// Runtime support for pipes. import unsafe::{forget, reinterpret_cast, transmute}; import either::{either, left, right}; import option::unwrap; import arc::methods; // Things used by code generated by the pipe compiler. export entangle; // User-level things export send_packet, recv_packet, send, recv, try_recv, peek; export select, select2, selecti, select2i, selectable; export spawn_service, spawn_service_recv; export stream, port, chan, shared_chan, port_set, channel; macro_rules! move { { $x:expr } => { unsafe { let y <- *ptr::addr_of($x); y } } } // This is to help make sure we only move out of enums in safe // places. Once there is unary move, it can be removed. fn move(-x: T) -> T { x } enum state { empty, full, blocked, terminated } type packet_header_ = { mut state: state, mut blocked_task: option<*rust_task>, }; enum packet_header { packet_header_(packet_header_) } type packet_ = { header: packet_header, mut payload: option }; enum packet { packet_(packet_) } fn packet() -> *packet unsafe { let p: *packet = unsafe::transmute(~{ header: { mut state: empty, mut blocked_task: none::, }, mut payload: none:: }); p } #[abi = "rust-intrinsic"] extern mod rusti { fn atomic_xchng(&dst: int, src: int) -> int; fn atomic_xchng_acq(&dst: int, src: int) -> int; fn atomic_xchng_rel(&dst: int, src: int) -> int; } type rust_task = libc::c_void; extern mod rustrt { #[rust_stack] fn rust_get_task() -> *rust_task; #[rust_stack] fn task_clear_event_reject(task: *rust_task); fn task_wait_event(this: *rust_task, killed: &mut *libc::c_void) -> bool; fn task_signal_event(target: *rust_task, event: *libc::c_void); } // We should consider moving this to core::unsafe, although I // suspect graydon would want us to use void pointers instead. unsafe fn uniquify(x: *T) -> ~T { unsafe { unsafe::reinterpret_cast(x) } } fn wait_event(this: *rust_task) -> *libc::c_void { let mut event = ptr::null(); let killed = rustrt::task_wait_event(this, &mut event); if killed && !task::failing() { fail ~"killed" } event } fn swap_state_acq(&dst: state, src: state) -> state { unsafe { reinterpret_cast(rusti::atomic_xchng_acq( *(ptr::mut_addr_of(dst) as *mut int), src as int)) } } fn swap_state_rel(&dst: state, src: state) -> state { unsafe { reinterpret_cast(rusti::atomic_xchng_rel( *(ptr::mut_addr_of(dst) as *mut int), src as int)) } } fn send(-p: send_packet, -payload: T) { let p_ = p.unwrap(); let p = unsafe { uniquify(p_) }; assert (*p).payload == none; (*p).payload <- some(payload); let old_state = swap_state_rel(p.header.state, full); alt old_state { empty { // Yay, fastpath. // The receiver will eventually clean this up. unsafe { forget(p); } } full { fail ~"duplicate send" } blocked { #debug("waking up task for %?", p_); alt p.header.blocked_task { some(task) { rustrt::task_signal_event( task, ptr::addr_of(p.header) as *libc::c_void); } none { fail ~"blocked packet has no task" } } // The receiver will eventually clean this up. unsafe { forget(p); } } terminated { // The receiver will never receive this. Rely on drop_glue // to clean everything up. } } } fn recv(-p: recv_packet) -> T { option::unwrap(try_recv(p)) } fn try_recv(-p: recv_packet) -> option { let p_ = p.unwrap(); let p = unsafe { uniquify(p_) }; let this = rustrt::rust_get_task(); rustrt::task_clear_event_reject(this); p.header.blocked_task = some(this); let mut first = true; loop { rustrt::task_clear_event_reject(this); let old_state = swap_state_acq(p.header.state, blocked); alt old_state { empty { #debug("no data available on %?, going to sleep.", p_); wait_event(this); #debug("woke up, p.state = %?", p.header.state); } blocked { if first { fail ~"blocking on already blocked packet" } } full { let mut payload = none; payload <-> (*p).payload; p.header.state = terminated; ret some(option::unwrap(payload)) } terminated { assert old_state == terminated; ret none; } } first = false; } } /// Returns true if messages are