// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! The 64-bit floating point type. //! //! *[See also the `f64` primitive type](../primitive.f64.html).* #![stable(feature = "rust1", since = "1.0.0")] #![allow(missing_docs)] #[cfg(not(test))] use core::num; #[cfg(not(test))] use intrinsics; #[cfg(not(test))] use libc::c_int; #[cfg(not(test))] use num::FpCategory; #[stable(feature = "rust1", since = "1.0.0")] pub use core::f64::{RADIX, MANTISSA_DIGITS, DIGITS, EPSILON}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::f64::{MIN_EXP, MAX_EXP, MIN_10_EXP}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::f64::{MAX_10_EXP, NAN, INFINITY, NEG_INFINITY}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::f64::{MIN, MIN_POSITIVE, MAX}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::f64::consts; #[allow(dead_code)] mod cmath { use libc::{c_double, c_int}; #[link_name = "m"] extern { pub fn acos(n: c_double) -> c_double; pub fn asin(n: c_double) -> c_double; pub fn atan(n: c_double) -> c_double; pub fn atan2(a: c_double, b: c_double) -> c_double; pub fn cbrt(n: c_double) -> c_double; pub fn cosh(n: c_double) -> c_double; pub fn erf(n: c_double) -> c_double; pub fn erfc(n: c_double) -> c_double; pub fn expm1(n: c_double) -> c_double; pub fn fdim(a: c_double, b: c_double) -> c_double; pub fn fmax(a: c_double, b: c_double) -> c_double; pub fn fmin(a: c_double, b: c_double) -> c_double; pub fn fmod(a: c_double, b: c_double) -> c_double; pub fn frexp(n: c_double, value: &mut c_int) -> c_double; pub fn ilogb(n: c_double) -> c_int; pub fn ldexp(x: c_double, n: c_int) -> c_double; pub fn logb(n: c_double) -> c_double; pub fn log1p(n: c_double) -> c_double; pub fn nextafter(x: c_double, y: c_double) -> c_double; pub fn modf(n: c_double, iptr: &mut c_double) -> c_double; pub fn sinh(n: c_double) -> c_double; pub fn tan(n: c_double) -> c_double; pub fn tanh(n: c_double) -> c_double; pub fn tgamma(n: c_double) -> c_double; // These are commonly only available for doubles pub fn j0(n: c_double) -> c_double; pub fn j1(n: c_double) -> c_double; pub fn jn(i: c_int, n: c_double) -> c_double; pub fn y0(n: c_double) -> c_double; pub fn y1(n: c_double) -> c_double; pub fn yn(i: c_int, n: c_double) -> c_double; #[cfg_attr(all(windows, target_env = "msvc"), link_name = "__lgamma_r")] pub fn lgamma_r(n: c_double, sign: &mut c_int) -> c_double; #[cfg_attr(all(windows, target_env = "msvc"), link_name = "_hypot")] pub fn hypot(x: c_double, y: c_double) -> c_double; } } #[cfg(not(test))] #[lang = "f64"] impl f64 { /// Returns `true` if this value is `NaN` and false otherwise. /// /// ``` /// use std::f64; /// /// let nan = f64::NAN; /// let f = 7.0_f64; /// /// assert!(nan.is_nan()); /// assert!(!f.is_nan()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_nan(self) -> bool { num::Float::is_nan(self) } /// Returns `true` if this value is positive infinity or negative infinity and /// false otherwise. /// /// ``` /// use std::f64; /// /// let f = 7.0f64; /// let inf = f64::INFINITY; /// let neg_inf = f64::NEG_INFINITY; /// let nan = f64::NAN; /// /// assert!(!f.is_infinite()); /// assert!(!nan.is_infinite()); /// /// assert!(inf.is_infinite()); /// assert!(neg_inf.is_infinite()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_infinite(self) -> bool { num::Float::is_infinite(self) } /// Returns `true` if this number is neither infinite nor `NaN`. /// /// ``` /// use std::f64; /// /// let f = 7.0f64; /// let inf: f64 = f64::INFINITY; /// let neg_inf: f64 = f64::NEG_INFINITY; /// let nan: f64 = f64::NAN; /// /// assert!(f.is_finite()); /// /// assert!(!nan.is_finite()); /// assert!(!inf.is_finite()); /// assert!(!neg_inf.is_finite()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_finite(self) -> bool { num::Float::is_finite(self) } /// Returns `true` if the number is neither zero, infinite, /// [subnormal][subnormal], or `NaN`. /// /// ``` /// use std::f64; /// /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64 /// let max = f64::MAX; /// let lower_than_min = 1.0e-308_f64; /// let zero = 0.0f64; /// /// assert!(min.is_normal()); /// assert!(max.is_normal()); /// /// assert!(!zero.is_normal()); /// assert!(!f64::NAN.is_normal()); /// assert!(!f64::INFINITY.is_normal()); /// // Values between `0` and `min` are Subnormal. /// assert!(!lower_than_min.is_normal()); /// ``` /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_normal(self) -> bool { num::Float::is_normal(self) } /// Returns the floating point category of the number. If only one property /// is going to be tested, it is generally faster to use the specific /// predicate instead. /// /// ``` /// use std::num::FpCategory; /// use std::f64; /// /// let num = 12.4_f64; /// let inf = f64::INFINITY; /// /// assert_eq!(num.classify(), FpCategory::Normal); /// assert_eq!