use crate::*; use rustc_ast::ast::Mutability; use rustc_middle::ty::layout::LayoutOf as _; use rustc_middle::ty::{self, Instance}; use rustc_span::{BytePos, Loc, Symbol}; use rustc_target::{abi::Size, spec::abi::Abi}; use std::convert::TryInto as _; impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {} pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> { fn handle_miri_backtrace_size( &mut self, abi: Abi, link_name: Symbol, args: &[OpTy<'tcx, Tag>], dest: &PlaceTy<'tcx, Tag>, ) -> InterpResult<'tcx> { let this = self.eval_context_mut(); let &[ref flags] = this.check_shim(abi, Abi::Rust, link_name, args)?; let flags = this.read_scalar(flags)?.to_u64()?; if flags != 0 { throw_unsup_format!("unknown `miri_backtrace_size` flags {}", flags); } let frame_count = this.active_thread_stack().len(); this.write_scalar(Scalar::from_machine_usize(frame_count.try_into().unwrap(), this), dest) } fn handle_miri_get_backtrace( &mut self, abi: Abi, link_name: Symbol, args: &[OpTy<'tcx, Tag>], dest: &PlaceTy<'tcx, Tag>, ) -> InterpResult<'tcx> { let this = self.eval_context_mut(); let tcx = this.tcx; let flags = if let Some(flags_op) = args.get(0) { this.read_scalar(flags_op)?.to_u64()? } else { throw_ub_format!("expected at least 1 argument") }; let mut data = Vec::new(); for frame in this.active_thread_stack().iter().rev() { let mut span = frame.current_span(); // Match the behavior of runtime backtrace spans // by using a non-macro span in our backtrace. See `FunctionCx::debug_loc`. if span.from_expansion() && !tcx.sess.opts.debugging_opts.debug_macros { span = rustc_span::hygiene::walk_chain(span, frame.body.span.ctxt()) } data.push((frame.instance, span.lo())); } let ptrs: Vec<_> = data .into_iter() .map(|(instance, pos)| { // We represent a frame pointer by using the `span.lo` value // as an offset into the function's allocation. This gives us an // opaque pointer that we can return to user code, and allows us // to reconstruct the needed frame information in `handle_miri_resolve_frame`. // Note that we never actually read or write anything from/to this pointer - // all of the data is represented by the pointer value itself. let fn_ptr = this.memory.create_fn_alloc(FnVal::Instance(instance)); fn_ptr.wrapping_offset(Size::from_bytes(pos.0), this) }) .collect(); let len: u64 = ptrs.len().try_into().unwrap(); let ptr_ty = this.machine.layouts.mut_raw_ptr.ty; let array_layout = this.layout_of(tcx.mk_array(ptr_ty, len)).unwrap(); match flags { // storage for pointers is allocated by miri // deallocating the slice is undefined behavior with a custom global allocator 0 => { let &[_flags] = this.check_shim(abi, Abi::Rust, link_name, args)?; let alloc = this.allocate(array_layout, MiriMemoryKind::Rust.into())?; // Write pointers into array for (i, ptr) in ptrs.into_iter().enumerate() { let place = this.mplace_index(&alloc, i as u64)?; this.write_pointer(ptr, &place.into())?; } this.write_immediate( Immediate::new_slice(Scalar::from_maybe_pointer(alloc.ptr, this), len, this), dest, )?; } // storage for pointers is allocated by the caller 1 => { let &[_flags, ref buf] = this.check_shim(abi, Abi::Rust, link_name, args)?; let buf_place = this.deref_operand(buf)?; let ptr_layout = this.layout_of(ptr_ty)?; for (i, ptr) in ptrs.into_iter().enumerate() { let offset = ptr_layout.size * i.try_into().unwrap(); let op_place = buf_place.offset(offset, MemPlaceMeta::None, ptr_layout, this)?; this.write_pointer(ptr, &op_place.into())?; } } _ => throw_unsup_format!