use std::iter::{self, Peekable}; use either::Either; use hir::{Adt, HasSource, ModuleDef, Semantics}; use ide_db::helpers::{mod_path_to_ast, FamousDefs}; use ide_db::RootDatabase; use itertools::Itertools; use syntax::ast::{self, make, AstNode, MatchArm, NameOwner, Pat}; use crate::{ utils::{self, render_snippet, Cursor}, AssistContext, AssistId, AssistKind, Assists, }; // Assist: fill_match_arms // // Adds missing clauses to a `match` expression. // // ``` // enum Action { Move { distance: u32 }, Stop } // // fn handle(action: Action) { // match action { // $0 // } // } // ``` // -> // ``` // enum Action { Move { distance: u32 }, Stop } // // fn handle(action: Action) { // match action { // $0Action::Move { distance } => todo!(), // Action::Stop => todo!(), // } // } // ``` pub(crate) fn fill_match_arms(acc: &mut Assists, ctx: &AssistContext) -> Option<()> { let match_expr = ctx.find_node_at_offset_with_descend::()?; let match_arm_list = match_expr.match_arm_list()?; let expr = match_expr.expr()?; let mut arms: Vec = match_arm_list.arms().collect(); if arms.len() == 1 { if let Some(Pat::WildcardPat(..)) = arms[0].pat() { arms.clear(); } } let top_lvl_pats: Vec<_> = arms .iter() .filter_map(ast::MatchArm::pat) .flat_map(|pat| match pat { // Special case OrPat as separate top-level pats Pat::OrPat(or_pat) => Either::Left(or_pat.pats()), _ => Either::Right(iter::once(pat)), }) // Exclude top level wildcards so that they are expanded by this assist, retains status quo in #8129. .filter(|pat| !matches!(pat, Pat::WildcardPat(_))) .collect(); let module = ctx.sema.scope(expr.syntax()).module()?; let mut missing_pats: Peekable>> = if let Some(enum_def) = resolve_enum_def(&ctx.sema, &expr) { let variants = enum_def.variants(ctx.db()); let missing_pats = variants .into_iter() .filter_map(|variant| build_pat(ctx.db(), module, variant)) .filter(|variant_pat| is_variant_missing(&top_lvl_pats, variant_pat)); let missing_pats: Box> = if Some(enum_def) == FamousDefs(&ctx.sema, Some(module.krate())).core_option_Option().map(lift_enum) { // Match `Some` variant first. cov_mark::hit!(option_order); Box::new(missing_pats.rev()) } else { Box::new(missing_pats) }; missing_pats.peekable() } else if let Some(enum_defs) = resolve_tuple_of_enum_def(&ctx.sema, &expr) { let mut n_arms = 1; let variants_of_enums: Vec> = enum_defs .into_iter() .map(|enum_def| enum_def.variants(ctx.db())) .inspect(|variants| n_arms *= variants.len()) .collect(); // When calculating the match arms for a tuple of enums, we want // to create a match arm for each possible combination of enum // values. The `multi_cartesian_product` method transforms // Vec> into Vec<(EnumVariant, .., EnumVariant)> // where each tuple represents a proposed match arm. // A number of arms grows very fast on even a small tuple of large enums. // We skip the assist beyond an arbitrary threshold. if n_arms > 256 { return None; } let missing_pats = variants_of_enums .into_iter() .multi_cartesian_product() .inspect(|_| cov_mark::hit!(fill_match_arms_lazy_computation)) .map(|variants| { let patterns = variants.into_iter().filter_map(|variant| build_pat(ctx.db(), module, variant)); ast::Pat::from(make::tuple_pat(patterns)) }) .filter(|variant_pat| is_variant_missing(&top_lvl_pats, variant_pat)); (Box::new(missing_pats) as Box>).peekable() } else { return None; }; if missing_pats.peek().is_none() { return None; } let target = ctx.sema.original_range(match_expr.syntax()).range; acc.add( AssistId("fill_match_arms", AssistKind::QuickFix), "Fill match arms", target, |builder| { let new_match_arm_list = match_arm_list.clone_for_update(); let missing_arms = missing_pats .map(|pat| make::match_arm(iter::once(pat), None, make::ext::expr_todo())) .map(|it| it.clone_for_update()); let catch_all_arm = new_match_arm_list .arms() .find(|arm| matches!