v[2], 20u); assert_eq!(v[3], 20u); assert_eq!(v[4], 20u); assert_eq!(v[5], 20u); } #[test] fn test_is_empty() { let xs: [int, ..0] = []; assert!(xs.is_empty()); assert!(![0].is_empty()); } #[test] fn test_len_divzero() { type Z = [i8, ..0]; let v0 : &[Z] = &[]; let v1 : &[Z] = &[[]]; let v2 : &[Z] = &[[], []]; assert_eq!(mem::size_of::(), 0); assert_eq!(v0.len(), 0); assert_eq!(v1.len(), 1); assert_eq!(v2.len(), 2); } #[test] fn test_get_opt() { let mut a = ~[11]; assert_eq!(a.get_opt(1), None); a = ~[11, 12]; assert_eq!(a.get_opt(1).unwrap(), &12); a = ~[11, 12, 13]; assert_eq!(a.get_opt(1).unwrap(), &12); } #[test] fn test_head() { let mut a = ~[11]; assert_eq!(a.head(), &11); a = ~[11, 12]; assert_eq!(a.head(), &11); } #[test] #[should_fail] fn test_head_empty() { let a: ~[int] = ~[]; a.head(); } #[test] fn test_head_opt() { let mut a = ~[]; assert_eq!(a.head_opt(), None); a = ~[11]; assert_eq!(a.head_opt().unwrap(), &11); a = ~[11, 12]; assert_eq!(a.head_opt().unwrap(), &11); } #[test] fn test_tail() { let mut a = ~[11]; assert_eq!(a.tail(), &[]); a = ~[11, 12]; assert_eq!(a.tail(), &[12]); } #[test] #[should_fail] fn test_tail_empty() { let a: ~[int] = ~[]; a.tail(); } #[test] fn test_tailn() { let mut a = ~[11, 12, 13]; assert_eq!(a.tailn(0), &[11, 12, 13]); a = ~[11, 12, 13]; assert_eq!(a.tailn(2), &[13]); } #[test] #[should_fail] fn test_tailn_empty() { let a: ~[int] = ~[]; a.tailn(2); } #[test] fn test_init() { let mut a = ~[11]; assert_eq!(a.init(), &[]); a = ~[11, 12]; assert_eq!(a.init(), &[11]); } #[test] #[should_fail] fn test_init_empty() { let a: ~[int] = ~[]; a.init(); } #[test] fn test_initn() { let mut a = ~[11, 12, 13]; assert_eq!(a.initn(0), &[11, 12, 13]); a = ~[11, 12, 13]; assert_eq!(a.initn(2), &[11]); } #[test] #[should_fail] fn test_initn_empty() { let a: ~[int] = ~[]; a.initn(2); } #[test] fn test_last() { let mut a = ~[11]; assert_eq!(a.last(), &11); a = ~[11, 12]; assert_eq!(a.last(), &12); } #[test] #[should_fail] fn test_last_empty() { let a: ~[int] = ~[]; a.last(); } #[test] fn test_last_opt() { let mut a = ~[]; assert_eq!(a.last_opt(), None); a = ~[11]; assert_eq!(a.last_opt().unwrap(), &11); a = ~[11, 12]; assert_eq!(a.last_opt().unwrap(), &12); } #[test] fn test_slice() { // Test fixed length vector. let vec_fixed = [1, 2, 3, 4]; let v_a = vec_fixed.slice(1u, vec_fixed.len()).to_owned(); assert_eq!(v_a.len(), 3u); assert_eq!(v_a[0], 2); assert_eq!(v_a[1], 3); assert_eq!(v_a[2], 4); // Test on stack. let vec_stack = &[1, 2, 3]; let v_b = vec_stack.slice(1u, 3u).to_owned(); assert_eq!(v_b.len(), 2u); assert_eq!(v_b[0], 2); assert_eq!(v_b[1], 3); // Test on managed heap. let vec_managed = @[1, 2, 3, 4, 5]; let v_c = vec_managed.slice(0u, 3u).to_owned(); assert_eq!(v_c.len(), 3u); assert_eq!(v_c[0], 1); assert_eq!(v_c[1], 2); assert_eq!(v_c[2], 3); // Test on exchange heap. let vec_unique = ~[1, 2, 3, 4, 5, 6]; let v_d = vec_unique.slice(1u, 6u).to_owned(); assert_eq!(v_d.len(), 5u); assert_eq!(v_d[0], 2); assert_eq!(v_d[1], 3); assert_eq!(v_d[2], 4); assert_eq!(v_d[3], 5); assert_eq!(v_d[4], 6); } #[test] fn test_slice_from() { let vec = &[1, 2, 3, 4]; assert_eq!(vec.slice_from(0), vec); assert_eq!(vec.slice_from(2), &[3, 4]); assert_eq!(vec.slice_from(4), &[]); } #[test] fn test_slice_to() { let vec = &[1, 2, 3, 4]; assert_eq!(vec.slice_to(4), vec); assert_eq!(vec.slice_to(2), &[1, 2]); assert_eq!(vec.slice_to(0), &[]); } #[test] fn test_pop() { // Test on-heap pop. let mut v = ~[1, 2, 3, 4, 5]; let e = v.pop(); assert_eq!(v.len(), 4u); assert_eq!(v[0], 1); assert_eq!(v[1], 2); assert_eq!(v[2], 3); assert_eq!(v[3], 4); assert_eq!(e, 5); } #[test] fn test_pop_opt() { let mut v = ~[5]; let e = v.pop_opt(); assert_eq!(v.len(), 0); assert_eq!(e, Some(5)); let f = v.pop_opt(); assert_eq!(f, None); let g = v.pop_opt(); assert_eq!(g, None); } #[test] fn test_swap_remove() { let mut v = ~[1, 2, 3, 4, 5]; let mut e = v.swap_remove(0); assert_eq!(v.len(), 4); assert_eq!(e, 1); assert_eq!(v[0], 5); e = v.swap_remove(3); assert_eq!(v.len(), 3); assert_eq!(e, 4); assert_eq!(v[0], 5); assert_eq!(v[1], 2); assert_eq!