(inf.classify(), FpCategory::Infinite); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn classify(self) -> FpCategory { num::Float::classify(self) } /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. /// The floating point encoding is documented in the [Reference][floating-point]. /// /// ``` /// #![feature(float_extras)] /// /// let num = 2.0f64; /// /// // (8388608, -22, 1) /// let (mantissa, exponent, sign) = num.integer_decode(); /// let sign_f = sign as f64; /// let mantissa_f = mantissa as f64; /// let exponent_f = num.powf(exponent as f64); /// /// // 1 * 8388608 * 2^(-22) == 2 /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` /// [floating-point]: ../reference.html#machine-types #[unstable(feature = "float_extras", reason = "signature is undecided", issue = "27752")] #[rustc_deprecated(since = "1.11.0", reason = "never really came to fruition and easily \ implementable outside the standard library")] #[inline] #[allow(deprecated)] pub fn integer_decode(self) -> (u64, i16, i8) { num::Float::integer_decode(self) } /// Returns the largest integer less than or equal to a number. /// /// ``` /// let f = 3.99_f64; /// let g = 3.0_f64; /// /// assert_eq!(f.floor(), 3.0); /// assert_eq!(g.floor(), 3.0); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn floor(self) -> f64 { unsafe { intrinsics::floorf64(self) } } /// Returns the smallest integer greater than or equal to a number. /// /// ``` /// let f = 3.01_f64; /// let g = 4.0_f64; /// /// assert_eq!(f.ceil(), 4.0); /// assert_eq!(g.ceil(), 4.0); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn ceil(self) -> f64 { unsafe { intrinsics::ceilf64(self) } } /// Returns the nearest integer to a number. Round half-way cases away from /// `0.0`. /// /// ``` /// let f = 3.3_f64; /// let g = -3.3_f64; /// /// assert_eq!(f.round(), 3.0); /// assert_eq!(g.round(), -3.0); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn round(self) -> f64 { unsafe { intrinsics::roundf64(self) } } /// Returns the integer part of a number. /// /// ``` /// let f = 3.3_f64; /// let g = -3.7_f64; /// /// assert_eq!(f.trunc(), 3.0); /// assert_eq!(g.trunc(), -3.0); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn trunc(self) -> f64 { unsafe { intrinsics::truncf64(self) } } /// Returns the fractional part of a number. /// /// ``` /// let x = 3.5_f64; /// let y = -3.5_f64; /// let abs_difference_x = (x.fract() - 0.5).abs(); /// let abs_difference_y = (y.fract() - (-0.5)).abs(); /// /// assert!(abs_difference_x < 1e-10); /// assert!(abs_difference_y < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn fract(self) -> f64 { self - self.trunc() } /// Computes the absolute value of `self`. Returns `NAN` if the /// number is `NAN`. /// /// ``` /// use std::f64; /// /// let x = 3.5_f64; /// let y = -3.5_f64; /// /// let abs_difference_x = (x.abs() - x).abs(); /// let abs_difference_y = (y.abs() - (-y)).abs(); /// /// assert!(abs_difference_x < 1e-10); /// assert!(abs_difference_y < 1e-10); /// /// assert!(f64::NAN.abs().is_nan()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn abs(self) -> f64 { num::Float::abs(self) } /// Returns a number that represents the sign of `self`. /// /// - `1.0` if the number is positive, `+0.0` or `INFINITY` /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// - `NAN` if the number is `NAN` /// /// ``` /// use std::f64; /// /// let f = 3.5_f64; /// /// assert_eq!(f.signum(), 1.0); /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0); /// /// assert!(f64::NAN.signum().is_nan()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn signum(self) -> f64 { num::Float::signum(self) } /// Returns `true` if `self`'s sign bit is positive, including /// `+0.0` and `INFINITY`. /// /// ``` /// use std::f64; /// /// let nan: f64 = f64::NAN; /// /// let f = 7.0_f64; /// let g = -7.0_f64; /// /// assert!(f.is_sign_positive()); /// assert!(!g.is_sign_positive()); /// // Requires both tests to determine if is `NaN` /// assert!(!nan.is_sign_positive() && !nan.is_sign_negative()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_sign_positive(self) -> bool { num::Float::is_sign_positive(self) } #[stable(feature = "rust1", since = "1.0.0")] #[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_positive")] #[inline] pub fn is_positive(self) -> bool { num::Float::is_sign_positive(self) } /// Returns `true` if `self`'s sign is negative, including `-0.0` /// and `NEG_INFINITY`. /// /// ``` /// use std::f64; /// /// let nan = f64::NAN; /// /// let f = 7.0_f64; /// let g = -7.0_f64; /// /// assert!(!f.is_sign_negative()); /// assert!(g.is_sign_negative()); /// // Requires both tests to determine if is `NaN`. /// assert!(!nan.is_sign_positive() && !nan.is_sign_negative()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_sign_negative(self) -> bool { num::Float::is_sign_negative(self) } #[stable(feature = "rust1", since = "1.0.0")] #[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_negative")] #[inline] pub fn is_negative(self) -> bool { num::Float::is_sign_negative(self) } /// Fused multiply-add. Computes `(self * a) + b` with only one rounding /// error. This produces a more accurate result with better performance than /// a separate multiplication operation followed by an add. /// /// ``` /// let m = 10.0_f64; /// let x = 4.0_f64; /// let b = 60.0_f64; /// /// // 100.0 /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn mul_add(self, a: f64, b: f64) -> f64 { unsafe { intrinsics::fmaf64(self, a, b) } } /// Takes the reciprocal (inverse) of a number, `1/x`. /// /// ``` /// let x = 2.0_f64; /// let abs_difference = (x.recip() - (1.0/x)).