available. pure fn peek(p: recv_packet) -> bool { alt unsafe {(*p.header()).state} { empty { false } blocked { fail ~"peeking on blocked packet" } full | terminated { true } } } fn sender_terminate(p: *packet) { let p = unsafe { uniquify(p) }; alt swap_state_rel(p.header.state, terminated) { empty { // The receiver will eventually clean up. unsafe { forget(p) } } blocked { // wake up the target let target = p.header.blocked_task.get(); rustrt::task_signal_event(target, ptr::addr_of(p.header) as *libc::c_void); // The receiver will eventually clean up. unsafe { forget(p) } } full { // This is impossible fail ~"you dun goofed" } terminated { // I have to clean up, use drop_glue } } } fn receiver_terminate(p: *packet) { let p = unsafe { uniquify(p) }; alt swap_state_rel(p.header.state, terminated) { empty { // the sender will clean up unsafe { forget(p) } } blocked { // this shouldn't happen. fail ~"terminating a blocked packet" } terminated | full { // I have to clean up, use drop_glue } } } impl private_methods for *packet_header { // Returns the old state. unsafe fn mark_blocked(this: *rust_task) -> state { let self = &*self; self.blocked_task = some(this); swap_state_acq(self.state, blocked) } unsafe fn unblock() { let self = &*self; alt swap_state_acq(self.state, empty) { empty | blocked { } terminated { self.state = terminated; } full { self.state = full; } } } } #[doc = "Returns when one of the packet headers reports data is available."] fn wait_many(pkts: &[*packet_header]) -> uint { let this = rustrt::rust_get_task(); rustrt::task_clear_event_reject(this); let mut data_avail = false; let mut ready_packet = pkts.len(); for pkts.eachi |i, p| unsafe { let old = p.mark_blocked(this); alt old { full | terminated { data_avail = true; ready_packet = i; (*p).state = old; break; } blocked { fail ~"blocking on blocked packet" } empty { } } } while !data_avail { #debug("sleeping on %? packets", pkts.len()); let event = wait_event(this) as *packet_header; let pos = vec::position(pkts, |p| p == event); alt pos { some(i) { ready_packet = i; data_avail = true; } none { #debug("ignoring spurious event, %?", event); } } } #debug("%?", pkts[ready_packet]); for pkts.each |p| { unsafe{p.unblock()} } #debug("%?, %?", ready_packet, pkts[ready_packet]); unsafe { assert (*pkts[ready_packet]).state == full || (*pkts[ready_packet]).state == terminated; } ready_packet } fn select2( +a: recv_packet, +b: recv_packet) -> either<(option, recv_packet), (recv_packet, option)> { let i = wait_many([a.header(), b.header()]/_); unsafe { alt i { 0 { left((try_recv(a), b)) } 1 { right((a, try_recv(b))) } _ { fail ~"select2 return an invalid packet" } } } } trait selectable { pure fn header() -> *packet_header; } fn selecti(endpoints: &[T]) -> uint { wait_many(endpoints.map(|p| p.header())) } fn select2i(a: A, b: B) -> either<(), ()> { alt wait_many([a.header(), b.header()]/_) { 0 { left(()) } 1 { right(()) } _ { fail ~"wait returned unexpected index" } } } #[doc = "Waits on a set of endpoints. Returns a message, its index, and a list of the remaining endpoints."] fn select(+endpoints: ~[recv_packet]) -> (uint, option, ~[recv_packet]) { let ready = wait_many(endpoints.map(|p| p.header())); let mut remaining = ~[]; let mut result = none; do vec::consume(endpoints) |i, p| { if i == ready { result = try_recv(p); } else { vec::push(remaining, p); } } (ready, result, remaining) } class send_packet { let mut p: option<*packet>; new(p: *packet) { //#debug("take send %?", p); self.p = some(p); } drop { //if self.p != none { // #debug("drop send %?", option::get(self.p)); //} if self.p != none { let mut p = none; p <-> self.p; sender_terminate(option::unwrap(p)) } } fn unwrap() -> *packet { let mut p = none; p <-> self.p; option::unwrap(p) } } class recv_packet { let mut p: option<*packet>; new(p: *packet) { //#debug("take recv %?", p); self.p = some(p); } drop { //if self.p != none { // #debug("drop