// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Machinery for hygienic macros, inspired by the MTWT[1] paper. //! //! [1] Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce Findler. 2012. //! *Macros that work together: Compile-time bindings, partial expansion, //! and definition contexts*. J. Funct. Program. 22, 2 (March 2012), 181-216. //! DOI=10.1017/S0956796812000093 use Span; use symbol::{Ident, Symbol}; use serialize::{Encodable, Decodable, Encoder, Decoder}; use std::cell::RefCell; use std::collections::HashMap; use std::fmt; /// A SyntaxContext represents a chain of macro expansions (represented by marks). #[derive(Clone, Copy, PartialEq, Eq, Default, PartialOrd, Ord, Hash)] pub struct SyntaxContext(pub(super) u32); #[derive(Copy, Clone)] pub struct SyntaxContextData { pub outer_mark: Mark, pub prev_ctxt: SyntaxContext, pub modern: SyntaxContext, } /// A mark is a unique id associated with a macro expansion. #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)] pub struct Mark(u32); struct MarkData { parent: Mark, kind: MarkKind, expn_info: Option, } #[derive(Copy, Clone, PartialEq, Eq)] pub enum MarkKind { Modern, Builtin, Legacy, } impl Mark { pub fn fresh(parent: Mark) -> Self { HygieneData::with(|data| { data.marks.push(MarkData { parent: parent, kind: MarkKind::Legacy, expn_info: None }); Mark(data.marks.len() as u32 - 1) }) } /// The mark of the theoretical expansion that generates freshly parsed, unexpanded AST. #[inline] pub fn root() -> Self { Mark(0) } #[inline] pub fn as_u32(self) -> u32 { self.0 } #[inline] pub fn from_u32(raw: u32) -> Mark { Mark(raw) } #[inline] pub fn expn_info(self) -> Option { HygieneData::with(|data| data.marks[self.0 as usize].expn_info.clone()) } #[inline] pub fn set_expn_info(self, info: ExpnInfo) { HygieneData::with(|data| data.marks[self.0 as usize].expn_info = Some(info)) } pub fn modern(mut self) -> Mark { HygieneData::with(|data| { loop { if self == Mark::root() || data.marks[self.0 as usize].kind == MarkKind::Modern { return self; } self = data.marks[self.0 as usize].parent; } }) } #[inline] pub fn kind(self) -> MarkKind { HygieneData::with(|data| data.marks[self.0 as usize].kind) } #[inline] pub fn set_kind(self, kind: MarkKind) { HygieneData::with(|data| data.marks[self.0 as usize].kind = kind) } pub fn is_descendant_of(mut self, ancestor: Mark) -> bool { HygieneData::with(|data| { while self != ancestor { if self == Mark::root() { return false; } self = data.marks[self.0 as usize].parent; } true }) } } struct HygieneData { marks: Vec, syntax_contexts: Vec, markings: HashMap<(SyntaxContext, Mark), SyntaxContext>, gensym_to_ctxt: HashMap, } impl HygieneData { fn new() -> Self { HygieneData { marks: vec![MarkData { parent: Mark::root(), kind: MarkKind::Builtin, expn_info: None, }], syntax_contexts: vec![SyntaxContextData { outer_mark: Mark::root(), prev_ctxt: SyntaxContext(0), modern: SyntaxContext(0), }], markings: HashMap::new(), gensym_to_ctxt: HashMap::new(), } } fn with T>(f: F) -> T { thread_local! { static HYGIENE_DATA: RefCell = RefCell::new(HygieneData::new()); } HYGIENE_DATA.with(|data| f(&mut *data.borrow_mut())) } } pub fn clear_markings() { HygieneData::with(|data| data.markings = HashMap::new()); } impl SyntaxContext { pub const fn empty() -> Self { SyntaxContext(0) } // Allocate a new SyntaxContext with the given ExpnInfo. This is used when // deserializing Spans from the incr. comp. cache. // FIXME(mw): This method does not restore MarkData::parent or // SyntaxContextData::prev_ctxt or SyntaxContextData::modern. These things // don't seem to be used after HIR lowering, so everything should be fine // as long as incremental compilation does not kick in before that. pub fn allocate_directly(expansion_info: ExpnInfo) -> Self { HygieneData::with(|data| { data.marks.push(MarkData { parent: Mark::root(), kind: MarkKind::Legacy, expn_info: Some(expansion_info) }); let mark = Mark(data.marks.len() as u32 - 1); data.syntax_contexts.push(SyntaxContextData { outer_mark: mark, prev_ctxt: SyntaxContext::empty(), modern: SyntaxContext::empty(), }); SyntaxContext(data.syntax_contexts.len() as u32 - 1) }) } /// Extend a syntax context with a given mark pub fn apply_mark(self, mark: Mark) -> SyntaxContext { if mark.kind() == MarkKind::Modern { return self.apply_mark_internal(mark); } let