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn recip(self) -> f64 { num::Float::recip(self) } /// Raises a number to an integer power. /// /// Using this function is generally faster than using `powf` /// /// ``` /// let x = 2.0_f64; /// let abs_difference = (x.powi(2) - x*x).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn powi(self, n: i32) -> f64 { num::Float::powi(self, n) } /// Raises a number to a floating point power. /// /// ``` /// let x = 2.0_f64; /// let abs_difference = (x.powf(2.0) - x*x).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn powf(self, n: f64) -> f64 { unsafe { intrinsics::powf64(self, n) } } /// Takes the square root of a number. /// /// Returns NaN if `self` is a negative number. /// /// ``` /// let positive = 4.0_f64; /// let negative = -4.0_f64; /// /// let abs_difference = (positive.sqrt() - 2.0).abs(); /// /// assert!(abs_difference < 1e-10); /// assert!(negative.sqrt().is_nan()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sqrt(self) -> f64 { if self < 0.0 { NAN } else { unsafe { intrinsics::sqrtf64(self) } } } /// Returns `e^(self)`, (the exponential function). /// /// ``` /// let one = 1.0_f64; /// // e^1 /// let e = one.exp(); /// /// // ln(e) - 1 == 0 /// let abs_difference = (e.ln() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn exp(self) -> f64 { unsafe { intrinsics::expf64(self) } } /// Returns `2^(self)`. /// /// ``` /// let f = 2.0_f64; /// /// // 2^2 - 4 == 0 /// let abs_difference = (f.exp2() - 4.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn exp2(self) -> f64 { unsafe { intrinsics::exp2f64(self) } } /// Returns the natural logarithm of the number. /// /// ``` /// let one = 1.0_f64; /// // e^1 /// let e = one.exp(); /// /// // ln(e) - 1 == 0 /// let abs_difference = (e.ln() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn ln(self) -> f64 { self.log_wrapper(|n| { unsafe { intrinsics::logf64(n) } }) } /// Returns the logarithm of the number with respect to an arbitrary base. /// /// ``` /// let ten = 10.0_f64; /// let two = 2.0_f64; /// /// // log10(10) - 1 == 0 /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); /// /// // log2(2) - 1 == 0 /// let abs_difference_2 = (two.log(2.0) - 1.0).abs(); /// /// assert!(abs_difference_10 < 1e-10); /// assert!(abs_difference_2 < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn log(self, base: f64) -> f64 { self.ln() / base.ln() } /// Returns the base 2 logarithm of the number. /// /// ``` /// let two = 2.0_f64; /// /// // log2(2) - 1 == 0 /// let abs_difference = (two.log2() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn log2(self) -> f64 { self.log_wrapper(|n| { #[cfg(target_os = "android")] return ::sys::android::log2f64(n); #[cfg(not(target_os = "android"))] return unsafe { intrinsics::log2f64(n) }; }) } /// Returns the base 10 logarithm of the number. /// /// ``` /// let ten = 10.0_f64; /// /// // log10(10) - 1 == 0 /// let abs_difference = (ten.log10() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn log10(self) -> f64 { self.log_wrapper(|n| { unsafe { intrinsics::log10f64(n) } }) } /// Converts radians to degrees. /// /// ``` /// use std::f64::consts; /// /// let angle = consts::PI; /// /// let abs_difference = (angle.to_degrees() - 180.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn to_degrees(self) -> f64 { num::Float::to_degrees(self) } /// Converts degrees to radians. /// /// ``` /// use std::f64::consts; /// /// let angle = 180.0_f64; /// /// let abs_difference = (angle.to_radians() - consts::PI).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn to_radians(self) -> f64 { num::Float::to_radians(self) } /// Constructs a floating point number of `x*2^exp`. /// /// ``` /// #![feature(float_extras)] /// /// // 3*2^2 - 12 == 0 /// let abs_difference = (f64::ldexp(3.0, 2) - 12.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[unstable(feature = "float_extras", reason = "pending integer conventions", issue = "27752")] #[rustc_deprecated(since = "1.11.0", reason = "never really came to fruition and easily \ implementable outside the standard library")] #[inline] pub fn ldexp(x: f64, exp: isize) -> f64 { unsafe { cmath::ldexp(x, exp as c_int) } } /// Breaks the number into a normalized fraction and a base-2 exponent, /// satisfying: /// /// * `self = x * 2^exp` /// * `0.5 <= abs(x) < 1.0` /// /// ``` /// #![feature(float_extras)] /// /// let x = 4.0_f64; /// /// // (1/2)*2^3 -> 1 * 8/2 -> 4.0 /// let f = x.frexp(); /// let abs_difference_0 = (f.0 - 0.5).abs(); /// let abs_difference_1 = (f.1 as f64 - 3.0).abs(); /// /// assert!(abs_difference_0 < 1e-10); /// assert!(abs_difference_1 < 1e-10); /// ``` #[unstable(feature = "float_extras", reason = "pending integer conventions", issue = "27752")] #[rustc_deprecated(since = "1.11.0", reason = "never really came to fruition and easily \ implementable outside the standard library")] #[inline] pub fn frexp(self) -> (f64, isize) { unsafe { let mut exp = 0; let x = cmath::frexp(self, &mut exp); (x, exp as isize) } } /// Returns the next representable floating-point value in the direction of /// `other`. /// /// ``` /// #![feature(float_extras)] /// /// let x = 1.0f64; /// /// let abs_diff = (x.next_after(2.0) - 1.0000000000000002220446049250313_f64).abs(); /// /// assert!