("unknown `miri_get_backtrace` flags {}", flags), }; Ok(()) } fn resolve_frame_pointer( &mut self, ptr: &OpTy<'tcx, Tag>, ) -> InterpResult<'tcx, (Instance<'tcx>, Loc, String, String)> { let this = self.eval_context_mut(); let ptr = this.read_pointer(ptr)?; // Take apart the pointer, we need its pieces. let (alloc_id, offset, ptr) = this.memory.ptr_get_alloc(ptr)?; let fn_instance = if let Some(GlobalAlloc::Function(instance)) = this.tcx.get_global_alloc(alloc_id) { instance } else { throw_ub_format!("expected function pointer, found {:?}", ptr); }; let lo = this.tcx.sess.source_map().lookup_char_pos(BytePos(offset.bytes().try_into().unwrap())); let name = fn_instance.to_string(); let filename = lo.file.name.prefer_remapped().to_string(); Ok((fn_instance, lo, name, filename)) } fn handle_miri_resolve_frame( &mut self, abi: Abi, link_name: Symbol, args: &[OpTy<'tcx, Tag>], dest: &PlaceTy<'tcx, Tag>, ) -> InterpResult<'tcx> { let this = self.eval_context_mut(); let &[ref ptr, ref flags] = this.check_shim(abi, Abi::Rust, link_name, args)?; let flags = this.read_scalar(flags)?.to_u64()?; let (fn_instance, lo, name, filename) = this.resolve_frame_pointer(ptr)?; // Reconstruct the original function pointer, // which we pass to user code. let fn_ptr = this.memory.create_fn_alloc(FnVal::Instance(fn_instance)); let num_fields = dest.layout.fields.count(); if !(4..=5).contains(&num_fields) { // Always mention 5 fields, since the 4-field struct // is deprecated and slated for removal. throw_ub_format!( "bad declaration of miri_resolve_frame - should return a struct with 5 fields" ); } let lineno: u32 = lo.line as u32; // `lo.col` is 0-based - add 1 to make it 1-based for the caller. let colno: u32 = lo.col.0 as u32 + 1; let dest = this.force_allocation(dest)?; if let ty::Adt(adt, _) = dest.layout.ty.kind() { if !adt.repr().c() { throw_ub_format!( "miri_resolve_frame must be declared with a `#[repr(C)]` return type" ); } } match flags { 0 => { // These are "mutable" allocations as we consider them to be owned by the callee. let name_alloc = this.allocate_str(&name, MiriMemoryKind::Rust.into(), Mutability::Mut); let filename_alloc = this.allocate_str(&filename, MiriMemoryKind::Rust.into(), Mutability::Mut); this.write_immediate( name_alloc.to_ref(this), &this.mplace_field(&dest, 0)?.into(), )?; this.write_immediate( filename_alloc.to_ref(this), &this.mplace_field(&dest, 1)?.into(), )?; } 1 => { this.write_scalar( Scalar::from_machine_usize(name.len().try_into().unwrap(), this), &this.mplace_field(&dest, 0)?.into(), )?; this.write_scalar( Scalar::from_machine_usize(filename.len().try_into().unwrap(), this), &this.mplace_field(&dest, 1)?.into(), )?; } _ => throw_unsup_format!("unknown `miri_resolve_frame` flags {}", flags), } this.write_scalar(Scalar::from_u32(lineno), &this.mplace_field(&dest, 2)?.into())?; this.write_scalar(Scalar::from_u32(colno), &this.mplace_field(&dest, 3)?.into())?; // Support a 4-field struct for now - this is deprecated // and slated for removal. if num_fields == 5 { this.write_pointer(fn_ptr, &this.mplace_field(&dest, 4)?.into())?; } Ok(()) } fn handle_miri_resolve_frame_names( &mut self, abi: Abi, link_name: Symbol, args: &[OpTy<'tcx, Tag>], ) -> InterpResult<'tcx> { let this = self.eval_context_mut(); let &[ref ptr, ref flags, ref name_ptr, ref filename_ptr] = this.check_shim(abi, Abi::Rust, link_name, args)?; let flags = this.read_scalar(flags)?.to_u64()?; if flags != 0 { throw_unsup_format!("unknown `miri_resolve_frame_names` flags {}", flags); } let (_, _, name, filename) = this.resolve_frame_pointer(ptr)?; this.memory.write_bytes(this.read_pointer(name_ptr)?, name.bytes())?; this.memory.write_bytes(this.read_pointer(filename_ptr)?, filename.bytes())?; Ok(()) } }