call_site_ctxt = mark.expn_info().map_or(SyntaxContext::empty(), |info| info.call_site.ctxt()).modern(); if call_site_ctxt == SyntaxContext::empty() { return self.apply_mark_internal(mark); } // Otherwise, `mark` is a macros 1.0 definition and the call site is in a // macros 2.0 expansion, i.e. a macros 1.0 invocation is in a macros 2.0 definition. // // In this case, the tokens from the macros 1.0 definition inherit the hygiene // at their invocation. That is, we pretend that the macros 1.0 definition // was defined at its invocation (i.e. inside the macros 2.0 definition) // so that the macros 2.0 definition remains hygienic. // // See the example at `test/run-pass/hygiene/legacy_interaction.rs`. let mut ctxt = call_site_ctxt; for mark in self.marks() { ctxt = ctxt.apply_mark_internal(mark); } ctxt.apply_mark_internal(mark) } fn apply_mark_internal(self, mark: Mark) -> SyntaxContext { HygieneData::with(|data| { let syntax_contexts = &mut data.syntax_contexts; let mut modern = syntax_contexts[self.0 as usize].modern; if data.marks[mark.0 as usize].kind == MarkKind::Modern { modern = *data.markings.entry((modern, mark)).or_insert_with(|| { let len = syntax_contexts.len() as u32; syntax_contexts.push(SyntaxContextData { outer_mark: mark, prev_ctxt: modern, modern: SyntaxContext(len), }); SyntaxContext(len) }); } *data.markings.entry((self, mark)).or_insert_with(|| { syntax_contexts.push(SyntaxContextData { outer_mark: mark, prev_ctxt: self, modern, }); SyntaxContext(syntax_contexts.len() as u32 - 1) }) }) } pub fn remove_mark(&mut self) -> Mark { HygieneData::with(|data| { let outer_mark = data.syntax_contexts[self.0 as usize].outer_mark; *self = data.syntax_contexts[self.0 as usize].prev_ctxt; outer_mark }) } pub fn marks(mut self) -> Vec { HygieneData::with(|data| { let mut marks = Vec::new(); while self != SyntaxContext::empty() { marks.push(data.syntax_contexts[self.0 as usize].outer_mark); self = data.syntax_contexts[self.0 as usize].prev_ctxt; } marks.reverse(); marks }) } /// Adjust this context for resolution in a scope created by the given expansion. /// For example, consider the following three resolutions of `f`: /// /// ```rust /// mod foo { pub fn f() {} } // `f`'s `SyntaxContext` is empty. /// m!(f); /// macro m($f:ident) { /// mod bar { /// pub fn f() {} // `f`'s `SyntaxContext` has a single `Mark` from `m`. /// pub fn $f() {} // `$f`'s `SyntaxContext` is empty. /// } /// foo::f(); // `f`'s `SyntaxContext` has a single `Mark` from `m` /// //^ Since `mod foo` is outside this expansion, `adjust` removes the mark from `f`, /// //| and it resolves to `::foo::f`. /// bar::f(); // `f`'s `SyntaxContext` has a single `Mark` from `m` /// //^ Since `mod bar` not outside this expansion, `adjust` does not change `f`, /// //| and it resolves to `::bar::f`. /// bar::$f(); // `f`'s `SyntaxContext` is empty. /// //^ Since `mod bar` is not outside this expansion, `adjust` does not change `$f`, /// //| and it resolves to `::bar::$f`. /// } /// ``` /// This returns the expansion whose definition scope we use to privacy check the resolution, /// or `None` if we privacy check as usual (i.e. not w.r.t. a macro definition scope). pub fn adjust(&mut self, expansion: Mark) -> Option { let mut scope = None; while !expansion.is_descendant_of(self.outer()) { scope = Some(self.remove_mark()); } scope } /// Adjust this context for resolution in a scope created by the given expansion /// via a glob import with the given `SyntaxContext`. /// For example: /// /// ```rust /// m!(f); /// macro m($i:ident) { /// mod foo { /// pub fn f() {} // `f`'s `SyntaxContext` has a single `Mark` from `m`. /// pub fn $i() {} // `$i`'s `SyntaxContext` is empty. /// } /// n(f); /// macro n($j:ident) { /// use foo::*; /// f(); // `f`'s `SyntaxContext` has a mark from `m` and a mark from `n` /// //^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::f`. /// $i(); // `$i`'s `SyntaxContext` has a mark from `n` /// //^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::$i`. /// $j(); // `$j`'s `SyntaxContext` has a mark from `m` /// //^ This cannot be glob-adjusted, so this is a resolution error. /// } /// } /// ``` /// This returns `None` if the context cannot be glob-adjusted. /// Otherwise, it returns the scope to use when privacy checking (see `adjust` for details). pub fn glob_adjust(&mut self, expansion: Mark, mut glob_ctxt: SyntaxContext) -> Option> { let mut scope = None; while !expansion.is_descendant_of(glob_ctxt.outer()) { scope = Some(glob_ctxt.remove_mark()); if self.remove_mark() != scope.unwrap() { return None; } } if self.adjust(expansion).is_some() { return None; } Some(scope) } /// Undo `glob_adjust` if possible: /// /// ```rust /// if let Some(privacy_checking_scope) = self.reverse_glob_adjust(expansion, glob_ctxt) { /// assert!