use core::cmp::{ self, Ordering::{self, *}, }; #[test] fn test_int_totalord() { assert_eq!(5.cmp(&10), Less); assert_eq!(10.cmp(&5), Greater); assert_eq!(5.cmp(&5), Equal); assert_eq!((-5).cmp(&12), Less); assert_eq!(12.cmp(&-5), Greater); } #[test] fn test_bool_totalord() { assert_eq!(true.cmp(&false), Greater); assert_eq!(false.cmp(&true), Less); assert_eq!(true.cmp(&true), Equal); assert_eq!(false.cmp(&false), Equal); } #[test] fn test_mut_int_totalord() { assert_eq!((&mut 5).cmp(&&mut 10), Less); assert_eq!((&mut 10).cmp(&&mut 5), Greater); assert_eq!((&mut 5).cmp(&&mut 5), Equal); assert_eq!((&mut -5).cmp(&&mut 12), Less); assert_eq!((&mut 12).cmp(&&mut -5), Greater); } #[test] fn test_ord_max_min() { assert_eq!(1.max(2), 2); assert_eq!(2.max(1), 2); assert_eq!(1.min(2), 1); assert_eq!(2.min(1), 1); assert_eq!(1.max(1), 1); assert_eq!(1.min(1), 1); } #[test] fn test_ord_min_max_by() { let f = |x: &i32, y: &i32| x.abs().cmp(&y.abs()); assert_eq!(cmp::min_by(1, -1, f), 1); assert_eq!(cmp::min_by(1, -2, f), 1); assert_eq!(cmp::min_by(2, -1, f), -1); assert_eq!(cmp::max_by(1, -1, f), -1); assert_eq!(cmp::max_by(1, -2, f), -2); assert_eq!(cmp::max_by(2, -1, f), 2); } #[test] fn test_ord_min_max_by_key() { let f = |x: &i32| x.abs(); assert_eq!(cmp::min_by_key(1, -1, f), 1); assert_eq!(cmp::min_by_key(1, -2, f), 1); assert_eq!(cmp::min_by_key(2, -1, f), -1); assert_eq!(cmp::max_by_key(1, -1, f), -1); assert_eq!(cmp::max_by_key(1, -2, f), -2); assert_eq!(cmp::max_by_key(2, -1, f), 2); } #[test] fn test_ordering_reverse() { assert_eq!(Less.reverse(), Greater); assert_eq!(Equal.reverse(), Equal); assert_eq!(Greater.reverse(), Less); } #[test] fn test_ordering_order() { assert!(Less < Equal); assert_eq!(Greater.cmp(&Less), Greater); } #[test] fn test_ordering_then() { assert_eq!(Equal.then(Less), Less); assert_eq!(Equal.then(Equal), Equal); assert_eq!(Equal.then(Greater), Greater); assert_eq!(Less.then(Less), Less); assert_eq!(Less.then(Equal), Less); assert_eq!(Less.then(Greater), Less); assert_eq!(Greater.then(Less), Greater); assert_eq!(Greater.then(Equal), Greater); assert_eq!(Greater.then(Greater), Greater); } #[test] fn test_ordering_then_with() { assert_eq!(Equal.then_with(|| Less), Less); assert_eq!(Equal.then_with(|| Equal), Equal); assert_eq!(Equal.then_with(|| Greater), Greater); assert_eq!(Less.then_with(|| Less), Less); assert_eq!(Less.then_with(|| Equal), Less); assert_eq!(Less.then_with(|| Greater), Less); assert_eq!(Greater.then_with(|| Less), Greater); assert_eq!(Greater.then_with(|| Equal), Greater); assert_eq!(Greater.then_with(|| Greater), Greater); } #[test] fn test_user_defined_eq() { // Our type. struct SketchyNum { num: isize, } // Our implementation of `PartialEq` to support `==` and `!=`. impl PartialEq for SketchyNum { // Our custom eq allows numbers which are near each other to be equal! :D fn eq(&self, other: &SketchyNum) -> bool { (self.num - other.num).abs() < 5 } } // Now these binary operators will work when applied! assert!(SketchyNum { num: 37 } == SketchyNum { num: 34 }); assert!(SketchyNum { num: 25 } != SketchyNum { num: 57 }); } #[test] fn ordering_const() { // test that the methods of `Ordering` are usable in a const context const ORDERING: Ordering = Greater; const REVERSE: Ordering = ORDERING.reverse(); assert_eq!(REVERSE, Less); const THEN: Ordering = Equal.then(ORDERING); assert_eq!(THEN, Greater); } #[test] fn cmp_default() { // Test default methods in PartialOrd and PartialEq #[derive(Debug)] struct Fool(bool); impl PartialEq for Fool { fn eq(&self, other: &Fool) -> bool { let Fool(this) = *self; let Fool(other) = *other; this != other } } struct Int(isize); impl PartialEq for Int { fn eq(&self, other: &Int) -> bool { let Int(this) = *self; let Int(other) = *other; this == other } } impl PartialOrd for Int { fn partial_cmp(&self, other: &Int) -> Option { let Int(this) = *self; let Int(other) = *other; this.partial_cmp(&other) } } struct RevInt(isize); impl PartialEq for RevInt { fn eq(&self, other: &RevInt) -> bool { let RevInt(this) = *self; let RevInt(other) = *other; this == other } } impl PartialOrd for RevInt { fn partial_cmp(&self, other: &RevInt) -> Option { let RevInt(this) = *self; let RevInt(other) = *other; other.partial_cmp(&this) } } assert!(Int(2) > Int(1)); assert!(Int(2) >= Int(1)); assert!(Int(1) >= Int(1)); assert!(Int(1) < Int(2)); assert!(Int(1) <= Int(2)); assert!(Int(1) <= Int(1)); assert!(RevInt(2) < RevInt(1)); assert!(RevInt(2) <= RevInt(1)); assert!(RevInt(1) <= RevInt(1)); assert!(RevInt(1) > RevInt(2)); assert!(RevInt(1) >= RevInt(2)); assert!(RevInt(1) >= RevInt(1)); assert_eq!(Fool(true), Fool(false)); assert!(Fool(true) != Fool(true)); assert!(Fool(false) != Fool(false)); assert_eq!(Fool(false), Fool(true)); } mod const_cmp { use super::*; struct S(i32); impl const PartialEq for S { fn eq(&self, other: &Self) -> bool { self.0 == other.0 } } impl const PartialOrd for S { fn partial_cmp(&self, other: &Self) -> Option { let ret = match (self.0, other.0) { (a, b) if a > b => Ordering::Greater, (a, b) if a < b => Ordering::Less, _ => Ordering::Equal, }; Some(ret) } } const _: () = assert!(S(1) == S(1)); const _: () = assert!(S(0) != S(1)); const _: () = assert!(S(1) <= S(1)); const _: () = assert!(S(1) >= S(1)); const _: () = assert!(S(0) < S(1)); const _: () = assert!(S(1) > S(0)); }