(arm.pat(), Some(ast::Pat::WildcardPat(_)))); if let Some(arm) = catch_all_arm { arm.remove() } let mut first_new_arm = None; for arm in missing_arms { first_new_arm.get_or_insert_with(|| arm.clone()); new_match_arm_list.add_arm(arm); } let old_range = ctx.sema.original_range(match_arm_list.syntax()).range; match (first_new_arm, ctx.config.snippet_cap) { (Some(first_new_arm), Some(cap)) => { let extend_lifetime; let cursor = match first_new_arm.syntax().descendants().find_map(ast::WildcardPat::cast) { Some(it) => { extend_lifetime = it.syntax().clone(); Cursor::Replace(&extend_lifetime) } None => Cursor::Before(first_new_arm.syntax()), }; let snippet = render_snippet(cap, new_match_arm_list.syntax(), cursor); builder.replace_snippet(cap, old_range, snippet); } _ => builder.replace(old_range, new_match_arm_list.to_string()), } }, ) } fn is_variant_missing(existing_pats: &[Pat], var: &Pat) -> bool { !existing_pats.iter().any(|pat| does_pat_match_variant(pat, var)) } // Fixme: this is still somewhat limited, use hir_ty::diagnostics::match_check? fn does_pat_match_variant(pat: &Pat, var: &Pat) -> bool { match (pat, var) { (Pat::WildcardPat(_), _) => true, (Pat::TuplePat(tpat), Pat::TuplePat(tvar)) => { tpat.fields().zip(tvar.fields()).all(|(p, v)| does_pat_match_variant(&p, &v)) } _ => utils::does_pat_match_variant(pat, var), } } #[derive(Eq, PartialEq, Clone, Copy)] enum ExtendedEnum { Bool, Enum(hir::Enum), } #[derive(Eq, PartialEq, Clone, Copy)] enum ExtendedVariant { True, False, Variant(hir::Variant), } fn lift_enum(e: hir::Enum) -> ExtendedEnum { ExtendedEnum::Enum(e) } impl ExtendedEnum { fn variants(self, db: &RootDatabase) -> Vec { match self { ExtendedEnum::Enum(e) => { e.variants(db).into_iter().map(ExtendedVariant::Variant).collect::>() } ExtendedEnum::Bool => { Vec::::from([ExtendedVariant::True, ExtendedVariant::False]) } } } } fn resolve_enum_def(sema: &Semantics, expr: &ast::Expr) -> Option { sema.type_of_expr(expr)?.autoderef(sema.db).find_map(|ty| match ty.as_adt() { Some(Adt::Enum(e)) => Some(ExtendedEnum::Enum(e)), _ => { if ty.is_bool() { Some(ExtendedEnum::Bool) } else { None } } }) } fn resolve_tuple_of_enum_def( sema: &Semantics, expr: &ast::Expr, ) -> Option> { sema.type_of_expr(expr)? .tuple_fields(sema.db) .iter() .map(|ty| { ty.autoderef(sema.db).find_map(|ty| match ty.as_adt() { Some(Adt::Enum(e)) => Some(lift_enum(e)), // For now we only handle expansion for a tuple of enums. Here // we map non-enum items to None and rely on `collect` to // convert Vec> into Option>. _ => { if ty.is_bool() { Some(ExtendedEnum::Bool) } else { None } } }) }) .collect() } fn build_pat(db: &RootDatabase, module: hir::Module, var: ExtendedVariant) -> Option { match var { ExtendedVariant::Variant(var) => { let path = mod_path_to_ast(&module.find_use_path(db, ModuleDef::from(var))?); // FIXME: use HIR for this; it doesn't currently expose struct vs. tuple vs. unit variants though let pat: ast::Pat = match var.source(db)?.value.kind() { ast::StructKind::Tuple(field_list) => { let pats = iter::repeat(make::wildcard_pat().into()).take(field_list.fields().count()); make::tuple_struct_pat(path, pats).into() } ast::StructKind::Record(field_list) => { let pats = field_list.fields().map(|f| make::ident_pat(f.name().unwrap()).into()); make::record_pat(path, pats).into() } ast::StructKind::Unit => make::path_pat(path), }; Some(pat) } ExtendedVariant::True => Some(ast::Pat::from(make::literal_pat("true"))), ExtendedVariant::False => Some(ast::Pat::from(make::literal_pat("false"))), } } #[cfg(test)] mod tests { use crate::tests::{ check_assist, check_assist_not_applicable, check_assist_target, check_assist_unresolved, }; use super::fill_match_arms; #[test] fn all_match_arms_provided() { check_assist_not_applicable( fill_match_arms, r#" enum A { As, Bs{x:i32, y:Option}, Cs(i32, Option), } fn main() { match A::As$0 { A::As, A::Bs{x,y:Some(_)} => {} A::Cs(_, Some(_)) => {} } } "#, ); } #[test] fn all_boolean_match_arms_provided() { check_assist_not_applicable( fill_match_arms, r#" fn foo(a: bool) { match a$0 { true => {} false => {} } } "#, ) } #[test] fn tuple_of_non_enum() { // for now this case is not handled, although it potentially could be // in the future check_assist_not_applicable( fill_match_arms, r#" fn main() { match (0, false)$0 { } } "#, ); } #[test] fn fill_match_arms_boolean() { check_assist( fill_match_arms, r#" fn foo(a: bool) { match a$0 { } } "#, r#" fn foo(a: bool) { match a { $0true => todo!(), false => todo!(), } } "#, ) } #[test] fn partial_fill_boolean() { check_assist( fill_match_arms, r#" fn foo(a: bool) { match a$0 { true => {} } } "#, r#" fn foo(a: bool) { match a { true => {} $0false => todo!(), } } "#, ) } #[test] fn all_boolean_tuple_arms_provided() { check_assist_not_applicable( fill_match_arms, r#" fn foo(a: bool) { match (a, a)$0 { (true, true) => {} (true, false) => {} (false, true) => {} (false, false) => {} } } "#, ) } #[test] fn fill_boolean_tuple() { check_assist( fill_match_arms, r#" fn foo(a: bool) { match (a, a)$0 { } } "#, r#" fn foo(a: bool) { match (a, a) { $0(true, true) => todo!(), (true, false) => todo!(), (false, true) => todo!(), (false, false) => todo!(), } } "#, ) } #[test] fn partial_fill_boolean_tuple() { check_assist( fill_match_arms, r#" fn foo(a: bool) { match (a, a)$0 { (false, true) => {} } } "#, r#" fn foo(a: bool) { match (a, a) { (false, true) => {} $0(true, true) => todo!(), (true, false) => todo!(), (false, false) => todo!(), } } "#, ) } #[test] fn partial_fill_record_tuple() { check_assist( fill_match_arms, r#" enum A { As, Bs { x: i32, y: Option }, Cs(i32, Option), } fn main() { match A::As$0 { A::Bs { x, y: Some(_) } => {} A::Cs(_, Some(_)) => {} } } "#, r#" enum A { As, Bs { x: i32, y: Option }, Cs(i32, Option), } fn main() { match A::As { A::Bs { x, y: Some(_) } => {} A::Cs(_, Some(_)) => {} $0A::As => todo!(), } } "#, ); } #[test] fn partial_fill_option() { check_assist( fill_match_arms, r#" //- minicore: option fn main() { match None$0 { None => {} } } "#, r#" fn main() { match None { None => {} Some(${0:_}) => todo!(), } } "#, ); } #[test] fn partial_fill_or_pat() { check_assist( fill_match_arms, r#" enum A { As, Bs, Cs(Option) } fn main() { match A::As$0 { A::Cs(_) | A::Bs => {} } } "#, r#" enum A { As, Bs, Cs(Option) } fn main() { match A::As { A::Cs(_) | A::Bs => {} $0A::As => todo!