(v[2], 3); } #[test] fn test_swap_remove_noncopyable() { // Tests that we don't accidentally run destructors twice. let mut v = ~[::unstable::sync::Exclusive::new(()), ::unstable::sync::Exclusive::new(()), ::unstable::sync::Exclusive::new(())]; let mut _e = v.swap_remove(0); assert_eq!(v.len(), 2); _e = v.swap_remove(1); assert_eq!(v.len(), 1); _e = v.swap_remove(0); assert_eq!(v.len(), 0); } #[test] fn test_push() { // Test on-stack push(). let mut v = ~[]; v.push(1); assert_eq!(v.len(), 1u); assert_eq!(v[0], 1); // Test on-heap push(). v.push(2); assert_eq!(v.len(), 2u); assert_eq!(v[0], 1); assert_eq!(v[1], 2); } #[test] fn test_grow() { // Test on-stack grow(). let mut v = ~[]; v.grow(2u, &1); assert_eq!(v.len(), 2u); assert_eq!(v[0], 1); assert_eq!(v[1], 1); // Test on-heap grow(). v.grow(3u, &2); assert_eq!(v.len(), 5u); assert_eq!(v[0], 1); assert_eq!(v[1], 1); assert_eq!(v[2], 2); assert_eq!(v[3], 2); assert_eq!(v[4], 2); } #[test] fn test_grow_fn() { let mut v = ~[]; v.grow_fn(3u, square); assert_eq!(v.len(), 3u); assert_eq!(v[0], 0u); assert_eq!(v[1], 1u); assert_eq!(v[2], 4u); } #[test] fn test_grow_set() { let mut v = ~[1, 2, 3]; v.grow_set(4u, &4, 5); assert_eq!(v.len(), 5u); assert_eq!(v[0], 1); assert_eq!(v[1], 2); assert_eq!(v[2], 3); assert_eq!(v[3], 4); assert_eq!(v[4], 5); } #[test] fn test_truncate() { let mut v = ~[~6,~5,~4]; v.truncate(1); assert_eq!(v.len(), 1); assert_eq!(*(v[0]), 6); // If the unsafe block didn't drop things properly, we blow up here. } #[test] fn test_clear() { let mut v = ~[~6,~5,~4]; v.clear(); assert_eq!(v.len(), 0); // If the unsafe block didn't drop things properly, we blow up here. } #[test] fn test_dedup() { fn case(a: ~[uint], b: ~[uint]) { let mut v = a; v.dedup(); assert_eq!(v, b); } case(~[], ~[]); case(~[1], ~[1]); case(~[1,1], ~[1]); case(~[1,2,3], ~[1,2,3]); case(~[1,1,2,3], ~[1,2,3]); case(~[1,2,2,3], ~[1,2,3]); case(~[1,2,3,3], ~[1,2,3]); case(~[1,1,2,2,2,3,3], ~[1,2,3]); } #[test] fn test_dedup_unique() { let mut v0 = ~[~1, ~1, ~2, ~3]; v0.dedup(); let mut v1 = ~[~1, ~2, ~2, ~3]; v1.dedup(); let mut v2 = ~[~1, ~2, ~3, ~3]; v2.dedup(); /* * If the ~pointers were leaked or otherwise misused, valgrind and/or * rustrt should raise errors. */ } #[test] fn test_dedup_shared() { let mut v0 = ~[~1, ~1, ~2, ~3]; v0.dedup(); let mut v1 = ~[~1, ~2, ~2, ~3]; v1.dedup(); let mut v2 = ~[~1, ~2, ~3, ~3]; v2.dedup(); /* * If the pointers were leaked or otherwise misused, valgrind and/or * rustrt should raise errors. */ } #[test] fn test_map() { // Test on-stack map. let v = &[1u, 2u, 3u]; let mut w = v.map(square_ref); assert_eq!(w.len(), 3u); assert_eq!(w[0], 1u); assert_eq!(w[1], 4u); assert_eq!(w[2], 9u); // Test on-heap map. let v = ~[1u, 2u, 3u, 4u, 5u]; w = v.map(square_ref); assert_eq!(w.len(), 5u); assert_eq!(w[0], 1u); assert_eq!(w[1], 4u); assert_eq!(w[2], 9u); assert_eq!(w[3], 16u); assert_eq!(w[4], 25u); } #[test] fn test_retain() { let mut v = ~[1, 2, 3, 4, 5]; v.retain(is_odd); assert_eq!(v, ~[1, 3, 5]); } #[test] fn test_zip_unzip() { let z1 = ~[(1, 4), (2, 5), (3, 6)]; let (left, right) = unzip(z1.iter().map(|&x| x)); assert_eq!((1, 4), (left[0], right[0])); assert_eq!((2, 5), (left[1], right[1])); assert_eq!((3, 6), (left[2], right[2])); } #[test] fn test_element_swaps() { let mut v = [1, 2, 3]; for (i, (a, b)) in ElementSwaps::new(v.len()).enumerate() { v.swap(a, b); match i { 0 => assert_eq!(v, [1, 3, 2]), 1 => assert_eq!(v, [3, 1, 2]), 2 => assert_eq!(v, [3, 2, 1]), 3 => assert_eq!(v, [2, 3, 1]), 4 => assert_eq!(v, [2, 1, 3]), 5 => assert_eq!(v, [1, 2, 3]), _ => fail!(), } } } #[test] fn test_permutations() { use hashmap; { let v: [int, ..0] = []; let mut it = v.permutations(); assert_eq!(it.next(), None); } { let v = [~"Hello"]; let mut it = v.permutations(); assert_eq!(it.next(), None); } { let v = [1, 2, 3]; let mut it = v.permutations(); assert_eq!(it.next(), Some(~[1,2,3])); assert_eq!(it.next(), Some(~[1,3,2])); assert_eq!(it.next(), Some(~[3,1,2])); assert_eq!(it.next(), Some(~[3,2,1])); assert_eq!(it.next(), Some(~[2,3,1])); assert_eq!(it.next(), Some(~[2,1,3])); assert_eq!