(abs_diff < 1e-10); /// ``` #[unstable(feature = "float_extras", reason = "unsure about its place in the world", issue = "27752")] #[rustc_deprecated(since = "1.11.0", reason = "never really came to fruition and easily \ implementable outside the standard library")] #[inline] pub fn next_after(self, other: f64) -> f64 { unsafe { cmath::nextafter(self, other) } } /// Returns the maximum of the two numbers. /// /// ``` /// let x = 1.0_f64; /// let y = 2.0_f64; /// /// assert_eq!(x.max(y), y); /// ``` /// /// If one of the arguments is NaN, then the other argument is returned. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn max(self, other: f64) -> f64 { unsafe { cmath::fmax(self, other) } } /// Returns the minimum of the two numbers. /// /// ``` /// let x = 1.0_f64; /// let y = 2.0_f64; /// /// assert_eq!(x.min(y), x); /// ``` /// /// If one of the arguments is NaN, then the other argument is returned. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn min(self, other: f64) -> f64 { unsafe { cmath::fmin(self, other) } } /// The positive difference of two numbers. /// /// * If `self <= other`: `0:0` /// * Else: `self - other` /// /// ``` /// let x = 3.0_f64; /// let y = -3.0_f64; /// /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); /// /// assert!(abs_difference_x < 1e-10); /// assert!(abs_difference_y < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] #[rustc_deprecated(since = "1.10.0", reason = "you probably meant `(self - other).abs()`: \ this operation is `(self - other).max(0.0)` (also \ known as `fdim` in C). If you truly need the positive \ difference, consider using that expression or the C function \ `fdim`, depending on how you wish to handle NaN (please consider \ filing an issue describing your use-case too).")] pub fn abs_sub(self, other: f64) -> f64 { unsafe { cmath::fdim(self, other) } } /// Takes the cubic root of a number. /// /// ``` /// let x = 8.0_f64; /// /// // x^(1/3) - 2 == 0 /// let abs_difference = (x.cbrt() - 2.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn cbrt(self) -> f64 { unsafe { cmath::cbrt(self) } } /// Calculates the length of the hypotenuse of a right-angle triangle given /// legs of length `x` and `y`. /// /// ``` /// let x = 2.0_f64; /// let y = 3.0_f64; /// /// // sqrt(x^2 + y^2) /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn hypot(self, other: f64) -> f64 { unsafe { cmath::hypot(self, other) } } /// Computes the sine of a number (in radians). /// /// ``` /// use std::f64; /// /// let x = f64::consts::PI/2.0; /// /// let abs_difference = (x.sin() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sin(self) -> f64 { unsafe { intrinsics::sinf64(self) } } /// Computes the cosine of a number (in radians). /// /// ``` /// use std::f64; /// /// let x = 2.0*f64::consts::PI; /// /// let abs_difference = (x.cos() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn cos(self) -> f64 { unsafe { intrinsics::cosf64(self) } } /// Computes the tangent of a number (in radians). /// /// ``` /// use std::f64; /// /// let x = f64::consts::PI/4.0; /// let abs_difference = (x.tan() - 1.0).abs(); /// /// assert!(abs_difference < 1e-14); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn tan(self) -> f64 { unsafe { cmath::tan(self) } } /// Computes the arcsine of a number. Return value is in radians in /// the range [-pi/2, pi/2] or NaN if the number is outside the range /// [-1, 1]. /// /// ``` /// use std::f64; /// /// let f = f64::consts::PI / 2.0; /// /// // asin(sin(pi/2)) /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn asin(self) -> f64 { unsafe { cmath::asin(self) } } /// Computes the arccosine of a number. Return value is in radians in /// the range [0, pi] or NaN if the number is outside the range /// [-1, 1]. /// /// ``` /// use std::f64; /// /// let f = f64::consts::PI / 4.0; /// /// // acos(cos(pi/4)) /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn acos(self) -> f64 { unsafe { cmath::acos(self) } } /// Computes the arctangent of a number. Return value is in radians in the /// range [-pi/2, pi/2]; /// /// ``` /// let f = 1.0_f64; /// /// // atan(tan(1)) /// let abs_difference = (f.tan().atan() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn atan(self) -> f64 { unsafe { cmath::atan(self) } } /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`). /// /// * `x = 0`, `y = 0`: `0` /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` /// /// ``` /// use std::f64; /// /// let pi = f64::consts::PI; /// // All angles from horizontal right (+x) /// // 45 deg counter-clockwise /// let x1 = 3.0_f64; /// let y1 = -3.0_f64; /// /// // 135 deg clockwise /// let x2 = -3.0_f64; /// let y2 = 3.0_f64; /// /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); /// /// assert!(abs_difference_1 < 1e-10); /// assert!(abs_difference_2 < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn atan2(self, other: f64) -> f64 { unsafe { cmath::atan2(self, other) } } /// Simultaneously computes the sine and cosine of the number, `x`. Returns /// `(sin(x), cos(x))`. /// /// ``` /// use std::f64; /// /// let x = f64::consts::PI/4.0; /// let f = x.sin_cos(); /// /// let abs_difference_0 = (f.0 - x.sin()).abs(); /// let abs_difference_1 = (f.1 - x.cos()).abs(); /// /// assert!