recv %?", option::get(self.p)); //} if self.p != none { let mut p = none; p <-> self.p; receiver_terminate(option::unwrap(p)) } } fn unwrap() -> *packet { let mut p = none; p <-> self.p; option::unwrap(p) } pure fn header() -> *packet_header { alt self.p { some(packet) { unsafe { let packet = uniquify(packet); let header = ptr::addr_of(packet.header); forget(packet); header } } none { fail ~"packet already consumed" } } } } fn entangle() -> (send_packet, recv_packet) { let p = packet(); (send_packet(p), recv_packet(p)) } fn spawn_service( init: extern fn() -> (send_packet, recv_packet), +service: fn~(+recv_packet)) -> send_packet { let (client, server) = init(); // This is some nasty gymnastics required to safely move the pipe // into a new task. let server = ~mut some(server); do task::spawn |move service| { let mut server_ = none; server_ <-> *server; service(option::unwrap(server_)) } client } fn spawn_service_recv( init: extern fn() -> (recv_packet, send_packet), +service: fn~(+send_packet)) -> recv_packet { let (client, server) = init(); // This is some nasty gymnastics required to safely move the pipe // into a new task. let server = ~mut some(server); do task::spawn |move service| { let mut server_ = none; server_ <-> *server; service(option::unwrap(server_)) } client } // Streams - Make pipes a little easier in general. proto! streamp { open:send { data(T) -> open } } // It'd be nice to call this send, but it'd conflict with the built in // send kind. trait channel { fn send(+x: T); } trait recv { fn recv() -> T; fn try_recv() -> option; // This should perhaps be a new trait pure fn peek() -> bool; } type chan_ = { mut endp: option> }; enum chan { chan_(chan_) } type port_ = { mut endp: option> }; enum port { port_(port_) } fn stream() -> (chan, port) { let (c, s) = streamp::init(); (chan_({ mut endp: some(c) }), port_({ mut endp: some(s) })) } impl chan of channel for chan { fn send(+x: T) { let mut endp = none; endp <-> self.endp; self.endp = some( streamp::client::data(unwrap(endp), x)) } } impl port of recv for port { fn recv() -> T { let mut endp = none; endp <-> self.endp; let streamp::data(x, endp) = pipes::recv(unwrap(endp)); self.endp = some(endp); x } fn try_recv() -> option { let mut endp = none; endp <-> self.endp; alt move(pipes::try_recv(unwrap(endp))) { some(streamp::data(x, endp)) { self.endp = some(move!{endp}); some(move!{x}) } none { none } } } pure fn peek() -> bool unchecked { let mut endp = none; endp <-> self.endp; let peek = alt endp { some(endp) { pipes::peek(endp) } none { fail ~"peeking empty stream" } }; self.endp <-> endp; peek } } // Treat a whole bunch of ports as one. class port_set : recv { let mut ports: ~[pipes::port]; new() { self.ports = ~[]; } fn add(+port: pipes::port) { vec::push(self.ports, port) } fn try_recv() -> option { let mut result = none; while result == none && self.ports.len() > 0 { let i = wait_many(self.ports.map(|p| p.header())); // dereferencing an unsafe pointer nonsense to appease the // borrowchecker. alt move(unsafe {(*ptr::addr_of(self.ports[i])).try_recv()}) { some(m) { result = some(move!{m}); } none { // Remove this port. let mut ports = ~[]; self.ports <-> ports; vec::consume(ports, |j, x| if i != j { vec::push(self.ports, x) }); } } } result } fn recv() -> T { option::unwrap(self.try_recv()) } pure fn peek() -> bool { // It'd be nice to use self.port.each, but that version isn't // pure. for vec::each(self.ports) |p| { if p.peek() { ret true } } false } } impl of selectable for port { pure fn header() -> *packet_header unchecked { alt self.endp { some(endp) { endp.header() } none { fail ~"peeking empty stream" } } } } type shared_chan = arc::exclusive>; impl chan of channel for shared_chan { fn send(+x: T) { let mut xx = some(x); do self.with |_c, chan| { let mut x = none; x <-> xx; chan.send(option::unwrap(x)) } } } fn shared_chan(+c: chan) -> shared_chan { arc::exclusive(c) }