(it.next(), None); } { // check that we have N! unique permutations let mut set = hashmap::HashSet::new(); let v = ['A', 'B', 'C', 'D', 'E', 'F']; for perm in v.permutations() { set.insert(perm); } assert_eq!(set.len(), 2 * 3 * 4 * 5 * 6); } } #[test] fn test_position_elem() { assert!([].position_elem(&1).is_none()); let v1 = ~[1, 2, 3, 3, 2, 5]; assert_eq!(v1.position_elem(&1), Some(0u)); assert_eq!(v1.position_elem(&2), Some(1u)); assert_eq!(v1.position_elem(&5), Some(5u)); assert!(v1.position_elem(&4).is_none()); } #[test] fn test_bsearch_elem() { assert_eq!([1,2,3,4,5].bsearch_elem(&5), Some(4)); assert_eq!([1,2,3,4,5].bsearch_elem(&4), Some(3)); assert_eq!([1,2,3,4,5].bsearch_elem(&3), Some(2)); assert_eq!([1,2,3,4,5].bsearch_elem(&2), Some(1)); assert_eq!([1,2,3,4,5].bsearch_elem(&1), Some(0)); assert_eq!([2,4,6,8,10].bsearch_elem(&1), None); assert_eq!([2,4,6,8,10].bsearch_elem(&5), None); assert_eq!([2,4,6,8,10].bsearch_elem(&4), Some(1)); assert_eq!([2,4,6,8,10].bsearch_elem(&10), Some(4)); assert_eq!([2,4,6,8].bsearch_elem(&1), None); assert_eq!([2,4,6,8].bsearch_elem(&5), None); assert_eq!([2,4,6,8].bsearch_elem(&4), Some(1)); assert_eq!([2,4,6,8].bsearch_elem(&8), Some(3)); assert_eq!([2,4,6].bsearch_elem(&1), None); assert_eq!([2,4,6].bsearch_elem(&5), None); assert_eq!([2,4,6].bsearch_elem(&4), Some(1)); assert_eq!([2,4,6].bsearch_elem(&6), Some(2)); assert_eq!([2,4].bsearch_elem(&1), None); assert_eq!([2,4].bsearch_elem(&5), None); assert_eq!([2,4].bsearch_elem(&2), Some(0)); assert_eq!([2,4].bsearch_elem(&4), Some(1)); assert_eq!([2].bsearch_elem(&1), None); assert_eq!([2].bsearch_elem(&5), None); assert_eq!([2].bsearch_elem(&2), Some(0)); assert_eq!([].bsearch_elem(&1), None); assert_eq!([].bsearch_elem(&5), None); assert!([1,1,1,1,1].bsearch_elem(&1) != None); assert!([1,1,1,1,2].bsearch_elem(&1) != None); assert!([1,1,1,2,2].bsearch_elem(&1) != None); assert!([1,1,2,2,2].bsearch_elem(&1) != None); assert_eq!([1,2,2,2,2].bsearch_elem(&1), Some(0)); assert_eq!([1,2,3,4,5].bsearch_elem(&6), None); assert_eq!([1,2,3,4,5].bsearch_elem(&0), None); } #[test] fn test_reverse() { let mut v: ~[int] = ~[10, 20]; assert_eq!(v[0], 10); assert_eq!(v[1], 20); v.reverse(); assert_eq!(v[0], 20); assert_eq!(v[1], 10); let mut v3: ~[int] = ~[]; v3.reverse(); assert!(v3.is_empty()); } #[test] fn test_sort() { for len in range(4u, 25) { for _ in range(0, 100) { let mut v = task_rng().gen_vec::(len); let mut v1 = v.clone(); v.sort(); assert!(v.windows(2).all(|w| w[0] <= w[1])); v1.sort_by(|a, b| a.cmp(b)); assert!(v1.windows(2).all(|w| w[0] <= w[1])); v1.sort_by(|a, b| b.cmp(a)); assert!(v1.windows(2).all(|w| w[0] >= w[1])); } } // shouldn't fail/crash let mut v: [uint, .. 0] = []; v.sort(); let mut v = [0xDEADBEEF]; v.sort(); assert_eq!(v, [0xDEADBEEF]); } #[test] fn test_sort_stability() { for len in range(4, 25) { for _ in range(0 , 10) { let mut counts = [0, .. 10]; // create a vector like [(6, 1), (5, 1), (6, 2), ...], // where the first item of each tuple is random, but // the second item represents which occurrence of that // number this element is, i.e. the second elements // will occur in sorted order. let mut v = range(0, len).map(|_| { let n = task_rng().gen::() % 10; counts[n] += 1; (n, counts[n]) }).to_owned_vec(); // only sort on the first element, so an unstable sort // may mix up the counts. v.sort_by(|&(a,_), &(b,_)| a.cmp(&b)); // this comparison includes the count (the second item // of the tuple), so elements with equal first items // will need to be ordered with increasing // counts... i.e. exactly asserting that this sort is // stable. assert!(v.windows(2).all(|w| w[0] <= w[1])); } } } #[test] fn test_partition() { assert_eq!((~[]).partition(|x: &int| *x < 3), (~[], ~[])); assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 4), (~[1, 2, 3], ~[])); assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 2), (~[1], ~[2, 3])); assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 0), (~[], ~[1, 2, 3])); } #[test] fn test_partitioned() { assert_eq!