(abs_difference_0 < 1e-10); /// assert!(abs_difference_1 < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sin_cos(self) -> (f64, f64) { (self.sin(), self.cos()) } /// Returns `e^(self) - 1` in a way that is accurate even if the /// number is close to zero. /// /// ``` /// let x = 7.0_f64; /// /// // e^(ln(7)) - 1 /// let abs_difference = (x.ln().exp_m1() - 6.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn exp_m1(self) -> f64 { unsafe { cmath::expm1(self) } } /// Returns `ln(1+n)` (natural logarithm) more accurately than if /// the operations were performed separately. /// /// ``` /// use std::f64; /// /// let x = f64::consts::E - 1.0; /// /// // ln(1 + (e - 1)) == ln(e) == 1 /// let abs_difference = (x.ln_1p() - 1.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn ln_1p(self) -> f64 { unsafe { cmath::log1p(self) } } /// Hyperbolic sine function. /// /// ``` /// use std::f64; /// /// let e = f64::consts::E; /// let x = 1.0_f64; /// /// let f = x.sinh(); /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` /// let g = (e*e - 1.0)/(2.0*e); /// let abs_difference = (f - g).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sinh(self) -> f64 { unsafe { cmath::sinh(self) } } /// Hyperbolic cosine function. /// /// ``` /// use std::f64; /// /// let e = f64::consts::E; /// let x = 1.0_f64; /// let f = x.cosh(); /// // Solving cosh() at 1 gives this result /// let g = (e*e + 1.0)/(2.0*e); /// let abs_difference = (f - g).abs(); /// /// // Same result /// assert!(abs_difference < 1.0e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn cosh(self) -> f64 { unsafe { cmath::cosh(self) } } /// Hyperbolic tangent function. /// /// ``` /// use std::f64; /// /// let e = f64::consts::E; /// let x = 1.0_f64; /// /// let f = x.tanh(); /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); /// let abs_difference = (f - g).abs(); /// /// assert!(abs_difference < 1.0e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn tanh(self) -> f64 { unsafe { cmath::tanh(self) } } /// Inverse hyperbolic sine function. /// /// ``` /// let x = 1.0_f64; /// let f = x.sinh().asinh(); /// /// let abs_difference = (f - x).abs(); /// /// assert!(abs_difference < 1.0e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn asinh(self) -> f64 { if self == NEG_INFINITY { NEG_INFINITY } else { (self + ((self * self) + 1.0).sqrt()).ln() } } /// Inverse hyperbolic cosine function. /// /// ``` /// let x = 1.0_f64; /// let f = x.cosh().acosh(); /// /// let abs_difference = (f - x).abs(); /// /// assert!(abs_difference < 1.0e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn acosh(self) -> f64 { match self { x if x < 1.0 => NAN, x => (x + ((x * x) - 1.0).sqrt()).ln(), } } /// Inverse hyperbolic tangent function. /// /// ``` /// use std::f64; /// /// let e = f64::consts::E; /// let f = e.tanh().atanh(); /// /// let abs_difference = (f - e).abs(); /// /// assert!(abs_difference < 1.0e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn atanh(self) -> f64 { 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p() } // Solaris/Illumos requires a wrapper around log, log2, and log10 functions // because of their non-standard behavior (e.g. log(-n) returns -Inf instead // of expected NaN). fn log_wrapper f64>(self, log_fn: F) -> f64 { if !cfg!(target_os = "solaris") { log_fn(self) } else { if self.is_finite() { if self > 0.0 { log_fn(self) } else if self == 0.0 { NEG_INFINITY // log(0) = -Inf } else { NAN // log(-n) = NaN } } else if self.is_nan() { self // log(NaN) = NaN } else if self > 0.0 { self // log(Inf) = Inf } else { NAN // log(-Inf) = NaN } } } } #[cfg(test)] mod tests { use f64; use f64::*; use num::*; use num::FpCategory as Fp; #[test] fn test_num_f64() { test_num(10f64, 2f64); } #[test] fn test_min_nan() { assert_eq!(NAN.min(2.0), 2.0); assert_eq!(2.0f64.min(NAN), 2.0); } #[test] fn test_max_nan() { assert_eq!(NAN.max(2.0), 2.0); assert_eq!(2.0f64.max(NAN), 2.0); } #[test] fn test_nan() { let nan: f64 = NAN; assert!(nan.is_nan()); assert!(!nan.is_infinite()); assert!(!nan.is_finite()); assert!(!nan.is_normal()); assert!(!nan.is_sign_positive()); assert!(!nan.is_sign_negative()); assert_eq!(Fp::Nan, nan.classify()); } #[test] fn test_infinity() { let inf: f64 = INFINITY; assert!(inf.is_infinite()); assert!(!inf.is_finite()); assert!(inf.is_sign_positive()); assert!(!inf.is_sign_negative()); assert!(!inf.is_nan()); assert!(!inf.is_normal()); assert_eq!(Fp::Infinite, inf.classify()); } #[test] fn test_neg_infinity() { let neg_inf: f64 = NEG_INFINITY; assert!(neg_inf.is_infinite()); assert!(!neg_inf.is_finite()); assert!(!neg_inf.is_sign_positive()); assert!(neg_inf.is_sign_negative()); assert!(!neg_inf.is_nan()); assert!(!neg_inf.is_normal()); assert_eq!(Fp::Infinite, neg_inf.classify()); } #[test] fn test_zero() { let zero: f64 = 0.0f64; assert_eq!(0.0, zero); assert!(!zero.is_infinite()); assert!(zero.is_finite()); assert!(zero.is_sign_positive()); assert!(!zero.is_sign_negative()); assert!(!zero.is_nan()); assert!(!zero.is_normal()); assert_eq!(Fp::Zero, zero.classify()); } #[test] fn test_neg_zero() { let neg_zero: f64 = -0.0; assert_eq!