use arena::TypedArena; use rustc::middle::const_eval; use rustc::middle::def_id::DefId; use rustc::middle::subst::{self, Subst, Substs}; use rustc::middle::traits; use rustc::middle::ty::{self, TyCtxt}; use rustc::mir::mir_map::MirMap; use rustc::mir::repr as mir; use rustc::util::nodemap::DefIdMap; use rustc_data_structures::fnv::FnvHashMap; use std::cell::RefCell; use std::iter; use std::ops::Deref; use std::rc::Rc; use syntax::codemap::DUMMY_SP; use error::EvalResult; use memory::{self, FieldRepr, Memory, Pointer, Repr}; use primval; const TRACE_EXECUTION: bool = true; struct Interpreter<'a, 'tcx: 'a, 'arena> { /// The results of the type checker, from rustc. tcx: &'a TyCtxt<'tcx>, /// A mapping from NodeIds to Mir, from rustc. Only contains MIR for crate-local items. mir_map: &'a MirMap<'tcx>, /// A local cache from DefIds to Mir for non-crate-local items. mir_cache: RefCell>>>, /// An arena allocator for type representations. repr_arena: &'arena TypedArena, /// A cache for in-memory representations of types. repr_cache: RefCell, &'arena Repr>>, /// The virtual memory system. memory: Memory, /// The virtual call stack. stack: Vec>, /// Another stack containing the type substitutions for the current function invocation. It /// exists separately from `stack` because it must contain the `Substs` for a function while /// *creating* the `Frame` for that same function. substs_stack: Vec<&'tcx Substs<'tcx>>, } /// A stack frame. struct Frame<'a, 'tcx: 'a> { /// The MIR for the function called on this frame. mir: CachedMir<'a, 'tcx>, /// The block this frame will execute when a function call returns back to this frame. next_block: mir::BasicBlock, /// A pointer for writing the return value of the current call if it's not a diverging call. return_ptr: Option, /// The list of locals for the current function, stored in order as /// `[arguments..., variables..., temporaries...]`. The variables begin at `self.var_offset` /// and the temporaries at `self.temp_offset`. locals: Vec, /// The offset of the first variable in `self.locals`. var_offset: usize, /// The offset of the first temporary in `self.locals`. temp_offset: usize, } #[derive(Clone)] enum CachedMir<'mir, 'tcx: 'mir> { Ref(&'mir mir::Mir<'tcx>), Owned(Rc>) } /// Represents the action to be taken in the main loop as a result of executing a terminator. enum TerminatorTarget { /// Make a local jump to the given block. Block(mir::BasicBlock), /// Start executing from the new current frame. (For function calls.) Call, /// Stop executing the current frame and resume the previous frame. Return, } impl<'a, 'tcx: 'a, 'arena> Interpreter<'a, 'tcx, 'arena> { fn new(tcx: &'a TyCtxt<'tcx>, mir_map: &'a MirMap<'tcx>, repr_arena: &'arena TypedArena) -> Self { Interpreter { tcx: tcx, mir_map: mir_map, mir_cache: RefCell::new(DefIdMap()), repr_arena: repr_arena, repr_cache: RefCell::new(FnvHashMap()), memory: Memory::new(), stack: Vec::new(), substs_stack: Vec::new(), } } fn run(&mut self) -> EvalResult<()> { use std::fmt::Debug; fn print_trace(t: &T, suffix: &'static str, indent: usize) { if !TRACE_EXECUTION { return; } for _ in 0..indent { print!(" "); } println!("{:?}{}", t, suffix); } 'outer: while !self.stack.is_empty() { let mut current_block = self.current_frame().next_block; loop { print_trace(¤t_block, ":", self.stack.len()); let current_mir = self.current_frame().mir.clone(); // Cloning a reference. let block_data = current_mir.basic_block_data(current_block); for stmt in &block_data.statements { print_trace(stmt, "", self.stack.len() + 1); let mir::StatementKind::Assign(ref lvalue, ref rvalue) = stmt.kind; try!