(([]).partitioned(|x: &int| *x < 3), (~[], ~[])) assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 4), (~[1, 2, 3], ~[])); assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 2), (~[1], ~[2, 3])); assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 0), (~[], ~[1, 2, 3])); } #[test] fn test_concat() { let v: [~[int], ..0] = []; assert_eq!(v.concat_vec(), ~[]); assert_eq!([~[1], ~[2,3]].concat_vec(), ~[1, 2, 3]); assert_eq!([&[1], &[2,3]].concat_vec(), ~[1, 2, 3]); } #[test] fn test_connect() { let v: [~[int], ..0] = []; assert_eq!(v.connect_vec(&0), ~[]); assert_eq!([~[1], ~[2, 3]].connect_vec(&0), ~[1, 0, 2, 3]); assert_eq!([~[1], ~[2], ~[3]].connect_vec(&0), ~[1, 0, 2, 0, 3]); assert_eq!(v.connect_vec(&0), ~[]); assert_eq!([&[1], &[2, 3]].connect_vec(&0), ~[1, 0, 2, 3]); assert_eq!([&[1], &[2], &[3]].connect_vec(&0), ~[1, 0, 2, 0, 3]); } #[test] fn test_shift() { let mut x = ~[1, 2, 3]; assert_eq!(x.shift(), 1); assert_eq!(&x, &~[2, 3]); assert_eq!(x.shift(), 2); assert_eq!(x.shift(), 3); assert_eq!(x.len(), 0); } #[test] fn test_shift_opt() { let mut x = ~[1, 2, 3]; assert_eq!(x.shift_opt(), Some(1)); assert_eq!(&x, &~[2, 3]); assert_eq!(x.shift_opt(), Some(2)); assert_eq!(x.shift_opt(), Some(3)); assert_eq!(x.shift_opt(), None); assert_eq!(x.len(), 0); } #[test] fn test_unshift() { let mut x = ~[1, 2, 3]; x.unshift(0); assert_eq!(x, ~[0, 1, 2, 3]); } #[test] fn test_insert() { let mut a = ~[1, 2, 4]; a.insert(2, 3); assert_eq!(a, ~[1, 2, 3, 4]); let mut a = ~[1, 2, 3]; a.insert(0, 0); assert_eq!(a, ~[0, 1, 2, 3]); let mut a = ~[1, 2, 3]; a.insert(3, 4); assert_eq!(a, ~[1, 2, 3, 4]); let mut a = ~[]; a.insert(0, 1); assert_eq!(a, ~[1]); } #[test] #[should_fail] fn test_insert_oob() { let mut a = ~[1, 2, 3]; a.insert(4, 5); } #[test] fn test_remove_opt() { let mut a = ~[1,2,3,4]; assert_eq!(a.remove_opt(2), Some(3)); assert_eq!(a, ~[1,2,4]); assert_eq!(a.remove_opt(2), Some(4)); assert_eq!(a, ~[1,2]); assert_eq!(a.remove_opt(2), None); assert_eq!(a, ~[1,2]); assert_eq!(a.remove_opt(0), Some(1)); assert_eq!(a, ~[2]); assert_eq!(a.remove_opt(0), Some(2)); assert_eq!(a, ~[]); assert_eq!(a.remove_opt(0), None); assert_eq!(a.remove_opt(10), None); } #[test] fn test_remove() { let mut a = ~[1, 2, 3, 4]; a.remove(2); assert_eq!(a, ~[1, 2, 4]); let mut a = ~[1, 2, 3]; a.remove(0); assert_eq!(a, ~[2, 3]); let mut a = ~[1]; a.remove(0); assert_eq!(a, ~[]); } #[test] #[should_fail] fn test_remove_oob() { let mut a = ~[1, 2, 3]; a.remove(3); } #[test] fn test_capacity() { let mut v = ~[0u64]; v.reserve(10u); assert_eq!(v.capacity(), 10u); let mut v = ~[0u32]; v.reserve(10u); assert_eq!(v.capacity(), 10u); } #[test] fn test_slice_2() { let v = ~[1, 2, 3, 4, 5]; let v = v.slice(1u, 3u); assert_eq!(v.len(), 2u); assert_eq!(v[0], 2); assert_eq!(v[1], 3); } #[test] #[should_fail] fn test_from_fn_fail() { from_fn(100, |v| { if v == 50 { fail!() } ~0 }); } #[test] #[should_fail] fn test_from_elem_fail() { use cast; use rc::Rc; struct S { f: int, boxes: (~int, Rc) } impl Clone for S { fn clone(&self) -> S { let s = unsafe { cast::transmute_mut(self) }; s.f += 1; if s.f == 10 { fail!() } S { f: s.f, boxes: s.boxes.clone() } } } let s = S { f: 0, boxes: (~0, Rc::new(0)) }; let _ = from_elem(100, s); } #[test] #[should_fail] fn test_build_fail() { use rc::Rc; build(None, |push| { push((~0, Rc::new(0))); push((~0, Rc::new(0))); push((~0, Rc::new(0))); push((~0, Rc::new(0))); fail!(); }); } #[test] #[should_fail] fn test_grow_fn_fail() { use rc::Rc; let mut v = ~[]; v.grow_fn(100, |i| { if i == 50 { fail!() } (~0, Rc::new(0)) }) } #[test] #[should_fail] fn test_map_fail() { use rc::Rc; let v = [(~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0))]; let mut i = 0; v.map(|_elt| { if i == 2 { fail!() } i += 1; ~[(~0, Rc::new(0))] }); } #[test] #[should_fail] fn test_flat_map_fail() { use rc::Rc; let v = [(~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0))]; let mut i = 0; flat_map(v, |_elt| { if i == 2 { fail!() } i += 1; ~[(~0, Rc::new(0))] }); } #[test] #[should_fail] fn test_permute_fail() { use rc::Rc; let v = [(~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0))]; let mut i = 0; for _ in v.permutations() { if i == 2 { fail!