(0.0, neg_zero); assert!(!neg_zero.is_infinite()); assert!(neg_zero.is_finite()); assert!(!neg_zero.is_sign_positive()); assert!(neg_zero.is_sign_negative()); assert!(!neg_zero.is_nan()); assert!(!neg_zero.is_normal()); assert_eq!(Fp::Zero, neg_zero.classify()); } #[test] fn test_one() { let one: f64 = 1.0f64; assert_eq!(1.0, one); assert!(!one.is_infinite()); assert!(one.is_finite()); assert!(one.is_sign_positive()); assert!(!one.is_sign_negative()); assert!(!one.is_nan()); assert!(one.is_normal()); assert_eq!(Fp::Normal, one.classify()); } #[test] fn test_is_nan() { let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; assert!(nan.is_nan()); assert!(!0.0f64.is_nan()); assert!(!5.3f64.is_nan()); assert!(!(-10.732f64).is_nan()); assert!(!inf.is_nan()); assert!(!neg_inf.is_nan()); } #[test] fn test_is_infinite() { let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite()); assert!(!0.0f64.is_infinite()); assert!(!42.8f64.is_infinite()); assert!(!(-109.2f64).is_infinite()); } #[test] fn test_is_finite() { let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite()); assert!(0.0f64.is_finite()); assert!(42.8f64.is_finite()); assert!((-109.2f64).is_finite()); } #[test] fn test_is_normal() { let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; let zero: f64 = 0.0f64; let neg_zero: f64 = -0.0; assert!(!nan.is_normal()); assert!(!inf.is_normal()); assert!(!neg_inf.is_normal()); assert!(!zero.is_normal()); assert!(!neg_zero.is_normal()); assert!(1f64.is_normal()); assert!(1e-307f64.is_normal()); assert!(!1e-308f64.is_normal()); } #[test] fn test_classify() { let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; let zero: f64 = 0.0f64; let neg_zero: f64 = -0.0; assert_eq!(nan.classify(), Fp::Nan); assert_eq!(inf.classify(), Fp::Infinite); assert_eq!(neg_inf.classify(), Fp::Infinite); assert_eq!(zero.classify(), Fp::Zero); assert_eq!(neg_zero.classify(), Fp::Zero); assert_eq!(1e-307f64.classify(), Fp::Normal); assert_eq!(1e-308f64.classify(), Fp::Subnormal); } #[test] #[allow(deprecated)] fn test_integer_decode() { assert_eq!(3.14159265359f64.integer_decode(), (7074237752028906, -51, 1)); assert_eq!((-8573.5918555f64).integer_decode(), (4713381968463931, -39, -1)); assert_eq!(2f64.powf(100.0).integer_decode(), (4503599627370496, 48, 1)); assert_eq!(0f64.integer_decode(), (0, -1075, 1)); assert_eq!((-0f64).integer_decode(), (0, -1075, -1)); assert_eq!(INFINITY.integer_decode(), (4503599627370496, 972, 1)); assert_eq!(NEG_INFINITY.integer_decode(), (4503599627370496, 972, -1)); // Ignore the "sign" (quiet / signalling flag) of NAN. // It can vary between runtime operations and LLVM folding. let (nan_m, nan_e, _nan_s) = NAN.integer_decode(); assert_eq!((nan_m, nan_e), (6755399441055744, 972)); } #[test] fn test_floor() { assert_approx_eq!(1.0f64.floor(), 1.0f64); assert_approx_eq!(1.3f64.floor(), 1.0f64); assert_approx_eq!(1.5f64.floor(), 1.0f64); assert_approx_eq!(1.7f64.floor(), 1.0f64); assert_approx_eq!(0.0f64.floor(), 0.0f64); assert_approx_eq!((-0.0f64).floor(), -0.0f64); assert_approx_eq!((-1.0f64).floor(), -1.0f64); assert_approx_eq!((-1.3f64).floor(), -2.0f64); assert_approx_eq!((-1.5f64).floor(), -2.0f64); assert_approx_eq!((-1.7f64).floor(), -2.0f64); } #[test] fn test_ceil() { assert_approx_eq!(1.0f64.ceil(), 1.0f64); assert_approx_eq!(1.3f64.ceil(), 2.0f64); assert_approx_eq!(1.5f64.ceil(), 2.0f64); assert_approx_eq!(1.7f64.ceil(), 2.0f64); assert_approx_eq!(0.0f64.ceil(), 0.0f64); assert_approx_eq!((-0.0f64).ceil(), -0.0f64); assert_approx_eq!((-1.0f64).ceil(), -1.0f64); assert_approx_eq!((-1.3f64).ceil(), -1.0f64); assert_approx_eq!((-1.5f64).ceil(), -1.0f64); assert_approx_eq!((-1.7f64).ceil(), -1.0f64); } #[test] fn test_round() { assert_approx_eq!(1.0f64.round(), 1.0f64); assert_approx_eq!(1.3f64.round(), 1.0f64); assert_approx_eq!(1.5f64.round(), 2.0f64); assert_approx_eq!(1.7f64.round(), 2.0f64); assert_approx_eq!(0.0f64.round(), 0.0f64); assert_approx_eq!((-0.0f64).round(), -0.0f64); assert_approx_eq!((-1.0f64).round(), -1.0f64); assert_approx_eq!((-1.3f64).round(), -1.0f64); assert_approx_eq!((-1.5f64).round(), -2.0f64); assert_approx_eq!((-1.7f64).round(), -2.0f64); } #[test] fn test_trunc() { assert_approx_eq!(1.0f64.trunc(), 1.0f64); assert_approx_eq!(1.3f64.trunc(), 1.0f64); assert_approx_eq!(1.5f64.trunc(), 1.0f64); assert_approx_eq!(1.7f64.trunc(), 1.0f64); assert_approx_eq!(0.0f64.trunc(), 0.0f64); assert_approx_eq!((-0.0f64).trunc(), -0.0f64); assert_approx_eq!((-1.0f64).trunc(), -1.0f64); assert_approx_eq!((-1.3f64).trunc(), -1.0f64); assert_approx_eq!((-1.5f64).trunc(), -1.0f64); assert_approx_eq!((-1.7f64).trunc(), -1.0f64); } #[test] fn test_fract() { assert_approx_eq!(1.0f64.fract(), 0.0f64); assert_approx_eq!(1.3f64.fract(), 0.3f64); assert_approx_eq!(1.5f64.fract(), 0.5f64); assert_approx_eq!(1.7f64.fract(), 0.7f64); assert_approx_eq!(0.0f64.fract(), 0.0f64); assert_approx_eq!((-0.0f64).fract(), -0.0f64); assert_approx_eq!((-1.0f64).fract(), -0.0f64); assert_approx_eq!((-1.3f64).fract(), -0.3f64); assert_approx_eq!((-1.5f64).fract(), -0.5f64); assert_approx_eq!((-1.7f64).fract(), -0.7f64); } #[test] fn test_abs() { assert_eq!(INFINITY.abs(), INFINITY); assert_eq!