(self.eval_assignment(lvalue, rvalue)); } let terminator = block_data.terminator(); print_trace(terminator, "", self.stack.len() + 1); match try!(self.eval_terminator(terminator)) { TerminatorTarget::Block(block) => current_block = block, TerminatorTarget::Return => { self.pop_stack_frame(); self.substs_stack.pop(); continue 'outer; } TerminatorTarget::Call => continue 'outer, } } } Ok(()) } fn push_stack_frame(&mut self, mir: CachedMir<'a, 'tcx>, args: &[mir::Operand<'tcx>], return_ptr: Option) -> EvalResult<()> { let num_args = mir.arg_decls.len(); let num_vars = mir.var_decls.len(); let num_temps = mir.temp_decls.len(); assert_eq!(args.len(), num_args); let mut locals = Vec::with_capacity(num_args + num_vars + num_temps); for (arg_decl, arg_operand) in mir.arg_decls.iter().zip(args) { let size = self.ty_size(arg_decl.ty); let dest = self.memory.allocate(size); let src = try!(self.eval_operand(arg_operand)); try!(self.memory.copy(src, dest, size)); locals.push(dest); } let var_tys = mir.var_decls.iter().map(|v| v.ty); let temp_tys = mir.temp_decls.iter().map(|t| t.ty); locals.extend(var_tys.chain(temp_tys).map(|ty| { let size = self.ty_size(ty); self.memory.allocate(size) })); self.stack.push(Frame { mir: mir.clone(), next_block: mir::START_BLOCK, return_ptr: return_ptr, locals: locals, var_offset: num_args, temp_offset: num_args + num_vars, }); Ok(()) } fn pop_stack_frame(&mut self) { let _frame = self.stack.pop().expect("tried to pop a stack frame, but there were none"); // TODO(tsion): Deallocate local variables. } fn eval_terminator(&mut self, terminator: &mir::Terminator<'tcx>) -> EvalResult { use rustc::mir::repr::Terminator::*; let target = match *terminator { Return => TerminatorTarget::Return, Goto { target } => TerminatorTarget::Block(target), If { ref cond, targets: (then_target, else_target) } => { let cond_ptr = try!(self.eval_operand(cond)); let cond_val = try!(self.memory.read_bool(cond_ptr)); TerminatorTarget::Block(if cond_val { then_target } else { else_target }) } SwitchInt { ref discr, ref values, ref targets, .. } => { let discr_ptr = try!(self.eval_lvalue(discr)); let discr_size = self.lvalue_repr(discr).size(); let discr_val = try!(self.memory.read_uint(discr_ptr, discr_size)); // Branch to the `otherwise` case by default, if no match is found. let mut target_block = targets[targets.len() - 1]; for (index, val_const) in values.iter().enumerate() { let ptr = try!(self.const_to_ptr(val_const)); let val = try!(self.memory.read_uint(ptr, discr_size)); if discr_val == val { target_block = targets[index]; break; } } TerminatorTarget::Block(target_block) } Switch { ref discr, ref targets, .. } => { let adt_ptr = try!(self.eval_lvalue(discr)); let adt_repr = self.lvalue_repr(discr); let discr_size = match *adt_repr { Repr::Aggregate { discr_size, .. } => discr_size, _ => panic!("attmpted to switch on non-aggregate type"), }; let discr_val = try!(self.memory.read_uint(adt_ptr, discr_size)); TerminatorTarget::Block(targets[discr_val as usize]) } Call { ref func, ref args, ref destination, .. } => { let mut return_ptr = None; if let Some((ref lv, target)) = *destination { self.current_frame_mut().next_block = target; return_ptr = Some(try!