() } i += 1; } } #[test] #[should_fail] fn test_copy_memory_oob() { unsafe { let mut a = [1, 2, 3, 4]; let b = [1, 2, 3, 4, 5]; a.copy_memory(b); } } #[test] fn test_total_ord() { [1, 2, 3, 4].cmp(& &[1, 2, 3]) == Greater; [1, 2, 3].cmp(& &[1, 2, 3, 4]) == Less; [1, 2, 3, 4].cmp(& &[1, 2, 3, 4]) == Equal; [1, 2, 3, 4, 5, 5, 5, 5].cmp(& &[1, 2, 3, 4, 5, 6]) == Less; [2, 2].cmp(& &[1, 2, 3, 4]) == Greater; } #[test] fn test_iterator() { use iter::*; let xs = [1, 2, 5, 10, 11]; let mut it = xs.iter(); assert_eq!(it.size_hint(), (5, Some(5))); assert_eq!(it.next().unwrap(), &1); assert_eq!(it.size_hint(), (4, Some(4))); assert_eq!(it.next().unwrap(), &2); assert_eq!(it.size_hint(), (3, Some(3))); assert_eq!(it.next().unwrap(), &5); assert_eq!(it.size_hint(), (2, Some(2))); assert_eq!(it.next().unwrap(), &10); assert_eq!(it.size_hint(), (1, Some(1))); assert_eq!(it.next().unwrap(), &11); assert_eq!(it.size_hint(), (0, Some(0))); assert!(it.next().is_none()); } #[test] fn test_random_access_iterator() { use iter::*; let xs = [1, 2, 5, 10, 11]; let mut it = xs.iter(); assert_eq!(it.indexable(), 5); assert_eq!(it.idx(0).unwrap(), &1); assert_eq!(it.idx(2).unwrap(), &5); assert_eq!(it.idx(4).unwrap(), &11); assert!(it.idx(5).is_none()); assert_eq!(it.next().unwrap(), &1); assert_eq!(it.indexable(), 4); assert_eq!(it.idx(0).unwrap(), &2); assert_eq!(it.idx(3).unwrap(), &11); assert!(it.idx(4).is_none()); assert_eq!(it.next().unwrap(), &2); assert_eq!(it.indexable(), 3); assert_eq!(it.idx(1).unwrap(), &10); assert!(it.idx(3).is_none()); assert_eq!(it.next().unwrap(), &5); assert_eq!(it.indexable(), 2); assert_eq!(it.idx(1).unwrap(), &11); assert_eq!(it.next().unwrap(), &10); assert_eq!(it.indexable(), 1); assert_eq!(it.idx(0).unwrap(), &11); assert!(it.idx(1).is_none()); assert_eq!(it.next().unwrap(), &11); assert_eq!(it.indexable(), 0); assert!(it.idx(0).is_none()); assert!(it.next().is_none()); } #[test] fn test_iter_size_hints() { use iter::*; let mut xs = [1, 2, 5, 10, 11]; assert_eq!(xs.iter().size_hint(), (5, Some(5))); assert_eq!(xs.rev_iter().size_hint(), (5, Some(5))); assert_eq!(xs.mut_iter().size_hint(), (5, Some(5))); assert_eq!(xs.mut_rev_iter().size_hint(), (5, Some(5))); } #[test] fn test_iter_clone() { let xs = [1, 2, 5]; let mut it = xs.iter(); it.next(); let mut jt = it.clone(); assert_eq!(it.next(), jt.next()); assert_eq!(it.next(), jt.next()); assert_eq!(it.next(), jt.next()); } #[test] fn test_mut_iterator() { use iter::*; let mut xs = [1, 2, 3, 4, 5]; for x in xs.mut_iter() { *x += 1; } assert_eq!(xs, [2, 3, 4, 5, 6]) } #[test] fn test_rev_iterator() { use iter::*; let xs = [1, 2, 5, 10, 11]; let ys = [11, 10, 5, 2, 1]; let mut i = 0; for &x in xs.rev_iter() { assert_eq!(x, ys[i]); i += 1; } assert_eq!(i, 5); } #[test] fn test_mut_rev_iterator() { use iter::*; let mut xs = [1u, 2, 3, 4, 5]; for (i,x) in xs.mut_rev_iter().enumerate() { *x += i; } assert_eq!(xs, [5, 5, 5, 5, 5]) } #[test] fn test_move_iterator() { use iter::*; let xs = ~[1u,2,3,4,5]; assert_eq!(xs.move_iter().fold(0, |a: uint, b: uint| 10*a + b), 12345); } #[test] fn test_move_rev_iterator() { use iter::*; let xs = ~[1u,2,3,4,5]; assert_eq!(xs.move_rev_iter().fold(0, |a: uint, b: uint| 10*a + b), 54321); } #[test] fn test_splitator() { let xs = &[1i,2,3,4,5]; assert_eq!(xs.split(|x| *x % 2 == 0).collect::<~[&[int]]>(), ~[&[1], &[3], &[5]]); assert_eq!(xs.split(|x| *x == 1).collect::<~[&[int]]>(), ~[&[], &[2,3,4,5]]); assert_eq!(xs.split(|x| *x == 5).collect::<~[&[int]]>(), ~[&[1,2,3,4], &[]]); assert_eq!(xs.split(|x| *x == 10).collect::<~[&[int]]>(), ~[&[1,2,3,4,5]]); assert_eq!(xs.split(|_| true).collect::<~[&[int]]>(), ~[&[], &[], &[], &[], &[], &[]]); let xs: &[int] = &[]; assert_eq!(xs.split(|x| *x == 5).collect::<~[&[int]]>(), ~[&[]]); } #[test] fn test_splitnator() { let xs = &[1i,2,3,4,5]; assert_eq!(xs.splitn(0, |x| *x % 2 == 0).collect::<~[&[int]]>(), ~[&[1,2,3,4,5]]); assert_eq!(xs.splitn(1, |x| *x % 2 == 0).collect::<~[&[int]]>(), ~[&[1], &[3,4,5]]); assert_eq!(xs.splitn(3, |_| true).collect::<~[&[int]]>(), ~[&[], &[], &[], &[4,5]]); let xs: &[int] = &[]; assert_eq!(xs.splitn(1, |x| *x == 5).collect::<~[&[int]]>(), ~[&[]]); } #[test] fn test_rsplitator() { let xs = &[1i,2,3,4,5]; assert_eq!