(1f64.abs(), 1f64); assert_eq!(0f64.abs(), 0f64); assert_eq!((-0f64).abs(), 0f64); assert_eq!((-1f64).abs(), 1f64); assert_eq!(NEG_INFINITY.abs(), INFINITY); assert_eq!((1f64/NEG_INFINITY).abs(), 0f64); assert!(NAN.abs().is_nan()); } #[test] fn test_signum() { assert_eq!(INFINITY.signum(), 1f64); assert_eq!(1f64.signum(), 1f64); assert_eq!(0f64.signum(), 1f64); assert_eq!((-0f64).signum(), -1f64); assert_eq!((-1f64).signum(), -1f64); assert_eq!(NEG_INFINITY.signum(), -1f64); assert_eq!((1f64/NEG_INFINITY).signum(), -1f64); assert!(NAN.signum().is_nan()); } #[test] fn test_is_sign_positive() { assert!(INFINITY.is_sign_positive()); assert!(1f64.is_sign_positive()); assert!(0f64.is_sign_positive()); assert!(!(-0f64).is_sign_positive()); assert!(!(-1f64).is_sign_positive()); assert!(!NEG_INFINITY.is_sign_positive()); assert!(!(1f64/NEG_INFINITY).is_sign_positive()); assert!(!NAN.is_sign_positive()); } #[test] fn test_is_sign_negative() { assert!(!INFINITY.is_sign_negative()); assert!(!1f64.is_sign_negative()); assert!(!0f64.is_sign_negative()); assert!((-0f64).is_sign_negative()); assert!((-1f64).is_sign_negative()); assert!(NEG_INFINITY.is_sign_negative()); assert!((1f64/NEG_INFINITY).is_sign_negative()); assert!(!NAN.is_sign_negative()); } #[test] fn test_mul_add() { let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; assert_approx_eq!(12.3f64.mul_add(4.5, 6.7), 62.05); assert_approx_eq!((-12.3f64).mul_add(-4.5, -6.7), 48.65); assert_approx_eq!(0.0f64.mul_add(8.9, 1.2), 1.2); assert_approx_eq!(3.4f64.mul_add(-0.0, 5.6), 5.6); assert!(nan.mul_add(7.8, 9.0).is_nan()); assert_eq!(inf.mul_add(7.8, 9.0), inf); assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf); assert_eq!(8.9f64.mul_add(inf, 3.2), inf); assert_eq!((-3.2f64).mul_add(2.4, neg_inf), neg_inf); } #[test] fn test_recip() { let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; assert_eq!(1.0f64.recip(), 1.0); assert_eq!(2.0f64.recip(), 0.5); assert_eq!((-0.4f64).recip(), -2.5); assert_eq!(0.0f64.recip(), inf); assert!(nan.recip().is_nan()); assert_eq!(inf.recip(), 0.0); assert_eq!(neg_inf.recip(), 0.0); } #[test] fn test_powi() { let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; assert_eq!(1.0f64.powi(1), 1.0); assert_approx_eq!((-3.1f64).powi(2), 9.61); assert_approx_eq!(5.9f64.powi(-2), 0.028727); assert_eq!(8.3f64.powi(0), 1.0); assert!(nan.powi(2).is_nan()); assert_eq!(inf.powi(3), inf); assert_eq!(neg_inf.powi(2), inf); } #[test] fn test_powf() { let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; assert_eq!(1.0f64.powf(1.0), 1.0); assert_approx_eq!(3.4f64.powf(4.5), 246.408183); assert_approx_eq!(2.7f64.powf(-3.2), 0.041652); assert_approx_eq!((-3.1f64).powf(2.0), 9.61); assert_approx_eq!(5.9f64.powf(-2.0), 0.028727); assert_eq!(8.3f64.powf(0.0), 1.0); assert!(nan.powf(2.0).is_nan()); assert_eq!(inf.powf(2.0), inf); assert_eq!(neg_inf.powf(3.0), neg_inf); } #[test] fn test_sqrt_domain() { assert!(NAN.sqrt().is_nan()); assert!(NEG_INFINITY.sqrt().is_nan()); assert!((-1.0f64).sqrt().is_nan()); assert_eq!((-0.0f64).sqrt(), -0.0); assert_eq!(0.0f64.sqrt(), 0.0); assert_eq!(1.0f64.sqrt(), 1.0); assert_eq!(INFINITY.sqrt(), INFINITY); } #[test] fn test_exp() { assert_eq!(1.0, 0.0f64.exp()); assert_approx_eq!(2.718282, 1.0f64.exp()); assert_approx_eq!(148.413159, 5.0f64.exp()); let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; let nan: f64 = NAN; assert_eq!(inf, inf.exp()); assert_eq!(0.0, neg_inf.exp()); assert!(nan.exp().is_nan()); } #[test] fn test_exp2() { assert_eq!(32.0, 5.0f64.exp2()); assert_eq!(1.0, 0.0f64.exp2()); let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; let nan: f64 = NAN; assert_eq!(inf, inf.exp2()); assert_eq!(0.0, neg_inf.exp2()); assert!(nan.exp2().is_nan()); } #[test] fn test_ln() { let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; assert_approx_eq!(1.0f64.exp().ln(), 1.0); assert!(nan.ln().is_nan()); assert_eq!(inf.ln(), inf); assert!(neg_inf.ln().is_nan()); assert!((-2.3f64).ln().is_nan()); assert_eq!((-0.0f64).ln(), neg_inf); assert_eq!(0.0f64.ln(), neg_inf); assert_approx_eq!(4.0f64.ln(), 1.386294); } #[test] fn test_log() { let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; assert_eq!(10.0f64.log(10.0), 1.0); assert_approx_eq!(2.3f64.log(3.5), 0.664858); assert_eq!(1.0f64.exp().log(1.0f64.exp()), 1.0); assert!(1.0f64.log(1.0).is_nan()); assert!(1.0f64.log(-13.9).is_nan()); assert!(nan.log(2.3).is_nan()); assert_eq!(inf.log(10.0), inf); assert!(neg_inf.log(8.8).is_nan()); assert!((-2.3f64).log(0.1).is_nan()); assert_eq!((-0.0f64).log(2.0), neg_inf); assert_eq!(0.0f64.log(7.0), neg_inf); } #[test] fn test_log2() { let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; assert_approx_eq!(10.0f64.log2(), 3.321928); assert_approx_eq!(2.3f64.log2(), 1.201634); assert_approx_eq!(1.0f64.exp().log2(), 1.442695); assert!(nan.log2().is_nan()); assert_eq!(inf.log2(), inf); assert!(neg_inf.log2().is_nan()); assert!((-2.3f64).log2().is_nan()); assert_eq!((-0.0f64).log2(), neg_inf); assert_eq!(0.0f64.log2(), neg_inf); } #[test] fn test_log10() { let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; assert_eq!(10.0f64.log10(), 1.0); assert_approx_eq!(2.3f64.log10(), 0.361728); assert_approx_eq!