(), } } "#, ); } #[test] fn partial_fill() { check_assist( fill_match_arms, r#" enum A { As, Bs, Cs, Ds(String), Es(B) } enum B { Xs, Ys } fn main() { match A::As$0 { A::Bs if 0 < 1 => {} A::Ds(_value) => { let x = 1; } A::Es(B::Xs) => (), } } "#, r#" enum A { As, Bs, Cs, Ds(String), Es(B) } enum B { Xs, Ys } fn main() { match A::As { A::Bs if 0 < 1 => {} A::Ds(_value) => { let x = 1; } A::Es(B::Xs) => (), $0A::As => todo!(), A::Cs => todo!(), } } "#, ); } #[test] fn partial_fill_bind_pat() { check_assist( fill_match_arms, r#" enum A { As, Bs, Cs(Option) } fn main() { match A::As$0 { A::As(_) => {} a @ A::Bs(_) => {} } } "#, r#" enum A { As, Bs, Cs(Option) } fn main() { match A::As { A::As(_) => {} a @ A::Bs(_) => {} A::Cs(${0:_}) => todo!(), } } "#, ); } #[test] fn fill_match_arms_empty_body() { check_assist( fill_match_arms, r#" enum A { As, Bs, Cs(String), Ds(String, String), Es { x: usize, y: usize } } fn main() { let a = A::As; match a$0 {} } "#, r#" enum A { As, Bs, Cs(String), Ds(String, String), Es { x: usize, y: usize } } fn main() { let a = A::As; match a { $0A::As => todo!(), A::Bs => todo!(), A::Cs(_) => todo!(), A::Ds(_, _) => todo!(), A::Es { x, y } => todo!(), } } "#, ); } #[test] fn fill_match_arms_tuple_of_enum() { check_assist( fill_match_arms, r#" enum A { One, Two } enum B { One, Two } fn main() { let a = A::One; let b = B::One; match (a$0, b) {} } "#, r#" enum A { One, Two } enum B { One, Two } fn main() { let a = A::One; let b = B::One; match (a, b) { $0(A::One, B::One) => todo!(), (A::One, B::Two) => todo!(), (A::Two, B::One) => todo!(), (A::Two, B::Two) => todo!(), } } "#, ); } #[test] fn fill_match_arms_tuple_of_enum_ref() { check_assist( fill_match_arms, r#" enum A { One, Two } enum B { One, Two } fn main() { let a = A::One; let b = B::One; match (&a$0, &b) {} } "#, r#" enum A { One, Two } enum B { One, Two } fn main() { let a = A::One; let b = B::One; match (&a, &b) { $0(A::One, B::One) => todo!(), (A::One, B::Two) => todo!(), (A::Two, B::One) => todo!(), (A::Two, B::Two) => todo!(), } } "#, ); } #[test] fn fill_match_arms_tuple_of_enum_partial() { check_assist( fill_match_arms, r#" enum A { One, Two } enum B { One, Two } fn main() { let a = A::One; let b = B::One; match (a$0, b) { (A::Two, B::One) => {} } } "#, r#" enum A { One, Two } enum B { One, Two } fn main() { let a = A::One; let b = B::One; match (a, b) { (A::Two, B::One) => {} $0(A::One, B::One) => todo!(), (A::One, B::Two) => todo!(), (A::Two, B::Two) => todo!(), } } "#, ); } #[test] fn fill_match_arms_tuple_of_enum_partial_with_wildcards() { check_assist( fill_match_arms, r#" //- minicore: option fn main() { let a = Some(1); let b = Some(()); match (a$0, b) { (Some(_), _) => {} (None, Some(_)) => {} } } "#, r#" fn main() { let a = Some(1); let b = Some(()); match (a, b) { (Some(_), _) => {} (None, Some(_)) => {} $0(None, None) => todo!(), } } "#, ); } #[test] fn fill_match_arms_partial_with_deep_pattern() { // Fixme: cannot handle deep patterns check_assist_not_applicable( fill_match_arms, r#" //- minicore: option fn main() { match $0Some(true) { Some(true) => {} None => {} } } "#, ); } #[test] fn fill_match_arms_tuple_of_enum_not_applicable() { check_assist_not_applicable( fill_match_arms, r#" enum A { One, Two } enum B { One, Two } fn main() { let a = A::One; let b = B::One; match (a$0, b) { (A::Two, B::One) => {} (A::One, B::One) => {} (A::One, B::Two) => {} (A::Two, B::Two) => {} } } "#, ); } #[test] fn fill_match_arms_single_element_tuple_of_enum() { check_assist( fill_match_arms, r#" enum A { One, Two } fn main() { let a = A::One; match (a$0, ) { } } "#, r#" enum A { One, Two } fn main() { let a = A::One; match (a, ) { $0(A::One,) => todo!