(xs.rsplit(|x| *x % 2 == 0).collect::<~[&[int]]>(), ~[&[5], &[3], &[1]]); assert_eq!(xs.rsplit(|x| *x == 1).collect::<~[&[int]]>(), ~[&[2,3,4,5], &[]]); assert_eq!(xs.rsplit(|x| *x == 5).collect::<~[&[int]]>(), ~[&[], &[1,2,3,4]]); assert_eq!(xs.rsplit(|x| *x == 10).collect::<~[&[int]]>(), ~[&[1,2,3,4,5]]); let xs: &[int] = &[]; assert_eq!(xs.rsplit(|x| *x == 5).collect::<~[&[int]]>(), ~[&[]]); } #[test] fn test_rsplitnator() { let xs = &[1,2,3,4,5]; assert_eq!(xs.rsplitn(0, |x| *x % 2 == 0).collect::<~[&[int]]>(), ~[&[1,2,3,4,5]]); assert_eq!(xs.rsplitn(1, |x| *x % 2 == 0).collect::<~[&[int]]>(), ~[&[5], &[1,2,3]]); assert_eq!(xs.rsplitn(3, |_| true).collect::<~[&[int]]>(), ~[&[], &[], &[], &[1,2]]); let xs: &[int] = &[]; assert_eq!(xs.rsplitn(1, |x| *x == 5).collect::<~[&[int]]>(), ~[&[]]); } #[test] fn test_windowsator() { let v = &[1i,2,3,4]; assert_eq!(v.windows(2).collect::<~[&[int]]>(), ~[&[1,2], &[2,3], &[3,4]]); assert_eq!(v.windows(3).collect::<~[&[int]]>(), ~[&[1i,2,3], &[2,3,4]]); assert!(v.windows(6).next().is_none()); } #[test] #[should_fail] fn test_windowsator_0() { let v = &[1i,2,3,4]; let _it = v.windows(0); } #[test] fn test_chunksator() { let v = &[1i,2,3,4,5]; assert_eq!(v.chunks(2).collect::<~[&[int]]>(), ~[&[1i,2], &[3,4], &[5]]); assert_eq!(v.chunks(3).collect::<~[&[int]]>(), ~[&[1i,2,3], &[4,5]]); assert_eq!(v.chunks(6).collect::<~[&[int]]>(), ~[&[1i,2,3,4,5]]); assert_eq!(v.chunks(2).invert().collect::<~[&[int]]>(), ~[&[5i], &[3,4], &[1,2]]); let it = v.chunks(2); assert_eq!(it.indexable(), 3); assert_eq!(it.idx(0).unwrap(), &[1,2]); assert_eq!(it.idx(1).unwrap(), &[3,4]); assert_eq!(it.idx(2).unwrap(), &[5]); assert_eq!(it.idx(3), None); } #[test] #[should_fail] fn test_chunksator_0() { let v = &[1i,2,3,4]; let _it = v.chunks(0); } #[test] fn test_move_from() { let mut a = [1,2,3,4,5]; let b = ~[6,7,8]; assert_eq!(a.move_from(b, 0, 3), 3); assert_eq!(a, [6,7,8,4,5]); let mut a = [7,2,8,1]; let b = ~[3,1,4,1,5,9]; assert_eq!(a.move_from(b, 0, 6), 4); assert_eq!(a, [3,1,4,1]); let mut a = [1,2,3,4]; let b = ~[5,6,7,8,9,0]; assert_eq!(a.move_from(b, 2, 3), 1); assert_eq!(a, [7,2,3,4]); let mut a = [1,2,3,4,5]; let b = ~[5,6,7,8,9,0]; assert_eq!(a.mut_slice(2,4).move_from(b,1,6), 2); assert_eq!(a, [1,2,6,7,5]); } #[test] fn test_copy_from() { let mut a = [1,2,3,4,5]; let b = [6,7,8]; assert_eq!(a.copy_from(b), 3); assert_eq!(a, [6,7,8,4,5]); let mut c = [7,2,8,1]; let d = [3,1,4,1,5,9]; assert_eq!(c.copy_from(d), 4); assert_eq!(c, [3,1,4,1]); } #[test] fn test_reverse_part() { let mut values = [1,2,3,4,5]; values.mut_slice(1, 4).reverse(); assert_eq!(values, [1,4,3,2,5]); } #[test] fn test_vec_default() { use default::Default; macro_rules! t ( ($ty:ty) => {{ let v: $ty = Default::default(); assert!(v.is_empty()); }} ); t!(&[int]); t!(@[int]); t!(~[int]); } #[test] fn test_bytes_set_memory() { use vec::bytes::MutableByteVector; let mut values = [1u8,2,3,4,5]; values.mut_slice(0,5).set_memory(0xAB); assert_eq!(values, [0xAB, 0xAB, 0xAB, 0xAB, 0xAB]); values.mut_slice(2,4).set_memory(0xFF); assert_eq!(values, [0xAB, 0xAB, 0xFF, 0xFF, 0xAB]); } #[test] #[should_fail] fn test_overflow_does_not_cause_segfault() { let mut v = ~[]; v.reserve(-1); v.push(1); v.push(2); } #[test] #[should_fail] fn test_overflow_does_not_cause_segfault_managed() { use rc::Rc; let mut v = ~[Rc::new(1)]; v.reserve(-1); v.push(Rc::new(2)); } #[test] fn test_mut_split_at() { let mut values = [1u8,2,3,4,5]; { let (left, right) = values.mut_split_at(2); assert_eq!(left.slice(0, left.len()), [1, 2]); for p in left.mut_iter() { *p += 1; } assert_eq!(right.slice(0, right.len()), [3, 4, 5]); for p in right.mut_iter() { *p += 2; } } assert_eq!(values, [2, 3, 5, 6, 7]); } #[deriving(Clone, Eq)] struct Foo; #[test] fn test_iter_zero_sized() { let mut v = ~[Foo, Foo, Foo]; assert_eq!(v.len(), 3); let mut cnt = 0; for f in v.iter() { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 3); for f in v.slice(1, 3).iter() { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 5); for f in v.mut_iter() { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 8); for f in v.move_iter() { assert!