(1.0f64.exp().log10(), 0.434294); assert_eq!(1.0f64.log10(), 0.0); assert!(nan.log10().is_nan()); assert_eq!(inf.log10(), inf); assert!(neg_inf.log10().is_nan()); assert!((-2.3f64).log10().is_nan()); assert_eq!((-0.0f64).log10(), neg_inf); assert_eq!(0.0f64.log10(), neg_inf); } #[test] fn test_to_degrees() { let pi: f64 = consts::PI; let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; assert_eq!(0.0f64.to_degrees(), 0.0); assert_approx_eq!((-5.8f64).to_degrees(), -332.315521); assert_eq!(pi.to_degrees(), 180.0); assert!(nan.to_degrees().is_nan()); assert_eq!(inf.to_degrees(), inf); assert_eq!(neg_inf.to_degrees(), neg_inf); } #[test] fn test_to_radians() { let pi: f64 = consts::PI; let nan: f64 = NAN; let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; assert_eq!(0.0f64.to_radians(), 0.0); assert_approx_eq!(154.6f64.to_radians(), 2.698279); assert_approx_eq!((-332.31f64).to_radians(), -5.799903); assert_eq!(180.0f64.to_radians(), pi); assert!(nan.to_radians().is_nan()); assert_eq!(inf.to_radians(), inf); assert_eq!(neg_inf.to_radians(), neg_inf); } #[test] #[allow(deprecated)] fn test_ldexp() { let f1 = 2.0f64.powi(-123); let f2 = 2.0f64.powi(-111); let f3 = 1.75 * 2.0f64.powi(-12); assert_eq!(f64::ldexp(1f64, -123), f1); assert_eq!(f64::ldexp(1f64, -111), f2); assert_eq!(f64::ldexp(1.75f64, -12), f3); assert_eq!(f64::ldexp(0f64, -123), 0f64); assert_eq!(f64::ldexp(-0f64, -123), -0f64); let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; let nan: f64 = NAN; assert_eq!(f64::ldexp(inf, -123), inf); assert_eq!(f64::ldexp(neg_inf, -123), neg_inf); assert!(f64::ldexp(nan, -123).is_nan()); } #[test] #[allow(deprecated)] fn test_frexp() { let f1 = 2.0f64.powi(-123); let f2 = 2.0f64.powi(-111); let f3 = 1.75 * 2.0f64.powi(-123); let (x1, exp1) = f1.frexp(); let (x2, exp2) = f2.frexp(); let (x3, exp3) = f3.frexp(); assert_eq!((x1, exp1), (0.5f64, -122)); assert_eq!((x2, exp2), (0.5f64, -110)); assert_eq!((x3, exp3), (0.875f64, -122)); assert_eq!(f64::ldexp(x1, exp1), f1); assert_eq!(f64::ldexp(x2, exp2), f2); assert_eq!(f64::ldexp(x3, exp3), f3); assert_eq!(0f64.frexp(), (0f64, 0)); assert_eq!((-0f64).frexp(), (-0f64, 0)); } #[test] #[cfg_attr(windows, ignore)] // FIXME #8755 #[allow(deprecated)] fn test_frexp_nowin() { let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; let nan: f64 = NAN; assert_eq!(match inf.frexp() { (x, _) => x }, inf); assert_eq!(match neg_inf.frexp() { (x, _) => x }, neg_inf); assert!(match nan.frexp() { (x, _) => x.is_nan() }) } #[test] fn test_asinh() { assert_eq!(0.0f64.asinh(), 0.0f64); assert_eq!((-0.0f64).asinh(), -0.0f64); let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; let nan: f64 = NAN; assert_eq!(inf.asinh(), inf); assert_eq!(neg_inf.asinh(), neg_inf); assert!(nan.asinh().is_nan()); assert_approx_eq!(2.0f64.asinh(), 1.443635475178810342493276740273105f64); assert_approx_eq!((-2.0f64).asinh(), -1.443635475178810342493276740273105f64); } #[test] fn test_acosh() { assert_eq!(1.0f64.acosh(), 0.0f64); assert!(0.999f64.acosh().is_nan()); let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; let nan: f64 = NAN; assert_eq!(inf.acosh(), inf); assert!(neg_inf.acosh().is_nan()); assert!(nan.acosh().is_nan()); assert_approx_eq!(2.0f64.acosh(), 1.31695789692481670862504634730796844f64); assert_approx_eq!(3.0f64.acosh(), 1.76274717403908605046521864995958461f64); } #[test] fn test_atanh() { assert_eq!(0.0f64.atanh(), 0.0f64); assert_eq!((-0.0f64).atanh(), -0.0f64); let inf: f64 = INFINITY; let neg_inf: f64 = NEG_INFINITY; let nan: f64 = NAN; assert_eq!(1.0f64.atanh(), inf); assert_eq!((-1.0f64).atanh(), neg_inf); assert!(2f64.atanh().atanh().is_nan()); assert!((-2f64).atanh().atanh().is_nan()); assert!(inf.atanh().is_nan()); assert!(neg_inf.atanh().is_nan()); assert!(nan.atanh().is_nan()); assert_approx_eq!(0.5f64.atanh(), 0.54930614433405484569762261846126285f64); assert_approx_eq!((-0.5f64).atanh(), -0.54930614433405484569762261846126285f64); } #[test] fn test_real_consts() { use super::consts; let pi: f64 = consts::PI; let frac_pi_2: f64 = consts::FRAC_PI_2; let frac_pi_3: f64 = consts::FRAC_PI_3; let frac_pi_4: f64 = consts::FRAC_PI_4; let frac_pi_6: f64 = consts::FRAC_PI_6; let frac_pi_8: f64 = consts::FRAC_PI_8; let frac_1_pi: f64 = consts::FRAC_1_PI; let frac_2_pi: f64 = consts::FRAC_2_PI; let frac_2_sqrtpi: f64 = consts::FRAC_2_SQRT_PI; let sqrt2: f64 = consts::SQRT_2; let frac_1_sqrt2: f64 = consts::FRAC_1_SQRT_2; let e: f64 = consts::E; let log2_e: f64 = consts::LOG2_E; let log10_e: f64 = consts::LOG10_E; let ln_2: f64 = consts::LN_2; let ln_10: f64 = consts::LN_10; assert_approx_eq!(frac_pi_2, pi / 2f64); assert_approx_eq!(frac_pi_3, pi / 3f64); assert_approx_eq!(frac_pi_4, pi / 4f64); assert_approx_eq!(frac_pi_6, pi / 6f64); assert_approx_eq!(frac_pi_8, pi / 8f64); assert_approx_eq!(frac_1_pi, 1f64 / pi); assert_approx_eq!(frac_2_pi, 2f64 / pi); assert_approx_eq!(frac_2_sqrtpi, 2f64 / pi.sqrt()); assert_approx_eq!(sqrt2, 2f64.sqrt()); assert_approx_eq!(frac_1_sqrt2, 1f64 / 2f64.sqrt()); assert_approx_eq!(log2_e, e.log2()); assert_approx_eq!(log10_e, e.log10()); assert_approx_eq!(ln_2, 2f64.ln()); assert_approx_eq!(ln_10, 10f64.ln()); } }