(), (A::Two,) => todo!(), } } "#, ); } #[test] fn test_fill_match_arm_refs() { check_assist( fill_match_arms, r#" enum A { As } fn foo(a: &A) { match a$0 { } } "#, r#" enum A { As } fn foo(a: &A) { match a { $0A::As => todo!(), } } "#, ); check_assist( fill_match_arms, r#" enum A { Es { x: usize, y: usize } } fn foo(a: &mut A) { match a$0 { } } "#, r#" enum A { Es { x: usize, y: usize } } fn foo(a: &mut A) { match a { $0A::Es { x, y } => todo!(), } } "#, ); } #[test] fn fill_match_arms_target() { check_assist_target( fill_match_arms, r#" enum E { X, Y } fn main() { match E::X$0 {} } "#, "match E::X {}", ); } #[test] fn fill_match_arms_trivial_arm() { check_assist( fill_match_arms, r#" enum E { X, Y } fn main() { match E::X { $0_ => {} } } "#, r#" enum E { X, Y } fn main() { match E::X { $0E::X => todo!(), E::Y => todo!(), } } "#, ); } #[test] fn fill_match_arms_qualifies_path() { check_assist( fill_match_arms, r#" mod foo { pub enum E { X, Y } } use foo::E::X; fn main() { match X { $0 } } "#, r#" mod foo { pub enum E { X, Y } } use foo::E::X; fn main() { match X { $0X => todo!(), foo::E::Y => todo!(), } } "#, ); } #[test] fn fill_match_arms_preserves_comments() { check_assist( fill_match_arms, r#" enum A { One, Two } fn foo(a: A) { match a { // foo bar baz$0 A::One => {} // This is where the rest should be } } "#, r#" enum A { One, Two } fn foo(a: A) { match a { // foo bar baz A::One => {} $0A::Two => todo!(), // This is where the rest should be } } "#, ); } #[test] fn fill_match_arms_preserves_comments_empty() { check_assist( fill_match_arms, r#" enum A { One, Two } fn foo(a: A) { match a { // foo bar baz$0 } } "#, r#" enum A { One, Two } fn foo(a: A) { match a { $0A::One => todo!(), A::Two => todo!(), // foo bar baz } } "#, ); } #[test] fn fill_match_arms_placeholder() { check_assist( fill_match_arms, r#" enum A { One, Two, } fn foo(a: A) { match a$0 { _ => (), } } "#, r#" enum A { One, Two, } fn foo(a: A) { match a { $0A::One => todo!(), A::Two => todo!(), } } "#, ); } #[test] fn option_order() { cov_mark::check!(option_order); check_assist( fill_match_arms, r#" //- minicore: option fn foo(opt: Option) { match opt$0 { } } "#, r#" fn foo(opt: Option) { match opt { Some(${0:_}) => todo!(), None => todo!(), } } "#, ); } #[test] fn works_inside_macro_call() { check_assist( fill_match_arms, r#" macro_rules! m { ($expr:expr) => {$expr}} enum Test { A, B, C, } fn foo(t: Test) { m!(match t$0 {}); }"#, r#" macro_rules! m { ($expr:expr) => {$expr}} enum Test { A, B, C, } fn foo(t: Test) { m!(match t { $0Test::A => todo!(), Test::B => todo!(), Test::C => todo!(), }); }"#, ); } #[test] fn lazy_computation() { // Computing a single missing arm is enough to determine applicability of the assist. cov_mark::check_count!(fill_match_arms_lazy_computation, 1); check_assist_unresolved( fill_match_arms, r#" enum A { One, Two, } fn foo(tuple: (A, A)) { match $0tuple {}; } "#, ); } #[test] fn adds_comma_before_new_arms() { check_assist( fill_match_arms, r#" fn foo(t: bool) { match $0t { true => 1 + 2 } }"#, r#" fn foo(t: bool) { match t { true => 1 + 2, $0false => todo!(), } }"#, ); } #[test] fn does_not_add_extra_comma() { check_assist( fill_match_arms, r#" fn foo(t: bool) { match $0t { true => 1 + 2, } }"#, r#" fn foo(t: bool) { match t { true => 1 + 2, $0false => todo!(), } }"#, ); } }