(f == Foo); cnt += 1; } assert_eq!(cnt, 11); let xs = ~[Foo, Foo, Foo]; assert_eq!(format!("{:?}", xs.slice(0, 2).to_owned()), ~"~[vec::tests::Foo, vec::tests::Foo]"); let xs: [Foo, ..3] = [Foo, Foo, Foo]; assert_eq!(format!("{:?}", xs.slice(0, 2).to_owned()), ~"~[vec::tests::Foo, vec::tests::Foo]"); cnt = 0; for f in xs.iter() { assert!(*f == Foo); cnt += 1; } assert!(cnt == 3); } #[test] fn test_shrink_to_fit() { let mut xs = ~[0, 1, 2, 3]; for i in range(4, 100) { xs.push(i) } assert_eq!(xs.capacity(), 128); xs.shrink_to_fit(); assert_eq!(xs.capacity(), 100); assert_eq!(xs, range(0, 100).to_owned_vec()); } #[test] fn test_starts_with() { assert!(bytes!("foobar").starts_with(bytes!("foo"))); assert!(!bytes!("foobar").starts_with(bytes!("oob"))); assert!(!bytes!("foobar").starts_with(bytes!("bar"))); assert!(!bytes!("foo").starts_with(bytes!("foobar"))); assert!(!bytes!("bar").starts_with(bytes!("foobar"))); assert!(bytes!("foobar").starts_with(bytes!("foobar"))); let empty: &[u8] = []; assert!(empty.starts_with(empty)); assert!(!empty.starts_with(bytes!("foo"))); assert!(bytes!("foobar").starts_with(empty)); } #[test] fn test_ends_with() { assert!(bytes!("foobar").ends_with(bytes!("bar"))); assert!(!bytes!("foobar").ends_with(bytes!("oba"))); assert!(!bytes!("foobar").ends_with(bytes!("foo"))); assert!(!bytes!("foo").ends_with(bytes!("foobar"))); assert!(!bytes!("bar").ends_with(bytes!("foobar"))); assert!(bytes!("foobar").ends_with(bytes!("foobar"))); let empty: &[u8] = []; assert!(empty.ends_with(empty)); assert!(!empty.ends_with(bytes!("foo"))); assert!(bytes!("foobar").ends_with(empty)); } #[test] fn test_shift_ref() { let mut x: &[int] = [1, 2, 3, 4, 5]; let h = x.shift_ref(); assert_eq!(*h, 1); assert_eq!(x.len(), 4); assert_eq!(x[0], 2); assert_eq!(x[3], 5); } #[test] #[should_fail] fn test_shift_ref_empty() { let mut x: &[int] = []; x.shift_ref(); } #[test] fn test_pop_ref() { let mut x: &[int] = [1, 2, 3, 4, 5]; let h = x.pop_ref(); assert_eq!(*h, 5); assert_eq!(x.len(), 4); assert_eq!(x[0], 1); assert_eq!(x[3], 4); } #[test] #[should_fail] fn test_pop_ref_empty() { let mut x: &[int] = []; x.pop_ref(); } #[test] fn test_mut_splitator() { let mut xs = [0,1,0,2,3,0,0,4,5,0]; assert_eq!(xs.mut_split(|x| *x == 0).len(), 6); for slice in xs.mut_split(|x| *x == 0) { slice.reverse(); } assert_eq!(xs, [0,1,0,3,2,0,0,5,4,0]); let mut xs = [0,1,0,2,3,0,0,4,5,0,6,7]; for slice in xs.mut_split(|x| *x == 0).take(5) { slice.reverse(); } assert_eq!(xs, [0,1,0,3,2,0,0,5,4,0,6,7]); } #[test] fn test_mut_splitator_invert() { let mut xs = [1,2,0,3,4,0,0,5,6,0]; for slice in xs.mut_split(|x| *x == 0).invert().take(4) { slice.reverse(); } assert_eq!(xs, [1,2,0,4,3,0,0,6,5,0]); } #[test] fn test_mut_chunks() { let mut v = [0u8, 1, 2, 3, 4, 5, 6]; for (i, chunk) in v.mut_chunks(3).enumerate() { for x in chunk.mut_iter() { *x = i as u8; } } let result = [0u8, 0, 0, 1, 1, 1, 2]; assert_eq!(v, result); } #[test] fn test_mut_chunks_invert() { let mut v = [0u8, 1, 2, 3, 4, 5, 6]; for (i, chunk) in v.mut_chunks(3).invert().enumerate() { for x in chunk.mut_iter() { *x = i as u8; } } let result = [2u8, 2, 2, 1, 1, 1, 0]; assert_eq!(v, result); } #[test] #[should_fail] fn test_mut_chunks_0() { let mut v = [1, 2, 3, 4]; let _it = v.mut_chunks(0); } #[test] fn test_mut_shift_ref() { let mut x: &mut [int] = [1, 2, 3, 4, 5]; let h = x.mut_shift_ref(); assert_eq!(*h, 1); assert_eq!(x.len(), 4); assert_eq!(x[0], 2); assert_eq!(x[3], 5); } #[test] #[should_fail] fn test_mut_shift_ref_empty() { let mut x: &mut [int] = []; x.mut_shift_ref(); } #[test] fn test_mut_pop_ref() { let mut x: &mut [int] = [1, 2, 3, 4, 5]; let h = x.mut_pop_ref(); assert_eq!(*h, 5); assert_eq!(x.len(), 4); assert_eq!(x[0], 1); assert_eq!(x[3], 4); } #[test] #[should_fail] fn test_mut_pop_ref_empty() { let mut x: &mut [int] = []; x.mut_pop_ref(); } } #[cfg(test)] mod bench { use extra::test::BenchHarness; use mem; use prelude::*; use ptr; use rand::{weak_rng, Rng}; use vec; #[bench] fn iterator(bh: &mut BenchHarness) { // peculiar numbers to stop LLVM from optimising the summation // out. let v = vec::from_fn(100, |i| i ^ (i << 1) ^ (i >> 1)); bh.iter(|| { let mut sum = 0; for x in v.iter() { sum += *x; } // sum == 11806, to stop dead code elimination. if sum == 0 {fail!