(self.eval_lvalue(lv))); } let func_ty = self.current_frame().mir.operand_ty(self.tcx, func); match func_ty.sty { ty::TyFnDef(def_id, substs, fn_ty) => { let substs = self.tcx.mk_substs( substs.subst(self.tcx, self.current_substs())); use syntax::abi::Abi; match fn_ty.abi { Abi::RustIntrinsic => { let name = self.tcx.item_name(def_id).as_str(); try!(self.call_intrinsic(&name, substs, args)) } Abi::Rust => { // Only trait methods can have a Self parameter. let (def_id, substs) = if substs.self_ty().is_some() { self.trait_method(def_id, substs) } else { (def_id, substs) }; let mir = self.load_mir(def_id); self.substs_stack.push(substs); try!(self.push_stack_frame(mir, args, return_ptr)); TerminatorTarget::Call } abi => panic!("can't handle function with ABI {:?}", abi), } } _ => panic!("can't handle callee of type {:?}", func_ty), } } Drop { target, .. } => { // TODO: Handle destructors and dynamic drop. TerminatorTarget::Block(target) } Resume => unimplemented!(), }; Ok(target) } fn call_intrinsic(&mut self, name: &str, substs: &'tcx Substs<'tcx>, args: &[mir::Operand<'tcx>]) -> EvalResult { let ret_ptr = &mir::Lvalue::ReturnPointer; let dest = try!(self.eval_lvalue(ret_ptr)); let dest_size = self.lvalue_repr(ret_ptr).size(); match name { "size_of" => { let ty = *substs.types.get(subst::FnSpace, 0); let size = self.ty_size(ty) as u64; try!(self.memory.write_uint(dest, size, dest_size)); } "offset" => { let pointee_ty = *substs.types.get(subst::FnSpace, 0); let pointee_size = self.ty_size(pointee_ty) as isize; let ptr_arg = try!(self.eval_operand(&args[0])); let offset_arg = try!(self.eval_operand(&args[1])); let ptr = try!(self.memory.read_ptr(ptr_arg)); let offset = try!(self.memory.read_int(offset_arg, self.memory.pointer_size)); let result_ptr = ptr.offset(offset as isize * pointee_size); try!(self.memory.write_ptr(dest, result_ptr)); } name => panic!("can't handle intrinsic: {}", name), } // Since we pushed no stack frame, the main loop will act // as if the call just completed and it's returning to the // current frame. Ok(TerminatorTarget::Call) } fn assign_to_aggregate(&mut self, dest: Pointer, dest_repr: &Repr, variant: usize, operands: &[mir::Operand<'tcx>]) -> EvalResult<()> { match *dest_repr { Repr::Aggregate { discr_size, ref variants, .. } => { if discr_size > 0 { let discr = variant as u64; try!(self.memory.write_uint(dest, discr, discr_size)); } let after_discr = dest.offset(discr_size as isize); for (field, operand) in variants[variant].iter().zip(operands) { let src = try!(self.eval_operand(operand)); let field_dest = after_discr.offset(field.offset as isize); try!(self.memory.copy(src, field_dest, field.size)); } } _ => panic!("expected Repr::Aggregate target"), } Ok(()) } fn eval_assignment(&mut self, lvalue: &mir::Lvalue<'tcx>, rvalue: &mir::Rvalue<'tcx>) -> EvalResult<()> { let dest = try!(self.eval_lvalue(lvalue)); let dest_repr = self.lvalue_repr(lvalue); use rustc::mir::repr::Rvalue::*; match *rvalue { Use(ref operand) => { let src = try!(self.eval_operand(operand)); self.memory.copy(src, dest, dest_repr.size()) } BinaryOp(bin_op, ref left, ref right) => { let left_ptr = try!(self.eval_operand(left)); let left_ty = self.operand_ty(left); let left_val = try!(self.memory.read_primval(left_ptr, left_ty)); let right_ptr = try!(self.eval_operand(right)); let right_ty = self.operand_ty(right); let right_val = try!