(self.glob_adjust(expansion, glob_ctxt) == Some(privacy_checking_scope)); /// } /// ``` pub fn reverse_glob_adjust(&mut self, expansion: Mark, mut glob_ctxt: SyntaxContext) -> Option> { if self.adjust(expansion).is_some() { return None; } let mut marks = Vec::new(); while !expansion.is_descendant_of(glob_ctxt.outer()) { marks.push(glob_ctxt.remove_mark()); } let scope = marks.last().cloned(); while let Some(mark) = marks.pop() { *self = self.apply_mark(mark); } Some(scope) } #[inline] pub fn modern(self) -> SyntaxContext { HygieneData::with(|data| data.syntax_contexts[self.0 as usize].modern) } #[inline] pub fn outer(self) -> Mark { HygieneData::with(|data| data.syntax_contexts[self.0 as usize].outer_mark) } } impl fmt::Debug for SyntaxContext { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "#{}", self.0) } } /// Extra information for tracking spans of macro and syntax sugar expansion #[derive(Clone, Hash, Debug, RustcEncodable, RustcDecodable)] pub struct ExpnInfo { /// The location of the actual macro invocation or syntax sugar , e.g. /// `let x = foo!();` or `if let Some(y) = x {}` /// /// This may recursively refer to other macro invocations, e.g. if /// `foo!()` invoked `bar!()` internally, and there was an /// expression inside `bar!`; the call_site of the expression in /// the expansion would point to the `bar!` invocation; that /// call_site span would have its own ExpnInfo, with the call_site /// pointing to the `foo!` invocation. pub call_site: Span, /// Information about the expansion. pub callee: NameAndSpan } #[derive(Clone, Hash, Debug, RustcEncodable, RustcDecodable)] pub struct NameAndSpan { /// The format with which the macro was invoked. pub format: ExpnFormat, /// Whether the macro is allowed to use #[unstable]/feature-gated /// features internally without forcing the whole crate to opt-in /// to them. pub allow_internal_unstable: bool, /// Whether the macro is allowed to use `unsafe` internally /// even if the user crate has `#![forbid(unsafe_code)]`. pub allow_internal_unsafe: bool, /// The span of the macro definition itself. The macro may not /// have a sensible definition span (e.g. something defined /// completely inside libsyntax) in which case this is None. pub span: Option } impl NameAndSpan { pub fn name(&self) -> Symbol { match self.format { ExpnFormat::MacroAttribute(s) | ExpnFormat::MacroBang(s) => s, ExpnFormat::CompilerDesugaring(ref kind) => kind.as_symbol(), } } } /// The source of expansion. #[derive(Clone, Hash, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)] pub enum ExpnFormat { /// e.g. #[derive(...)] MacroAttribute(Symbol), /// e.g. `format!()` MacroBang(Symbol), /// Desugaring done by the compiler during HIR lowering. CompilerDesugaring(CompilerDesugaringKind) } /// The kind of compiler desugaring. #[derive(Clone, Hash, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)] pub enum CompilerDesugaringKind { BackArrow, DotFill, QuestionMark, } impl CompilerDesugaringKind { pub fn as_symbol(&self) -> Symbol { use CompilerDesugaringKind::*; let s = match *self { BackArrow => "<-", DotFill => "...", QuestionMark => "?", }; Symbol::intern(s) } } impl Encodable for SyntaxContext { fn encode(&self, _: &mut E) -> Result<(), E::Error> { Ok(()) // FIXME(jseyfried) intercrate hygiene } } impl Decodable for SyntaxContext { fn decode(_: &mut D) -> Result { Ok(SyntaxContext::empty()) // FIXME(jseyfried) intercrate hygiene } } impl Symbol { pub fn from_ident(ident: Ident) -> Symbol { HygieneData::with(|data| { let gensym = ident.name.gensymed(); data.gensym_to_ctxt.insert(gensym, ident.ctxt); gensym }) } pub fn to_ident(self) -> Ident { HygieneData::with(|data| { match data.gensym_to_ctxt.get(&self) { Some(&ctxt) => Ident { name: self.interned(), ctxt: ctxt }, None => Ident::with_empty_ctxt(self), } }) } }