()} }) } #[bench] fn mut_iterator(bh: &mut BenchHarness) { let mut v = vec::from_elem(100, 0); bh.iter(|| { let mut i = 0; for x in v.mut_iter() { *x = i; i += 1; } }) } #[bench] fn add(bh: &mut BenchHarness) { let xs: &[int] = [5, ..10]; let ys: &[int] = [5, ..10]; bh.iter(|| { xs + ys; }); } #[bench] fn concat(bh: &mut BenchHarness) { let xss: &[~[uint]] = vec::from_fn(100, |i| range(0, i).collect()); bh.iter(|| { let _ = xss.concat_vec(); }); } #[bench] fn connect(bh: &mut BenchHarness) { let xss: &[~[uint]] = vec::from_fn(100, |i| range(0, i).collect()); bh.iter(|| { let _ = xss.connect_vec(&0); }); } #[bench] fn push(bh: &mut BenchHarness) { let mut vec: ~[uint] = ~[0u]; bh.iter(|| { vec.push(0); }) } #[bench] fn starts_with_same_vector(bh: &mut BenchHarness) { let vec: ~[uint] = vec::from_fn(100, |i| i); bh.iter(|| { vec.starts_with(vec); }) } #[bench] fn starts_with_single_element(bh: &mut BenchHarness) { let vec: ~[uint] = ~[0u]; bh.iter(|| { vec.starts_with(vec); }) } #[bench] fn starts_with_diff_one_element_at_end(bh: &mut BenchHarness) { let vec: ~[uint] = vec::from_fn(100, |i| i); let mut match_vec: ~[uint] = vec::from_fn(99, |i| i); match_vec.push(0); bh.iter(|| { vec.starts_with(match_vec); }) } #[bench] fn ends_with_same_vector(bh: &mut BenchHarness) { let vec: ~[uint] = vec::from_fn(100, |i| i); bh.iter(|| { vec.ends_with(vec); }) } #[bench] fn ends_with_single_element(bh: &mut BenchHarness) { let vec: ~[uint] = ~[0u]; bh.iter(|| { vec.ends_with(vec); }) } #[bench] fn ends_with_diff_one_element_at_beginning(bh: &mut BenchHarness) { let vec: ~[uint] = vec::from_fn(100, |i| i); let mut match_vec: ~[uint] = vec::from_fn(100, |i| i); match_vec[0] = 200; bh.iter(|| { vec.starts_with(match_vec); }) } #[bench] fn contains_last_element(bh: &mut BenchHarness) { let vec: ~[uint] = vec::from_fn(100, |i| i); bh.iter(|| { vec.contains(&99u); }) } #[bench] fn zero_1kb_from_elem(bh: &mut BenchHarness) { bh.iter(|| { let _v: ~[u8] = vec::from_elem(1024, 0u8); }); } #[bench] fn zero_1kb_set_memory(bh: &mut BenchHarness) { bh.iter(|| { let mut v: ~[u8] = vec::with_capacity(1024); unsafe { let vp = v.as_mut_ptr(); ptr::set_memory(vp, 0, 1024); v.set_len(1024); } }); } #[bench] fn zero_1kb_fixed_repeat(bh: &mut BenchHarness) { bh.iter(|| { let _v: ~[u8] = ~[0u8, ..1024]; }); } #[bench] fn zero_1kb_loop_set(bh: &mut BenchHarness) { // Slower because the { len, cap, [0 x T] }* repr allows a pointer to the length // field to be aliased (in theory) and prevents LLVM from optimizing loads away. bh.iter(|| { let mut v: ~[u8] = vec::with_capacity(1024); unsafe { v.set_len(1024); } for i in range(0, 1024) { v[i] = 0; } }); } #[bench] fn zero_1kb_mut_iter(bh: &mut BenchHarness) { bh.iter(|| { let mut v: ~[u8] = vec::with_capacity(1024); unsafe { v.set_len(1024); } for x in v.mut_iter() { *x = 0; } }); } #[bench] fn random_inserts(bh: &mut BenchHarness) { let mut rng = weak_rng(); bh.iter(|| { let mut v = vec::from_elem(30, (0u, 0u)); for _ in range(0, 100) { let l = v.len(); v.insert(rng.gen::() % (l + 1), (1, 1)); } }) } #[bench] fn random_removes(bh: &mut BenchHarness) { let mut rng = weak_rng(); bh.iter(|| { let mut v = vec::from_elem(130, (0u, 0u)); for _ in range(0, 100) { let l = v.len(); v.remove(rng.gen::() % l); } }) } #[bench] fn sort_random_small(bh: &mut BenchHarness) { let mut rng = weak_rng(); bh.iter(|| { let mut v: ~[u64] = rng.gen_vec(5); v.sort(); }); bh.bytes = 5 * mem::size_of::() as u64; } #[bench] fn sort_random_medium(bh: &mut BenchHarness) { let mut rng = weak_rng(); bh.iter(|| { let mut v: ~[u64] = rng.gen_vec(100); v.sort(); }); bh.bytes = 100 * mem::size_of::() as u64; } #[bench] fn sort_random_large(bh: &mut BenchHarness) { let mut rng = weak_rng(); bh.iter(|| { let mut v: ~[u64] = rng.gen_vec(10000); v.sort(); }); bh.bytes = 10000 * mem::size_of::() as u64; } #[bench] fn sort_sorted(bh: &mut BenchHarness) { let mut v = vec::from_fn(10000, |i| i); bh.iter(|| { v.sort(); }); bh.bytes = (v.len() * mem::size_of_val(&v[0])) as u64; } }