(self.memory.read_primval(right_ptr, right_ty)); self.memory.write_primval(dest, primval::binary_op(bin_op, left_val, right_val)) } UnaryOp(un_op, ref operand) => { let ptr = try!(self.eval_operand(operand)); let ty = self.operand_ty(operand); let val = try!(self.memory.read_primval(ptr, ty)); self.memory.write_primval(dest, primval::unary_op(un_op, val)) } Aggregate(ref kind, ref operands) => { use rustc::mir::repr::AggregateKind::*; match *kind { Tuple => self.assign_to_aggregate(dest, &dest_repr, 0, operands), Adt(_, variant_idx, _) => self.assign_to_aggregate(dest, &dest_repr, variant_idx, operands), Vec => match *dest_repr { Repr::Array { elem_size, length } => { assert_eq!(length, operands.len()); for (i, operand) in operands.iter().enumerate() { let src = try!(self.eval_operand(operand)); let offset = i * elem_size; let elem_dest = dest.offset(offset as isize); try!(self.memory.copy(src, elem_dest, elem_size)); } Ok(()) } _ => panic!("expected Repr::Array target"), }, Closure(..) => unimplemented!(), } } Ref(_, _, ref lvalue) => { let ptr = try!(self.eval_lvalue(lvalue)); self.memory.write_ptr(dest, ptr) } Box(ty) => { let size = self.ty_size(ty); let ptr = self.memory.allocate(size); self.memory.write_ptr(dest, ptr) } Cast(kind, ref operand, dest_ty) => { fn pointee_type<'tcx>(ptr_ty: ty::Ty<'tcx>) -> Option> { match ptr_ty.sty { ty::TyRef(_, ty::TypeAndMut { ty, .. }) | ty::TyRawPtr(ty::TypeAndMut { ty, .. }) | ty::TyBox(ty) => { Some(ty) } _ => None, } } let src = try!(self.eval_operand(operand)); let src_ty = self.current_frame().mir.operand_ty(self.tcx, operand); use rustc::mir::repr::CastKind::*; match kind { Unsize => { try!(self.memory.copy(src, dest, 8)); let src_pointee_ty = pointee_type(src_ty).unwrap(); let dest_pointee_ty = pointee_type(dest_ty).unwrap(); match (&src_pointee_ty.sty, &dest_pointee_ty.sty) { (&ty::TyArray(_, length), &ty::TySlice(_)) => { let size = self.memory.pointer_size; self.memory.write_uint( dest.offset(size as isize), length as u64, size, ) } _ => panic!("can't handle cast: {:?}", rvalue), } } Misc => { if pointee_type(src_ty).is_some() && pointee_type(dest_ty).is_some() { // FIXME(tsion): Wrong for fat pointers. self.memory.copy(src, dest, 8) } else { // FIXME(tsion): Wrong for almost everything. self.memory.copy(src, dest, 8) // panic!("can't handle cast: {:?}", rvalue); } } _ => panic!("can't handle cast: {:?}", rvalue), } } ref r => panic!("can't handle rvalue: {:?}", r), } } fn operand_ty(&self, operand: &mir::Operand<'tcx>) -> ty::Ty<'tcx> { self.current_frame().mir.operand_ty(self.tcx, operand) } fn eval_operand(&mut self, op: &mir::Operand<'tcx>) -> EvalResult { self.eval_operand_and_repr(op).map(|(p, _)| p) } fn eval_operand_and_repr(&mut self, op: &mir::Operand<'tcx>) -> EvalResult<(Pointer, &'arena Repr)> { use rustc::mir::repr::Operand::*; match *op { Consume(ref lvalue) => Ok((try!(self.eval_lvalue(lvalue)), self.lvalue_repr(lvalue))), Constant(mir::Constant { ref literal, ty, .. }) => { use rustc::mir::repr::Literal::*; match *literal { Value { ref value } => Ok(( try!(self.const_to_ptr(value)), self.ty_to_repr(ty), )), ref l => panic!("can't handle item literal: {:?}", l), } } } } // TODO(tsion): Replace this inefficient hack with a wrapper like LvalueTy (e.g. LvalueRepr). fn lvalue_repr(&self, lvalue: &mir::Lvalue<'tcx>) -> &'arena Repr { use rustc::mir::tcx::LvalueTy; match self.current_frame().mir.lvalue_ty(self.tcx, lvalue) { LvalueTy::Ty { ty } => self.ty_to_repr(ty), LvalueTy::Downcast { ref adt_def, substs, variant_index } => { let field_tys = adt_def.variants[variant_index].fields.iter() .map(|f| f.ty(self.tcx, substs)); self.repr_arena.alloc(self.make_aggregate_repr(iter::once(field_tys))) } } } fn eval_lvalue(&self, lvalue: &mir::Lvalue<'tcx>) -> EvalResult { let frame = self.current_frame(); use rustc::mir::repr::Lvalue::*; let ptr = match *lvalue { ReturnPointer => frame.return_ptr.expect("ReturnPointer used in a function with no return value"), Arg(i) => frame.locals[i as usize], Var(i) => frame.locals[frame.var_offset + i as usize], Temp(i) => frame.locals[frame.temp_offset + i as usize], Projection(ref proj) => { let base_ptr = try!(self.eval_lvalue(&proj.base)); let base_repr = self.lvalue_repr(&proj.base); use rustc::mir::repr::ProjectionElem::*; match proj.elem { Field(field, _) => match *base_repr { Repr::Aggregate { discr_size: 0, ref variants, .. } => { let fields = &variants[0]; base_ptr.offset(fields[field.index()].offset as isize) } _ => panic!("field access on non-product type: {:?}", base_repr), }, Downcast(..) => match *base_repr { Repr::Aggregate { discr_size, .. } => base_ptr.offset(discr_size as isize), _ => panic!("variant downcast on non-aggregate type: {:?}", base_repr), }, Deref => try!(self.memory.read_ptr(base_ptr)), _ => unimplemented!(), } } ref l => panic!("can't handle lvalue: {:?}", l), }; Ok(ptr) } fn const_to_ptr(&mut self, const_val: &const_eval::ConstVal) -> EvalResult { use rustc::middle::const_eval::ConstVal::*; match *const_val { Float(_f) => unimplemented!(), Integral(int) => { // TODO(tsion): Check int constant type. let ptr = self.memory.allocate(8); try!(self.memory.write_uint(ptr, int.to_u64_unchecked(), 8)); Ok(ptr) } Str(ref _s) => unimplemented!(), ByteStr(ref _bs) => unimplemented!(), Bool(b) => { let ptr = self.memory.allocate(1); try!(self.memory.write_bool(ptr, b)); Ok(ptr) } Char(_c) => unimplemented!(), Struct(_node_id) => unimplemented!(), Tuple(_node_id) => unimplemented!(), Function(_def_id) => unimplemented!(), Array(_, _) => unimplemented!(), Repeat(_, _) => unimplemented!(), Dummy => unimplemented!(), } } fn ty_size(&self, ty: ty::Ty<'tcx>) -> usize { self.ty_to_repr(ty).size() } fn ty_to_repr(&self, ty: ty::Ty<'tcx>) -> &'arena Repr { let ty = ty.subst(self.tcx, self.current_substs()); if let Some(repr) = self.repr_cache.borrow().get(ty) { return repr; } use syntax::ast::{IntTy, UintTy}; let repr = match ty.sty { ty::TyBool => Repr::Primitive { size: 1 }, ty::TyInt(IntTy::Is) => Repr::Primitive { size: self.memory.pointer_size }, ty::TyInt(IntTy::I8) => Repr::Primitive { size: 1 }, ty::TyInt(IntTy::I16) => Repr::Primitive { size: 2 }, ty::TyInt(IntTy::I32) => Repr::Primitive { size: 4 }, ty::TyInt(IntTy::I64) => Repr::Primitive { size: 8 }, ty::TyUint(UintTy::Us) => Repr::Primitive { size: self.memory.pointer_size }, ty::TyUint(UintTy::U8) => Repr::Primitive { size: 1 }, ty::TyUint(UintTy::U16) => Repr::Primitive { size: 2 }, ty::TyUint(UintTy::U32) => Repr::Primitive { size: 4 }, ty::TyUint(UintTy::U64) => Repr::Primitive { size: 8 }, ty::TyTuple(ref fields) => self.make_aggregate_repr(iter::once(fields.iter().cloned())), ty::TyEnum(adt_def, substs) | ty::TyStruct(adt_def, substs) => { let variants = adt_def.variants.iter().map(|v| { v.fields.iter().map(|f| f.ty(self.tcx, substs)) }); self.make_aggregate_repr(variants) } ty::TyArray(ref elem_ty, length) => Repr::Array { elem_size: self.ty_size(elem_ty), length: length, }, ty::TyRef(_, ty::TypeAndMut { ty, .. }) | ty::TyRawPtr(ty::TypeAndMut { ty, .. }) | ty::TyBox(ty) => { if ty.is_sized(&self.tcx.empty_parameter_environment(), DUMMY_SP) { Repr::Primitive { size: self.memory.pointer_size } } else { Repr::Primitive { size: self.memory.pointer_size * 2 } } } ref t => panic!("can't convert type to repr: {:?}", t), }; let repr_ref = self.repr_arena.alloc(repr); self.repr_cache.borrow_mut().insert(ty, repr_ref); repr_ref } fn make_aggregate_repr(&self, variant_fields: V) -> Repr where V: IntoIterator, V::Item: IntoIterator> { let mut variants = Vec::new(); let mut max_variant_size = 0; for field_tys in variant_fields { let mut fields = Vec::new(); let mut size = 0; for ty in field_tys { let field_size = self.ty_size(ty); let offest = size; size += field_size; fields.push(FieldRepr { offset: offest, size: field_size }); } if size > max_variant_size { max_variant_size = size; } variants.push(fields); } let discr_size = match variants.len() { n if n <= 1 => 0, n if n <= 1 << 8 => 1, n if n <= 1 << 16 => 2, n if n <= 1 << 32 => 4, _ => 8, }; Repr::Aggregate { discr_size: discr_size, size: max_variant_size + discr_size, variants: variants, } } fn current_frame(&self) -> &Frame<'a, 'tcx> { self.stack.last().expect("no call frames exist") } fn current_frame_mut(&mut self) -> &mut Frame<'a, 'tcx> { self.stack.last_mut().expect("no call frames exist") } fn current_substs(&self) -> &'tcx Substs<'tcx> { self.substs_stack.last().cloned().unwrap_or_else(|| self.tcx.mk_substs(Substs::empty())) } fn load_mir(&self, def_id: DefId) -> CachedMir<'a, 'tcx> { match self.tcx.map.as_local_node_id(def_id) { Some(node_id) => CachedMir::Ref(self.mir_map.map.get(&node_id).unwrap()), None => { let mut mir_cache = self.mir_cache.borrow_mut(); if let Some(mir) = mir_cache.get(&def_id) { return CachedMir::Owned(mir.clone()); } use rustc::middle::cstore::CrateStore; let cs = &self.tcx.sess.cstore; let mir = cs.maybe_get_item_mir(self.tcx, def_id).unwrap(); let cached = Rc::new(mir); mir_cache.insert(def_id, cached.clone()); CachedMir::Owned(cached) } } } fn fulfill_obligation(&self, trait_ref: ty::PolyTraitRef<'tcx>) -> traits::Vtable<'tcx, ()> { use rustc::middle::infer; use syntax::ast; // Do the initial selection for the obligation. This yields the shallow result we are // looking for -- that is, what specific impl. let infcx = infer::normalizing_infer_ctxt(self.tcx, &self.tcx.tables); let mut selcx = traits::SelectionContext::new(&infcx); let obligation = traits::Obligation::new( traits::ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID), trait_ref.to_poly_trait_predicate(), ); let selection = selcx.select(&obligation).unwrap().unwrap(); // Currently, we use a fulfillment context to completely resolve all nested obligations. // This is because they can inform the inference of the impl's type parameters. let mut fulfill_cx = traits::FulfillmentContext::new(); let vtable = selection.map(|predicate| { fulfill_cx.register_predicate_obligation(&infcx, predicate); }); let vtable = infer::drain_fulfillment_cx_or_panic( DUMMY_SP, &infcx, &mut fulfill_cx, &vtable ); vtable } /// Trait method, which has to be resolved to an impl method. pub fn trait_method(&self, def_id: DefId, substs: &'tcx Substs<'tcx>) -> (DefId, &'tcx Substs<'tcx>) { let method_item = self.tcx.impl_or_trait_item(def_id); let trait_id = method_item.container().id(); let trait_ref = ty::Binder(substs.to_trait_ref(self.tcx, trait_id)); match self.fulfill_obligation(trait_ref) { traits::VtableImpl(vtable_impl) => { let impl_did = vtable_impl.impl_def_id; let mname = self.tcx.item_name(def_id); // Create a concatenated set of substitutions which includes those from the // impl and those from the method: let impl_substs = vtable_impl.substs.with_method_from(&substs); let substs = self.tcx.mk_substs(impl_substs); let mth = self.tcx.get_impl_method(impl_did, substs, mname); println!("{:?} {:?}", mth.method.def_id, mth.substs); (mth.method.def_id, mth.substs) } traits::VtableClosure(_vtable_closure) => { // The substitutions should have no type parameters remaining after passing // through fulfill_obligation let _trait_closure_kind = self.tcx.lang_items.fn_trait_kind(trait_id).unwrap(); unimplemented!() // vtable_closure.closure_def_id // vtable_closure.substs // trait_closure_kind // let method_ty = def_ty(tcx, def_id, substs); // let fn_ptr_ty = match method_ty.sty { // ty::TyFnDef(_, _, fty) => tcx.mk_ty(ty::TyFnPtr(fty)), // _ => unreachable!("expected fn item type, found {}", // method_ty) // }; // Callee::ptr(immediate_rvalue(llfn, fn_ptr_ty)) } traits::VtableFnPointer(_fn_ty) => { let _trait_closure_kind = self.tcx.lang_items.fn_trait_kind(trait_id).unwrap(); unimplemented!() // let llfn = trans_fn_pointer_shim(ccx, trait_closure_kind, fn_ty); // let method_ty = def_ty(tcx, def_id, substs); // let fn_ptr_ty = match method_ty.sty { // ty::TyFnDef(_, _, fty) => tcx.mk_ty(ty::TyFnPtr(fty)), // _ => unreachable!("expected fn item type, found {}", // method_ty) // }; // Callee::ptr(immediate_rvalue(llfn, fn_ptr_ty)) } traits::VtableObject(ref _data) => { unimplemented!() // Callee { // data: Virtual(traits::get_vtable_index_of_object_method( // tcx, data, def_id)), // ty: def_ty(tcx, def_id, substs) // } } vtable => unreachable!("resolved vtable bad vtable {:?} in trans", vtable), } } } impl<'mir, 'tcx: 'mir> Deref for CachedMir<'mir, 'tcx> { type Target = mir::Mir<'tcx>; fn deref(&self) -> &mir::Mir<'tcx> { match *self { CachedMir::Ref(r) => r, CachedMir::Owned(ref rc) => &rc, } } } pub fn interpret_start_points<'tcx>(tcx: &TyCtxt<'tcx>, mir_map: &MirMap<'tcx>) { /// Print the given allocation and all allocations it depends on. fn print_allocation_tree(memory: &Memory, alloc_id: memory::AllocId) { let alloc = memory.get(alloc_id).unwrap(); println!(" {:?}: {:?}", alloc_id, alloc); for &target_alloc in alloc.relocations.values() { print_allocation_tree(memory, target_alloc); } } for (&id, mir) in &mir_map.map { for attr in tcx.map.attrs(id) { use syntax::attr::AttrMetaMethods; if attr.check_name("miri_run") { let item = tcx.map.expect_item(id); println!("Interpreting: {}", item.name); let repr_arena = TypedArena::new(); let mut miri = Interpreter::new(tcx, mir_map, &repr_arena); let return_ptr = match mir.return_ty { ty::FnConverging(ty) => { let size = miri.ty_size(ty); Some(miri.memory.allocate(size)) } ty::FnDiverging => None, }; miri.push_stack_frame(CachedMir::Ref(mir), &[], return_ptr).unwrap(); miri.run().unwrap(); if let Some(ret) = return_ptr { println!("Result:"); print_allocation_tree(&miri.memory, ret.alloc_id); println!(""); } } } } }